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THE PREDICTION OF SUPERCRITICAL PRESSURE DISTRIBUTIONS 
ON BLADE TIPS OF ARBITRARY SHAPE OVER A RANGE 

OF ADVANCING BLADE AZIMUTH ANGLES 

1 Introduction 

J GRANT 

Royal Aircraft ~stablishment 
England 

Following the successful development of finite-difference calculation 
methods for computing flows over fixed aerofoils and wings, these methods are now 
being applied to the important problem of helicopter blade tip aerodynamics. One 
particular area which is amenable to analysis is the calculation of the 
supercritical flow over the tip region of the blade on the advancing side 
of the rotor disc where, in high speed flight, strong compressible flow effects 
can occur which may limit high speed performance1, At RAE, a transonic small 
perturbation approximation to the equations for potential flow over a 
helicopter blade has been derived and a numerical technique devised to provide 
a three-dimensional solution for various tip shapes, at azimuth stations 
around the advancing side of the disc. With such a method available, a 
theoretical study of different tip shapes can be undertaken with a view to 
minimising the adverse effects of the development of supercritical flow, 

In this paper, the calculation method is described and the assumptions 
made in deriving the fl~w-5ield equation are discussed, together with those 
made in related studies ' • The numerical scheme is outlined and a selection 
of results for different planforms is presented to illustrate the influence 
of three-dimensional tip effects in the azimuth range 60° to 120°, 

2 The Flow Eguation 

Exact calculation of the three-dimensional, time-dependent airflow 
about a helicopter blade as it moves around the rotor disc is an extremely 
formidable problem. Even if we ignore all blade dynamics and assume 
inviscid and irrotational flow, so that the air velocity can be derived from 
a perturbation potential ¢, we are confronted by field equations (Ref 3, 
eons (2,1) and (2.2)) which have so far defied analysis. Progress can be 
made, however, towards calculating the supercritical flow rel~tive to the 
blade on the advancing side of the rotor disc by applying a transonic small 
perturbation (tsp) approximation, as in the m~nner of Ref 4 for example, 

In previous studies of the advancing blade problem2 • 5, 6 it has been 
chosen to ignore the spanwise component of freestream velocity along the blade 
in comparison with the chordwise component. Of course at 90° azimuth, where 
the rotational velocity and the air velocity due to the forward motion are 
both in the chordwise direction, this is certainly acceptable. Away from 90° 
azimuth, however, the spanwise component of the flow can be expected to have 
an appreciable effect, especially for large advance rat:ios, and even for low 
advance ratios if swept tips are to be examined, Thus if the flow is to be 
considered over a range of azimuth angle, spanwise flow effects should be 
accounted for. Assuming then that in general the spanwise component of the 
flow is of the same order as the chordwise component, for a helicopter with 
forward velocity U, rotor of radius R and blades of chordlength c 
rotating with angular velocity 0 , we derive3 the following tsp equation 
in the velocity perturbation potential ¢ to describe the motion: 
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and MT (= 0 R/a,., ) is the blade tip Mach number due to rotation, Jl (= U/0 R) 

is the helicopter advance ratio and A(= R/c) is the blade aspect ratio 
for a rectangular planform. In equation (2.1) x, y and z are space 
co-ordinates measured relative to axes ox, Oy, Oz centred at the rotor hub 
and rotating with the blade such that Oy is along the blade, Ox is parallel 
to the blade chord (x increasin~ Aft) and Oz is normal to the rotor disc 
as shown in Figure 1. The velocity potential 0 and the space co-ordinates 
have been non-dimensionalised by making the substitutions 
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0 -> c( ~)(ii 

x -c(x + ;}) 

y....._;;.R- I+ cy 

z -l> cz 

Then as illustrated in Figure 2, x = -i corresponds to the blade leading 
edge and x = +i to the blade trailing edge; y is the distance in chord­
lengths towards the tip from some specified inboard station I, so that 
near the tip (AI + y)/A is almost equal to unity. The symbols u.

1 
and U. 

2 
represent the chordwise and spanwise components of velocity in terms of the 
non-dimensional variables. 

Equation (2,1) contains terms which involve derivatives with respect 
to all three space co-ordinates, and also two terms which involve derivatives 
with respect to the azimuth angle + and so portray the time dependent nature 
of the flow. Although it is much simpler than the full potential equation for 
the motion it would appear that no solutions to equation (2.1) have, as yet, been 
presented, 

Isom and Caradonna in the USA have, however, in Ref 2, investigated time 
dependent effects for the case of a non-lifting rectangular blade with circular 
arc section. They did this by integrating, over a range of values of azimuth 
on the advancing side of the rotor disc, an equation essentially equivalent to 
equation (2.1) when all terms arising from the spanwise component of the flow 
(that is those terms involving U2 in (2.1)) were neglected. Their 
calculations indicated that the tDne dependent solution did not differ 
significantly from a steady calculation at the same azimuth until the blade 
azimuth angle was well in excess of 90°, 

It was felt, then, by the author that accurate calculations of the flow 
relati•re to a helicopter blade could be made over a useful range of azimuth 
angle about 90°, by omitting the two time dependent terms in equation (2.1) but 
retaining all spanwise flow terms. This would permit a 'steady' three­
dimensional computation to be performed at the prescribed azimuth under 
consideration. It was also decided to direct some effort towards the 
simulation of lifting cases so that the combination of new planforms and 
recently developed cambered aerofoil sections could be considered together. 

3 The Numerical Method 

For the reasons given above, the equation which was retained for 
numerical analysis was of the form (2.1)without the last two time-dependent 
terms. 

To set the governing equation in finite difference form poses problems, 
since to ensure stability in local regions where the flow is supersonic it is 
necessary to switch from central to upwind finite difference forms in a 
direction corresponding to the local velocity vector. Since the freestream flow 
has both chordwise and spanwise components this will obviously imply 
switching finite difference expressions to backward form in both the x and y 
co-ordinate directions but it is not apparent from the form of (2.1) to which 
terms this should apply and to which terms it should not, An answer has been 
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found by looking for guidance to the analogous situation of yawed flow over 
a fixed wing, By applying the canonical splitting scheme suggested 
independently by Albone7 and Jameson8 it r~s been shown by the Author3 
that the governing eauation should be finite-differenced in the form 

+ [ 2 P2 
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The underlined terms in equation (2.3) are those which must be switched to 
backward form when the flow is supercritical, When the terms in eauation (2.3) 
are combined they reduce to equation (2.1) (without the time-dependent terms), 
but in the form (2.3) it is evident that only perts of the ¢xx' ¢xy and ¢yy 

terms must be switched, while other parts should remain centrally differenced 
everywhere. 

The sonic condition for equation (2,1) is, to leading order, 
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It can be seen from equation (2.3) that the switch from central to backward 
differences (where the flow becomes sonic) occurs smoothly. With regard to 
the y direction, 'backward' will depend upon the direction of the spanwise 
component of the flow, ie the sign of u2 • Once again a smooth switch in the 

y derivative terms will occur even if u2 changes sign because p2 (and 

hence u2) multiplies each of these terms. 

3.1 Boundary conditions 

To complete the formulation of the problem boundary conditions must be 
applied - on the rotor surface, at the inboard boundary I, in the far field 
and on the wake. The inboard boundary station y = o can be specified 
arbitrarily. It is taken to be sufficiently far inboard, away from tip effects, 
so that, if the blade is uniform, it can be assumed that there is no 
perturbation to the flow in the direction, n, normal to the local free-stream 
direction. Thus as Y-?>O , then )il ~ o and )il ~ o. In terms of the blade -n nn 
based co-ordinate system this gives at y : 0 

= 0 

which enable the spsnwise derivatives 
an equation involving only x and z 
tangency condition 

in equation (2.3) to be eliminated leaving 
at y : o. On the rotor blade the flow 

is enforced, where 

surfaces. 

oz U/L 
s 

+ u2 by 

Z U/L are the co-ordinates of the upper and lower blade 
s 

In order to treat lifting cases it is necessary to model the vortex wake. 

( 2. 5) 

It is well known that the vortex sheet trailing from a rotor blade usually 
rolls up to form a strong line-vortex. For high advance ratios, however, 
(around the advancing side of the disc where the loading is low,) the vortex 
sheet appears to remain reasonably planar at least for a few chordlengths 
downstream. As a first approach it was decided to model the wake generated by 
the tip region of the blade as a plane vortex sheet skewed in the direction 
of the resultant freestream flow. Figure 3 illustrates the model of the wake 
for azimuth angles of 60° and 120°. At 60° azimuth the wake arising from the 
straight edge of a rectangular blade is also taken into account. Across the 
vortex sheet, jump conditions on the velocity potential are imposed. To the 
leading order, to obtain continuity of pressure we must ensure that )il is 

s 
continuous acroFs the vortex sheet, where s is in the 
local velocity vector. This in turn implies that C•)J'J 

s 

direction of the 
= 0, where A)il 

is the potential jump across the sheet. This jump condition is imposed in the 
course of the numerical solution. 
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With regard to the far field conditions, we assume that in a Trefftz 
plane far downstream of the aerofoil the pressure will have recovered to the 
appropriate freestream value. In this case ~ ~ o and ~ ~ o, which s ss implies 

( 2. 6) 

The conditions (2.6) enable all x derivative terms in (2.3) to be eliminated 
leaving an eauation in only y and z, which is solved in the Trefftz plane 
downstream. At any particular azimuth under consideration, the spiral wake, 
blade dynamics and blade twist can be accounted for approximately by 
performing computations for an effective incidence distribution, which has 
been obtained previously from a complete rotor performance calculation which 
does model these effects. Though there are uncertainties concerning the true 
iii:Cidence distribution in any situation, it can be reasoned that as blade 
incidence varies with advance ratio, whet is renuired is a blade tip which 
performs well for a range of incidence distributions. Leaving this question for 
debate, what we can assert more confidently is that the theory outlined should 
give reasonable results for cambered sections at near zero lift. 

Once the scheme indicated by eauation (2.3) to (2.6) has been established 
the finite difference solution of the equations follows the same lines as in 
many other finite difference methods and is described in Ref 6 and 9. The 
method which can cope with arbitrary geometry has been used to compute flows 
over a variety of tip shapes and for a number of aerofoil sections over a range 
of azimuth angles, So far no serious problems of numerical instability have 
been encountered. A selection of the computed results are presented below, 

4 Comparison of Theory with Experiment 

A model rot~r experiment is described in Ref 10 and 11 in which detailed 
pressure monitoring was carried out at ONERA on untwisted blades fitted with 
straight and 30° sheared tips, under non-lifting conditions. Various pressure 
distributions over the tip region have been presented in these papers for both 
types of blade tip and these provide a useful means of assessing the current 
theory. 

The first tip shown in Figure 4 was near-rectangular but was tapered 
in thickness from NACA 0014.5 section at 80% radius to NACA 0009 section at 
the tip. Pressures 11ere monitored at the three spanwise stations indicated in 
Figure 4, As the blades were of low as~ect ratio (~6) tip effects should extend 
over an appreciable extent of the blade , Also as the advance ratio in the 
tests was high (p = 0,55) time dependent effects sq~uld be appreciable, Two-
dimensional time-dependent calculation methods10, have also been used to 
predict the local unsteady flow at the three spanwise stations shown in 
Figure 4, for the time-varying chordwise component of the freestream flow. 
Thus comparisons between experiment and the three-dimensional and unsteady 
two-dimensional theories provide useful information regarding the importance of 
three-dimensional and unsteady effects. 
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Figures 5 to 8 show a three-dimensional picture of the measured and calculated 
pressure distributions over the tip region at 60° and 120° azimuth for the 
case MT = 0,6, )l = 0,55. At both azimuth stations the agreement is quite good, 

in terms of both shock pattern and pressure levels along the blade, The 
significant differences in the flow at 60° and 120° are captured well by the 
'steady' three-dimensional theory and evidently are not due entirely to unsteady 
effects. Indeed the flow patterns appear to be consistent with previous 
observations on flows over swept back and swept forward wings, and have been 
interpreted in this sense in Ref 9. 

The asymmetries in the flow befo~e and beyond 90° azimuth are best 
illustrated by examining azimuthal variation of pressure at various points on the 
blade, This azimuthal variation of pressure at 30% and 50% chord at each of the 
two spanwise stations r/R = 0,855 and r/R = 0,892 are plotted in Figures 9 
and 10, while Figure 11 shows the result at 40% chord at the most outboard radial 
station r/R = 0,946, Separate curves giving the measured Yariation, and that 
predicted by the present theory and by two-dimensional time-dependent theory have 
been drawn. To plot these figures for the three-dimensional cose R. separate 
steady flow re.oult, as given by (2.3), was obtained at azimuth inter-rals of 7~0 • 
The calculations were carried out o~ a fairly coarse grid consisting of 
31 x 23 x 11 points in the chordwise, spanwise and normal directions. 

In each of Figures 9 to 11 the flow asymmetry about f = 90° is very 
apparent, but the pressures are predicted well at all three spanwise stations 
by the three-dimensional theory in the azimuth interval !00° to 120°, in .,,hich 
range the furthest penetration into supercritical conditions occurs. Beyond 
1200 azimuth the distinct differences which occur between the three-dimensional 
and the measured pressures have been attributed to time dependent effects, 
an assertion which is substantiated by the very close agreement between two­
dimensional unsteady theory and experiment at the most inboard radial station 
(Figure 9) over the whole azimuth range shown, At this inboard spanwise station 
tip effects are likely to be small, Towards the tip, however, the two-dimensional 
theory fails and at the most outboard station (Figure 11) even the trend with 
azimuth is not correct. The three-dimensional theory, which includes tip 
effects, predicts the trend well in the azimuth range 60° to 120° before once 
again, beyond this azimuth, time-dependent effects come into play, 

The importance of three-dimensional effects (and in particular the 
essential role of the spanwise component of the flow) is portrayed even more 
strongly in the results for the ONERA model rotor when fitted with the swept tip 
shown in Figure 12. The tip is sheared sharply at an angle of 30° over the 
outer 15% of the blade and it has the same section and is tapered in thickness 
in the same way as for the near-rectangular tip, The pressure distribution over 
the tip region at 60° azimuth and 120° azimuth, as measured and as calculated 
by the three-dimensional theory are presented in Figures 13 and 14 respectively, 
Here the agreement between experiment and the calculations, which were performed 
on a 61 x 45 x 21 grid, is considered very good, The computations capture the 
high suction peak which occurs towards the sharp leading-edge corner at the 
extreme tip of such a sheared back blade at 60° azimuth, and the strong shock 
which appears at 1200 azimuth where the effect of sweepback is a minimum. 

It is apparent by comparing the calculated results at 60° and 120° 
azimuth, both for the rectangular tip and the swept tip, that there is a 
noticeable influence of the spanwise component of the flow even at radial stations 
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which are an appreciable distance inboard from the tip. This may seem surpr1s1ng 
but perhaps can be explained by reference to Figure 15 where the resultant flow 
relative to the blade is shown, for a forward flight case, at 60° and 120° 
azimuth. As is indicated, if the same section normal to the leading edge is 
considered, at 60° azimuth the flow over the rear part of the section originates 
with freestream Mach number M - eM whereas at 120° azimuth the flow over the 
rear part of the section originates with freestream Mach number M +AM, Of 
course, if the spanwi&e component of the flow is ignored there is no distinction 
between the freestream flow in each case. If, for a swept tip, spanwise (or more 
accurately, radial) flow terms are neglected then the Mach number normal to the 
swept leading-edge is the same at f = 90 + lJ. + as at + = 90 -A f, This is 
obviously not true in forward flight and will clearly lead to errors in the 
predicted pressure distributions, Figure 16, which shows the calculated spanwise 
variation of the chordwise maximum of the local Mach number of the flow over the 
swept-tip blade at 6o0 and 120°, illustrates that there is a measurable effect 
due to spanwise flow even two chordlengths from the tip, 

The inability of a three-dimensional theory which neglects spanwise flow 
effects to predict useful results for the swept tip case 1s illustrated by 
including in Figure 16 the calculated result (the same at 60° and 1200) when all 
spanwise (U

2
) terms in (2.3) are dropped, 

5 Possible Refinements to a Swept Tip 

The adverse high suction peak which appears at 6o0 azimuth for a 
rectangular blade, and.also Bt 90° azimuth on a swept tip with a straight edge 
at the extreme tip, can be alleviated by rounding the leading edge corner. The 
theory has been used to predict the pressure distribution at 6o0 , 90° and 120° 
for a tip planform of this type. The modelled blade was sheared at an angle of 
30° two chordlengths from the tip and constant NACA 001? section was maintained 
over the tip region, The calculated isobar distribution over the tip is plotted 
in Figure 17 for the case MT = 0.63, p = 0,4, R/c = 15, a= 0°, + = 900, and 

this may be compared with that computed for the same tip when the leAding edge 
corner is not rounded, which is shown in Figure 18. The high suction peak at 
the leading edge corner has been completely eliminated. The extent of 
supercritical flow for this tip at 60°, 90° and 120° azimuth is illustrated in 
Figure 19, where the calculated variation of maximum local Mach number along the 
blade has been plotted, Once again this may be compared with that computed for 
a rectangular blade with the same section and aspect ratio, shown in Figure 20, 
It can be noted that at 120° azimuth, where, for the sheared tip, the benefits 
of sweep are the least, a higher level of supercritical flow is predicted for 
the sheared tip than for the rectangular tip. A similar effect has been observed 
in the ONERA experiments11, 

If we refer again to Figures 17 and 19 for the sheared tip, it can be seen 
that the sharp crank where the shearing begins produces an equally sharp 
decrease in local surface velocities, Such a sudden decrease in local velocity 
has no special merit and can be avoided with a progressively sheared tip as 
drawn in Figure 21. The planform of this tip was selected with the aid of the 
theory and the predicted levels of supercritical velocity along the blade for 
this shape are presented in Figure 22. The sharp drop in surface velocity 
at the crank is avoided without any increase in overall levels compared to the 
sharply sheared tip. Once again though, a significant excursion into supercritical 
conditions occurs at 120°, We note that for this planform the trailing edge at 
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the tip is only 0.88 chordlength behind the trailing edge of the inboard part 
of the blade as against 1.15 chordlengths for the sharply sheared blade of 
Figure 16, This should lead to considerably less mass behind the elastic 
axis of the blade. 

Finally as an example of the use of the calculation method for a 
lifting case, chordwise pressure distributions at various radial stations on a 
Lynx blade, which has RAE 9615 section, are shown in Figure 23 at 900 azimuth, 
for the incidence distribution indicated. This incidence variation was taken 
from a rotor performance calculation for the flight condition MT = 0,63, 

)1 = 0,4. 

6 Conclusions 

1 A method has been developed for calculating lifting three-
dimensional supercritical flow over a rotor blade at arbit~ary 
azimuth, on the advancing side of a rotor disc, by extending tsp 
theory to include spanwise flow terms whilst still neglecting time­
dependent terms. 

2 Comparisons with experimental results for a non-lifting model 
rotor fitted with near-rectangular and swept tip blades show good 
agreement over the tip region in the azimuth range 600 to 120°, 

3 Beyond 120° azimuth, in highly supercritical conditions, strong 
time-dependent effects are apparent which the present three­
dimensional theory can not predict, The unsteady effects are, however, 
captured well at stations some way inboard from the tip by two­
dimensional time-dependent tsp theory, 

4 In order to predict both three-dimensional and unsteady effects 
a three-dimensional time-dependent theory is reouired, It is 
advocated that the tsp equation given by (2,1) should serve well for 
this purpose. 

5 On the basis of the calculations presented in this paper it is 
suggested that a progressively sheared tip with a rounded leading edge 
corner at the extreme tip should be effective in alleviating 
supercritical conditions around a large portion of the advancing side of 
a rotor disc. 
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