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1 Introducticn

Following the successful development of finite-difference calculation
methods for computing flows over fixed aerofoils and wings, these methods are now
being applied to the important problem of helicopter blade tip aercdynamics. One
particular area which is amensble to &nalysis is the calculation of the
supercritical flow over the tip region of the blade on the advancing side
of the rotor disc where, in high speed flight, strong compressible flow effects
can occur which may limit high speed performancel. At RAE, a transonic small
perturbation approximation to the equations for potentizl flow over a
helicopter blade has been derived and a numerical technigue devised to provide
a three~dimensional solution for various tip shapes, at azimuth stations
arcund the advancing side of the disc. With such a method available, a
theoretical study of different tip shapes can be undertaken with a view to
minimising the adverse effects of the development of supercritical flow.

In thig paper, the calculation method is described and the assumptions
made in deriving the flSngield equaticn are discussed, together with those
made in related studies®™ “. The numerical scheme is outlined and a selection
of results for different planforms is presented to illustrate the influence
of three-dimensicnal tip effects in the azimuth range &0° to 1209,

e The Flow Equation

Exact calculation of the three-~dimensional, time-dependent airflow
about a helicopter blade as it moves around the rotor disc is an extremely
formidable problem. Even if we ignore all blade dynamics and assume
inviscid and irrotational flow, s¢ that the air velocity can be derived from
a perturbation potential ¢, we are confronted by field equations (Ref 3,
eans (2.1) and (2.2)) which have so far defied analysis. Progress can be
made, however, towards calculating the supercritical fiow relative to the
blade on the advancing side of the rotor disc by applying a transonic small
perturbation (tsp) approximation, as in the manner of Ref 4 for example,

In previous studies of the advancing blade problemz' 5, 6 it has been
chosen to ignore the spanwise component of freestream velocity along the blade
in comparison with the chordwise component., Of course at 90° azimuth, where
the rotational velocity and the air velocity due to the forward motion are
both in the chordwise direction, this is certainly acceptable, Away from 90°
azimuth, however, the spanwise component of the flow can be expected to have
an appreciable effect, especially for large advance ratiocs, and even for low
advance ratios if swept tips are to be examined, Thus if the flow is to be
considered over a range of azimuth angle, spanwise flow effects should be
accounted for. Assuming then that in general the spanwise component of the
flow is of the same order as the chordwise component, for a helicopter with
forward velocity U, rotor of radius R and blades of chordlength ¢
rotating with angular velocity 0 , we derive’ the following tsp equation
in the velocity perturbation potential @ to describe the motion:
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and MT (=QR/a, ) 1is the blade tip Mach number due to rotation, nu (= v/ R)

is the helicopter advance ratio and A(= R/¢) 1is the blade aspect ratio

for a rectangular planform., In equation (2.1) x, y and z are space
co~ordinates measured relative to axes CX, Oy, Oz centred at the rotor hub
and rotating with the blade such that Oy 1is along the blade, Ox is parallel
to the blade chord (x increasing ~ft) and Oz is normal to the rotor disc

as shown in Figure 1. The velocity potential ¢ and the space co-ordinates
have been non-dimensionalised by making the substitutions



g — c(R)Y
x —3»c(x + 3)
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Then as illustrated in Figure 2, x = =% corresponds to the blade leading
edge and x = +3 to the blade trailing edge; y is the distance in chord-
lengths towards the tip from some specified inboard station I, so that

near the tip (AI + y)/A is almost equal to unity. The symbols U.1 andIJa

represent the chordwise and spanwise components of velocity in terms of the
non~dimensional variables.

Equation (2.1) contains terms which involve derivatives with respect
to all three space co-ordinates, and alse two terms which involve derivatives
with respect te the azimuth angle ¥ and so portray the time dependent nature
of the flow. Although it is much simpler than the full potential equation for
the motion it would appear that no solutions to equation (2,1) have, as yet, been
presented,

Isom and Caradonna in the USA have, however, in Ref 2, investigated time
dependent effects for the case of a non-lifting rectangular blade with circular
arc section. They did this by integrating, over a range of values of azimuth
on the advancing side of the rotor disc, an equation essentially equivalent to
equation (2.1) when all terms arising from the spanwise component of the flow
(that is those terms involving U, in (2.1)) were neglected, Their
calculations indicated that the time dependent solution did not differ
significantly from a steady calculation at the same azimuth until the blade
azimuth angle was well in excess of 90°,

It was felt, then,by the author that accurate calculations of the flow
relative to a helicopter blade could be made over a useful range of azimuth
angle about 90°, by omitting the two time dependent terms in equation (2.1} but
retaining ail spanwise flow terms. This would permit a 'steady' three-
dimensional computation to be performed at the prescribed azimuth under
congideration, It was also decided to direct some effort towards the
simulation of lifting cases so that the combination of new planforms and
recently developed cambered aerocfoil sections could be considered together.

3 The Numerical Method

For the reasons given above, the eguation which was retained for
numerical analysis was of the form (2.1) without the last two time~dependent
terms.

To set the governimg equation in finite difference form poses problems,
since to ensure stability in local regions where the flow is supersonic it is
necessary to switch from central to upwind finite difference forms in a
direction corresponding to the local velocity vector. Since the freestream flow
has both chordwise and spanwise components this will obviocusly imply
switching finite difference expressions to backward form in both the x and y
comordinate directions but it is not appareant from the form of (2.1) to which
terms this should apply and to which terms it should not, An answer has been



found by looking for guidance to the analogous situation of yawed flow over
a fixed wing., By applying the cancnical splitting scheme suggested
independently by Albone? and Jameson8 it has been shown by the Author?

that the governing eguation should be finite~differenced in the form
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The underlined terms in equatlon (2.3) are those which must be switched to
backward form when the flow is supercritical. When the terms in equation (2.3)
are combined they reduce to equation (2.1) (without the time-dependent terms),
but in the form (2.3) it is evident that only parts of the gxx, gxy and gyy

terms must be switched, while other parts should remain centrally differenced
everywhere.

The sonic condition for equation (2.1) is, to leading order,
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It can be seen from equation (2.3) that the switch from central to backward
differences (where the flow becomes sonic) occurs smoothly. With regard to
the y direction, ‘'backward' will depend upon the direction of the spanwise

component of the flow, ie the sign of U2' Once again a smooth switch in the
y derivative terms will occur even if U2 changes sign because Py (and

hence U2) multiplies each of these terms.

3.1 Boundary conditions

To complete the formulation of the problem boundary conditions must be
applied - on the rotor surface, at the inboard boundary I, in the far field
and on the wake. The inboard boundary station y = ¢ can be specified
arbitrarily. It is taken to bve sufficiently far inboard, away from tip effects,
go that, if the blade is uniform, it can be assumed that there is no
perturbation to the flow in the directien, n, ncrmal to the local free-stream
direction, Thus as y-30 , then Qnaésa and an —3 0, In terms of the blade -

based co=-ordinate system this gives at y = o
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which enable the spanwise derivatives in squation (2.3) to be eliminated leaving
an equation involving only x and z at y = o, On the rotor blade the flow

tangency condition
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is enforced, where ZSU/L are the co-ordinates of the upper and lower blade

surfaces,

In order to treat lifting cases it is necessary to model the vortex wake.

It is well known that the vortex sheet trailing from a rotor blade usually
roils up to form a strong line-vortex. For high advance ratios, however,
(around the advancing side of the disc where the loading is low,) the vortex
sheet appears to remain reasonably planar at least for a few chordlengths
downstream. As a first approach it was decided to model the wake generated hy
the tip region of the blade as a plane vortex sheet skewed in the direction
of the resultant freestream flow, Figure % illustrates the model of the wake
for azimuth angles of 60° and 120°, At 60° azimuth the wake arising from the
straight edge of a rectangular blade is also taken into account, Across the
vortex sheet, jump conditions on the velocity potential are imposed. To the
leading order, to obtain continuity of pressure we must ensure that Qs is

continuous acroes the vortex sheet, where 5 1is in the direction of the
local velocity vector. This in turn implies that (Aﬂ)s = 0, where A{

is the potential jump across the sheet, This jump condition is imposed in the
course of the numerical solution.



With regerd to the far field conditions, we assume that in a Trefftz
plane far downstream of the aerofoil the pressure will have recovered to the
appropriate freestream value, In this case QS—# o and stna o, which
implies

U@+ U, =0

3 : _
(W, &+ Uy & KUG, 4 UF) =0 (2.6)

The conditions (2.6) enable all x derivative terms in (2.3) *to be eliminated
leaving an eqguation in only y and u, which is solved in the Trefftz plane
downstream., At any particular azimuth under consideration, the spiral wake,
blade dynamics and blade twist can be accounted for approximstely by
performing computations for an effective incidence distribution, which has
been obtained previcusly from a complete rotor performance calculation which
does model these effects, Though there are uncertainties concerning the true
incidence distribution in any situation, it can be reasoned that as blade
incidence varies with advance ratio, what is resuired is a blade tip which
performs well for a range of incidence distributions., Leaving this question for
debate, what we can assert more confidently is that the theory outlined should
give reasonable results for cambered sections at near zero lift.

Once the scheme indicated by eguation (2,3) to (2.6) has been established
the finite difference solution ¢f the equations follows the same lines as in
many other finite difference methods and is described in Ref 6 and 9. The
method which can cope with arbitrary geometry has heen used to compute flows
over a variety of tip shapes and for a number of aerofoil sections over a range
of azimuth angles. S0 far no serious problems of numerical instability have
been encountered. A selection of the computed results are presented below.

4 Comparison of Theory with Experiment

A model rotar experiment is described in Ref 10 and 11 in which detailed
pressure monitoring was carried out at ONERA on untwisted blades fitted with
straight and 20° sheared tips, under non-lifting conditions. Various pressure
distributions over the tip region have been presented in these papers for both
types of blade tip and these provide a useful means of assessing the current
theory.

The first tip shown in Figure &4 was near-rectangular but was tapered
in thickness from NACA 0014.5 section at 80% radius to NACA 0009 section at
the tip. Pressures were monitored at the three spanwise stations indicated in
Figure b, As the blades were of low asgect ratio (~6) tip effects should extend
over an appreciable extent of the blade'. Also as the advance ratio in the
tests was high (u = 0.55) time dependent effectg sgguld be appreciable, Two~
dimensional time-dependent calculation methods10s have also been used to
predict the local unsteady flow at the three spanwise stations shown in
Figure &4, for the time-varying chordwise component of the freestream flow.
Thus comparisons between experiment and the three-dimensional and unsteady
two-dimensional theories provide useful information regarding the importanée of
three~dimensional and unsteady effects.

2=6



Figures 5 to 8 show a three-~dimensional picture of the measured and calculated
pressure distributions over the tip region at 60° and 120° azimuth for the
case MT = 0.6, u = 0,55, At both azimuth stations the agreement is gquite good,

in terms of both shock pattern and pressure levels along the blade., The
significant &ifferences in the flow at 60° and 120° are captured well by the
'steady! three-dimensional theory and evidently are not due entirely to unsteady
effects. Indeed the flow patterns appear tc be consistent with previous
ocbservations on flows over swept back and swept forward wings, and have been
interpreted in this sense in Ref 9.

The asymmetries in the flow before and beyond 90° azimuth are best
iliustrated by examining azimuthal variation of pressure st various points on the
blade, This azimuthal variation of pressure at 30% and 50% chord at each of the
two spanwise stations T/rR = 0.855 and r/R = 0.892 are plotted in Figures 9
ané 10, while Figure 11 shows the result at 40% chord at the most outboard radial
station r/R = 0,946, Separate curves giving the measured variation, and that
predicted by the present theory and by two-dimensional time-dependent theory have
been drawn. To plot these figures for the three-dimensicnal case a separate
steady flow rerult, as given by (2.3), was obtained at azimuth intervals of 73°.
The calculationg were carried out or a fairly coarse grid consisting of
31 x 23 x 11 points in the chordwise, spanwise and normal directions,

In each of Figures 9 to 11 the flow asymmetry about ¥ = 90° is very
apparent, but the pressures are predicted well at all three spanwise stations
by the three-dimensional theory in the azimuth interval A0° to 1209, in which
range the furthest penetration into supercritical conditions occurs. Beyond
1200 azimuth the distinet differences which occur between the three-dimensional
and the measured pressures have been attributed to time dependent effects,
an assertion which is substantiated by the very close agreement between two-
aimensional unsteady theory and experiment at the most inboard radial station
(Figure 9) over the whole azimuth range shown., At this inboard spanwise station
tip effects are likely to be small, Towards the tip, however, the two-dimensional
theory fails and at the most outboard station (Figure 11) even the trend with
azimuth is not correct. The three-dimensional theory, which includes tip
effects, predicts the trend well in the azimuth range 60° to 120° vefore once
agaln, beycnd this azimuth, time-dependent effects come into play.

The importance of three-~dimensional effects (and in particular the
essential role of the spanwise component of the flow) is portrayed even more
strongly in the results for the ONERA model rotor when fitted with the swept tip
shown in Figure 12. The tip is sheared sharply at an angle of 30° over the
outer 15% of the blade and it has the same section and is tapered in thickness
in the same way as for the near-rectangular tip. The pressure distribution over
the tip region at 60° agzimuth and 120° azimuth, as measured and as calculated
by the three-dimensional theory are presented in Figures 13 and 14 respectively.
Here the agreement between experiment and the calculations, which were performed
ona 61 x 45 x 21 grid, is considered very good, The computations capture the
high suction peak which occurs towards the sharp leading-edge corner at the
extreme tip of such a sheared back blade at 60° azimuth, and the strong shock
which appears at 120° azimuth where the effect of sweepback is a minimum.

Tt is apparent by compering the celculated results at 60° and 120°

azimuth, both for the rectangular tip and the swept tip, that there is a
noticeable influence of the spanwise component of the flow even at radial stations
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which are an appreciable distance inboard from the tip. This may seem surprising

but perhaps can be explained by reference to Figure 15 where the resultant flow .
relative to the blade is shown, for a forward flight case, at 60° and 120° b
azimuth, As is indicated, if the same section normal to the leading edge is
considered, at 60° azimuth the flow over the rear part of the secticon originates

with freestream Mach number M - AM whereas at 1200 azimuth the flow over the

rear part of the section originates with freestream Mach number M + AM, OFf

course, if the spanwibe component of the flow is ignored there is no distinection
between the freestream flow in each case., If, for a swept tip, spanwise (or more
accurately, radial) flow terms are neglected then the Mach number normal to the

swept leadingwedge is the same at ¥= 90 + A¥ as at ¥= 90 ~A ¥ Thig is

obviously not true in forward flight and will clearly lead to errors in the

predicted pressure distributicns. Figure 16, which shows the calculated spanwise
variation of the chordwise maximum of the local Mach number of the flow over the
sweptetip biade at 60° and 120°, illustrates that there is a measurable effect

due to spanwise flow even two chordlengths from the tip,

The inability of a three~dimensional theory which neglects spanwise flow
effects to predict useful results for the swept tip case is illustrated by
including in Figure 16 the calculated result (the same at 60° and 120°) when all
spanwise (UE) terms in (2.3) are dropped.

5 Possible Refinements tc a Swept Tip

The adverse high suction peak which appears at 60° azimuth for a
rectangular blade, and also at 90° agzimuth on a swept tip with a straight edge
at the extreme tip, can be alleviated by rounding the leading edge corner. The
theory has been used to predict the pressure distribution at 60°, 90° and 120°
for a tip planform of this type. The modelled blade was sheared at an angle of
300 two chordlengths from the tip and constant NACA 0012 section was maintained
over the tip region. The calculated isobar distribution over the tip is plotted
in Figure 17 for the case Mp = 0.63, n = 0.4, R/c = 15, ®= 0%, ¥ = 90°, and

this may he compared with that computed for the same tip when the lzading edge
corner is not rounded, which is shown in Figure 18, The high suction peak at
the leading edge corner has been completely eliminated. The extent of
supercritical flow for this tip at 60°, 90° and 120° azimuth is illustrated in
Figure 19, where the calculated variation of maximum local Mach number along the
blade has been plotted. Once again this may be compared with that computed for

a rectangular blade with the same section and aspect ratio, shown in Figure 20,
It can be noted that at 120° agimuth, where, for the sheared tip, the benefits
of sweep are the least, a higher level of supercritical flow is predicted for
the sheared tip than for the rectangular tip. A similar effect has been observed
in the ONERA experiment311.

If we refer again to Figures 17 and 19 for the sheared tip, it can be seen
that the sharp c¢rank where the shearing begins produces an equally sharp
decrease in local surface velocities. Such a sudden decrease in local velocity
has no special merit and can be avoided with a progressively sheared tip as
drawn in Figure 21. The planform of this tip was selected with the aid of the
theory and the predicted levels of supercritical velocity along the blade for
this shape are presented in Figure 22. The sharp drop in surface velocity
at the crank is aveoided without any increase in overall levels compared to the
sharply sheared tip. Once again though, a significant excursion into supercritical
conditions occurs at 120°, We note that for this planform the trailing edge at



the tip is only 0.88 chordlength behind the trailing edge of the inboard part
of the blade as against 1.15 chordlengths for the sharply sheared blade of
Figure 16. This should lead to considerably less mass behind the elastic
axis of the blade.

Finally as an example of the use of the caliculation method for a
lifting case, chordwise pressure distributions at various radial stations on a
Lynx blade, which has RAE 9615 section, are shown in Figure 23 at 90¢ azimuth,
for the incidence distribution indicated. This incidence variation was taken

from a rotor performance calculation for the flight condition MT = 0,63,
mo= 0.,
S Conclugions

1 A method has been developed for calculating lifting three-

dimensional supercritical flow over a rotor blade at arbitrary
azimuth, cn the advancing side of a rotor dise, by extending tsp
theory to include spanwise flow ferms whilst still neglecting time-
dependent terms,

2 Comparisons with experimental results for a non-lifting model
rotor fitted with near-rectangular and swept tip blades show goocd
agreement over the tip region in the azimuth range €0° to 1209,

3 Beyond 120° azimuth, in highly supercritical conditions, strong
time~dependent effects are apparent which the present three-
dimensional theory can not predict. The unsteady effects are, however,
captured well at stations some way inboard from the tip by two-
dimensional time-dependent tsp theory,

b In order to predict both three-dimensional and unsteady effects
a8 three~dimensional time-dependent theory is required, It is
advocated that the tsp equation given by (2.1) should serve well for
this purpose.

) On the basis of the calculations presented in this paper it is
sugpgested that a progressively sheared tip with a rounded leading edge
corner at the extreme tip should be effective in alleviating
supercritical conditions around a large portion of the advancing side of
a rotor disc.
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