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Abstract 

The Ffowcs Williams and Hawkings equation is analyzed with the intent of making aerodynamic ap. 
plications. The flow is assumed inviscid, incompressible, and the quadrupole term is neglected. The result 
is transformed into a linear integral equation of the Fredholm type using Green's functions. A new interpre­
tation of the monopole term is given, which accounts for the motion of the body with respect to a frame of 
reference fized to the fluid at rest and for velocities induced by this motion. A solution to steady and two­
dimensional problems is developed and applied to families of elliptic cylinders and symmetric airfotls. An 
iterative procedure is established between velocity and pressure fields using Bernoulli's equation. Improved 
correlation is obtained with results from potential theory for non-lifting bodies of appreciable thickness. The 
new results suggest that the quadrupole term is important in correcting overstagnation pressures near the 
leading edge of airfoils, in improving the overall solution for bluff bodies, and in representing circulation ef­
fects. Another conclusion is that in inviscid flow the monopole term should be considered unknown whereas 
in viscous flow it is known for a given motion of the body. However, in the latter case the importance of 
the quadrupole term should not be underestimated. 

Nomenclature 

a non-dimensionalized minor axis of elliptic cylinder 
a; coefficient of the pressure series expansion on the upper surface of the body 
b; coefficient of the pressure series expansion on the lower surface of the body 
-a b; unit vector of reference frame fixed to moving body 
-F b; unit vector of reference frame fixed to undisturbed fluid at rest 
c speed of sound in undisturbed medium 
c, lift coefficient 
c:;P pressure coefficient 
f function that describes the body surf,.ce when equal to zero 
h airfoil thickness to chord ratio 
i index referring to ith observer station 
j index referring to jth pressure mode 
Km integrand of the motion integral 
Kp integrand of the pressure integral 
I . index referring to the lower surface of the body 
le subscript indicating leading edge 
m; forcing vector of two-dimensional problem 
M Mach number of body motion seen by fluid particle at rest 
Mn Mach number in the direction normal to the body surface 
M, Mach number in the direction source-observer 
n unit vector normal to body surface 
p perturbation pressure 
Pi; compressive stress tensor or system matrix 
q function describing the non-dimensionalized velocity tangent to the body surface 
r unit vector in the direction source-observer 
r lz(t)- y(r)l = (6.zt + 6.z~ + 6.z~)t 
ret subscript indicating expression evaluated at retarded time 
S body surface 
t time at the observer point 
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unit vector tangent to body surface 
subscript indicating trailing edge 
Lighthill's stress tensor P;; + pu;u; - c2(p- p,)8;; 
index referring to the upper surface of the body 
fluid particle velocity vector 
velocity vector of the absolute motion of the body 
airfoil velocity in two--dimensional steady problem 
body velocity in the direction normal to its surface 
body velocity in the direction source~observer as seen by fluid particle at rest 
position vector of observer point 
position vector of source point 
airfoil angle of attack 
Dirac's delta function 
Kronecker delta 
cos- 1(ii · r) 
parameter to assess the convergence of the iterative scheme 
density of fluid 
density of undisturbed fluid 
source point retarded time t- ~ 
pressure mode shape function 
scalar quantity related to rotations of the body 
difference of spatial coordinates 
gradient operator 
generalized Laplacian operator 

d 1 a'l a'l 
generalize wave operator CT w - ~ 

1 - Introduction 

Analysis of the aerodynamics of rotating blades is a challenge to any skilled aerodynamicist. The 
analysis is complex due to the nature of the flow, which can be described as essentially three-dimensional, 
compressible, unsteady, non-linear and viscous. Other characteristics such as wake effects, blade-vortex 
interaction, dynamic stall, reversed flow, and unsteady free stream add to the complexity of the problem. 
The lack of appropriate solution techniques usually forces the aerodynamicist to oversimplify the analysis. 
The majority of current aeroelastic problems are solved using two-dimensional, incompressible, quasisteady, 
linear, and inviscid aerodynamic theories. If one attempts to go beyond that, the sophistication of the 
analysis and the accompanying computing cost increase dramatically. 

Here we consider a solution technique which has powerful analytical capabilities, yet requires modest 
computational effort compared to more complex methods of Computational Fluid Dynamics. The approach 
is based on the application of the acoustic analogy of Lighthill1 to aerodynamics. The Ffowcs Williams 
and Hawkings (FW-H) equation2 may be written as follows: 

2 2 8 8 [ at ] 82
T;; 

0 [c (p- p,)] = ot [p,v.I'V/18(!)]- oz; P;; oz; 8(1) + ox;oz; ( 1) 

where 0 2 is the generalized wave operator. The bars over the derivative signs indicate that the functions 
operated on should be considered as generalized functions3•4 . Recognizing the product c2(p- p,) as the 
linear approximation for the perturbation pressure p in isentropic flow, equation (1) can be regarded as 
an inhomogeneous wave equation in the perturbation pressure. The three forcing terms are known in 
the literature respectively as monopole, dipole and quadrupole terms. The equation gives p at time t 
and position vector i due to point sources at retarded time T and position vector y. These sources are 
everywhere on the flow field surrounding a body of surface S which moves through a fluid of undisturbed 
density p,. The body surface is described by the equation f = 0. The quantity Vn denotes the absolute 
body velocity normal to its surface, P;; is the compressive stress tensor, T;; is the stress tensor of Lighthill 
and 8(1) is the Dirac delta function of the body surface. 

The FW-H equation results from the conservation laws of mass and momentum, coupled with 
boundary conditions introduced via the theory of distributions. Derived from first principles, the equation 
is quite general and one should expect to obtain accurate results from its application. However, this has 
not been the case. Simplified versions of this equation have failed to correlate with experimental results'­
These failures have resulted in controversial discussions among aeroacousticians6

. 
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The generality of the equation also makes it applicable to aerodynamics. Studies of this subject 
were given by Long7 and by Brand ad~. However, the same difficulties experienced in aeroacoustic appli­
cations appear in aerodynamic problems. Without the use of the quadrupole term, the method fails in 
large disturbance and lifting problems. The reasons for this failure have not been clarified yet, but have 
prompted researchers to examine alternate solution techniques which are equally valid for aeroacoustic 
and aerodynamic applications. One of these formulations was given by Farassat9 , discussed by Long and 
Watts10

, and explored more extensively by Farassat and Myers11 . After some simplifications, this approach 
leads to a Volterra type integral equation which is difficult to solve. The method seems to be successful 
in describing circulation effects, but so far, applications have been restricted to the case of zero thickness 
wings. 

Here we explore the idea of using the original FW-H equation to improve the solution to simple 
problems of two-dimensional and incompressible flow. The improvement results from a new interpretation of 
constituents of the equation. It is shown that a linear formulation, with the quadrupole term neglected, leads 
to better correlation with results of potential theory. Although the numerical applications are elementary, 
they provide a basis on which to perform more advanced applications. 

2 - The Simplified Problem 

As pointed out earlier, the first approximation is to consider the product c2(p- p,) equal to the 
perturbation pressure p. The second approximation consists of taking the idealized case of inviscid flow. 
These two assumptions reduce the compressive stress tensor P;j to its diagonal form and the Lighthill 
stress tensor T;i to pu;ui. The third approximation is to assume that the spatial gradients of T;j only 
make a small contribution to the inhomogeneous part of the equation. This last assumption is not true, 
for example, near the leading edge of airfoils, for problems involving bluff bodies or for flows with vortices 
and shock waves. The combined effect of these simplifications is equivalent to neglecting the quadrupole 
term of equation (1). The FW-H equation then reduces to 

0 2 p = :t (p,vniY'/16(!)]- a!, (pn;IV/16{!)] (2) 

The result above presents only surface source terms, which somewhat simplifies the solution ap­
proach. Farassat9 used full domain Green's functions to transform this differential equation into an integral 
equation of the Fredholm type with the following structure: 

p - -
4
1 j Kp dS = -

4
1 j Km dS 

,. /=0 ,. /=0 
(3) 

The integral on the left hand side results from the dipole term and will be called pressure integral whereas 
the integral on the right hand side results from the monopole term and will be called motion integral. For 
the subsonic compressible case the integrands are given by 

( 4) 

(5) 

where the definition of all quantities is given in reference (8]. 
The above integrands bear an inherent complexity because they must be evaluated at retarded time. 

In other words, information arriving at time t at the observer position ii has been emitted by sources at 
position vectors fj and past times r, and has propagated towards ii with the speed of sound c. To bypass 
this complexity and at the same time allow a basic investigation of the present technique, we introduce 
one more simplification, namely, the assumption that the flow is incompressible. Due to the infinite speed 
of sound, the concept of retarded time disappears, and source information arrives instantaneously at the 
observer position. With this assumption, equation (2) becomes 

(6) 

where ~2 is the generali~ed Laplacian operator. 
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Applying the Green's function technique to equation (6), we obtain an integral equation with the 
same structure of equation (3), but with integrands now simplified to 

K _ pcosB 
p-~ 

K _ p0(rlv + v'n) + p0V,vn 
m- r r2 (7) 

This formulation can be applied to three-dimensional and unsteady problems of fixed or rotating 
wings. It can easily be adapted for rotorcraft applications because we consider the body motion from a 
frame of reference fixed to the undisturbed fluid at rest, a common concept for aeroacousticians, but a 
not so common idea for aerodynamicists. With this perspective, there is no restriction to the body being 
perfectly rigid. Therefore, the field of aeroelasticity may also benefit from its use. 

3- A New Interpretation of the Monopole Term 

In three-dimensional compressible flow the conservation laws of mass and momentum have five 
unknowns. If these two laws are combined into a single wave equation, it is expected that these unknowns 
are included somewhere in its terms. Usually in aeroacoustics the monopole term is assumed known from 
the absolute motion of the body. Effects resulting from unknown velocities induced by the motion are 
included in the quadrupole term. However, this is the term that has been neglected in most applications 
of the FW-H equation. 

The key point of the interpretation given here is to recognize that the sources of the wave equation 
are in the fluid. Once this is accepted, if we consider surface sources we should look at the fluid near 
the surface and not at the surface itself. In the case of viscous flow, due to the no-slip condition, the 
fluid close to the surface has the same absolute motion as the body. This is the case where the monopole 
term is known. In other words, this is the case where the vector ii in the monopole term is given by 
the prescribed motion. However, the quadrupole term becomes more important because it now includes 
the spatial gradients of the boundary layer velocity field. Therefore, the quadrupole term should not be 
neglected if the monopole term is assumed known. 

So far, research with equation (1) has been conducted under the general assumption of in viscid flow. 
In this case the velocity of the fluid close to the surface is not the same as the absolute velocity of the 
surface. Therefore, in in viscid flow we should use an expression for the vector ii which accounts not only 
for the known absolute motion of the body, but also for the unknown velocities induced by this motion. 
This interpretation is consistent with the fact that the FW-H equation is a single equation with more 
than one unknown. It is also consistent with the assumption of neglecting the quadrupole term because in 
in viscid flow there are no boundary layer velocity gradients and, accordingly, the quadrupole term should 
contribute less to the overall problem. 

To make this informal discussion more exact, let us present the subject considering the two­
dimensional steady motion of airfoils with velocity V. In this case equation (3) assumes the form 

p-..!_j pco:BdS=..!_J PoV;VndS 
4l1' f=O r 41r f=O r 

(8) 

Using the geometry defined in Figure 1, the usual way of writing the velocity vector that appears in the 
motion integral is 

ii= -V b[ = -V [sin a bf +cos a 'bf] (9) 

This definition gives only the absolute motion of the body. It does not provide any hint of the occurrence 
of induced velocity in the How surrounding the surface. In contrast, we propose using 

ii= Um -qV 1- (ilm ·1 )1 (10) 

where ilm is the pure motion part of the velocity vector, given by equation (9), q(x2) is an unknown 
function that includes motion and velocity induced by thickness and lifting effects of the airfoil, and 1 is 
the unit vector tangent to the airfoil surface. Note that in the above definition of the vector ii the tangent 
component of ilm is subtracted because it is already included in the function q(x2). 
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Figure 1: The geometry of the two-dimensional airfoil problem. 

Two comments about the above definition are necessary here. First, in establishing this formula it 
is useful to choose a fluid particle dose to the airfoil surface, imagine that it is at rest, and ask how it is 
seeing the motion of the airfoil. With this reasoning, equation ( 10) becomes the result. Second, we should 
note that the two new and last terms introduced in the definition of ii are tangent to the body surface. 
This means that they do not contribute to the normal component Vn that appears in the formula of the 
monopole. This part of the problem continues to be given entirely by the absolute motion of the body. 
Therefore, there is no conflict between the present proposition and the original work of Ffowcs Williams 
and Hawkings2 . However, these two terms do contribute to the radiation component Vr of the monopole. 
Here we try to determine the importance of this contribution. 

Using definition (10) for the velocity vector of the monopole term, integrating span wisely along an 
infinite wing and non-dimensionalizing equation (8) so that 

we obtain the following: 

p 
Cp = lp V' 

2 0 

cp(:z:2)- .J-j_' [c·(~,) (~:z:, 881 + ~:z:,:f )] d:z:, = 
11" _ 1 r Xt X2 (u+l) 

1 j_' { 1 { . 2 { a J [ ( a J ) 
2 

1 ] a J A:z:, } 
; -1 r' Sin "' fJ:z:, ~x, 1 - ax, IV' /1 2 +ax, IV' /1 2 

+ sin"' cos"' { :;, A:z:, [ 1 - IY'~I' + (%!,) 
2 

IV' ~I'] 

+ :!, ~x, [ 
1 + IY'~I' - (:!,) 

2 

IY'~I']}}} <•+'l dx, 

1 j_' { q(x,) { . [ 8/ of ] +; -1 r 2IY'/I Slfi(l( fJ:z:, ~:z:,- ax, ~:z:, 

+ cos"' [::, ~:z:2 + :!, ~:z: 1 (:!,) ']}} d:z:2 

(u+l) 

(11) 

This equation applies to any point on the airfoil surface. The subscript (u +I) indicates that the 
integrations should be carried out on both upper and lower surfaces of the airfoil. Each integral should be 
interpreted in the limit as the observer, being initially outside the body, approaches it along the normal line 
to the airfoil surface. This concept allows continuity in the value of each integral as the observer approaches 
the body and also generates interesting singularities of the Dirac delta type at the surface, as discussed 
in reference [8]. When the integration runs through the observer, the integral is formally singular. This 
happens with half of the integrals in equation (11). In this case, the integrals have been regularized by the 
process described in reference [12]. Full details of the treatment of these integrals and also of the derivation 
of the equation above can be found in reference [13]. 
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4 - Some Applications 

In the next sections we describe results obtained with equation (ll). The unknown pressure coeffi­
cient is expanded into an appropriate series. Coefficients a1 and b; are used respectively to represent the 
series expansions on the upper and lower surfaces of the body. The exact shape of the surface is used to 
obtain the function f and all integrals are evaluated using Gauss-Legendre quadraturel4 with an accuracy 
of the order of 10-6

. Using n terms in each series expansion and applying equation (11) to 2n collocation 
points results in the following system of linear equations: 

n n 

~ p'P:ua,· + ""'P'!J:1b· = m!"u + m~1 
~ IJ L..., IJ } I I 

j:::::l j;;;l 

n n 

"" plu + "" pllb lu 11 L..., ij ai L...J ij i = mi + mi (12) 
i=l i=l 

The subscript i refers to the collocation station x2, and the subscript j to the jth pressure mode. The 
double superscripts of P;; and m; indicate, in the order given, on which surface of the body observer and 
source points are located. For example, u/ means observer on the upper surface and sources on the lower 
surface. 

4.1 - Family of Elliptic Cylinders 

A family of elliptic cylinders can be described by the following equations in terms of body-fixed 
spatial coordinates: 

The governing parameter here is the non-dimensionalized minor axis a, which yields a flat plate when equal 
to zero and a circular cylinder when equal to one. For the pressure distribution on the upper surface we 
have assumed a Fourier sine series given by 

n 

cp(x2) =a.+ :La; sin [i~(l+x2)] 
i=l 

A similar expansion is assumed for the lower surface. These series have all the attributes necessary to 
describe the expected solution. The unknown function q(x2) was taken from Milne-Thomson15 as the 
exact result from potential theory. This function may be written as 

q(x2) = (1 +a) 
a2 + (1- a2)(1- x~) 

1- X~ 

Results for the circular cylinder are presented in Figure 2. As observed in reference (8], convergence 
with respect to the series expansion is not a problem because a solution with only 7 pressure modes (n = 6) 
nearly coincides with a solution with 11 modes. Compared to the exact potential result, the answer given 
by the present approach appears to be shifted by a value of about 0.5 towards the compression side. This 
difference must be attributed to the absence of the quadrupole term in the formulation. However, this 
result is qualitatively much better than the one obtained with the previous interpretation of the monopole 
term, which is given by the dashed line. The latter not only fails by a factor of two at critical points, but 
also does not present a pressure distribution similar in shape to the solution of potential theory. 

The circular cylinder is a difficult test for the present formulation. To assess how the method 
behaves for thinner bodies, we can repeat the procedure for smaller values of the parameter a. The results 
are presented in Figure 3. For a = 0.7 the two curves are much closer than in the case of the circular 
cylinder. For a = 0.5 the result over half of the chord coincides with the potential solution. For a = 0.3 
the curves differ basically only near the edges and for a = 0.1 the agreement is very good. Note that 
the thinner the body, the greater the number of pressure modes required for a converged solution. This 
happens because more sine modes are necessary to describe a shallower curve and to avoid the occurrence 
of the Gibbs phenomenon16 near the edges. This suggests that better behaved series or alternative ways 
of describing the pressure distribution on the body surface should be considered in the future. 
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Figure 2: Pressure distribution on the surface of a circular cylinder. 
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Figure 3: Pressure distribution on the surface of elliptic cylinders in symmetrical flow. 

Three-dimensional bodies are less "bluff'' than their two-dimensional counterparts of identical max­
imum thickness. Long17 presents some results on prolate ellipsoids in three-dimensional and nearly incom­
pressible flow. The results show a deterioration of the solution as the body maximum thickness goes from 
5% to 25%. In Long's compressible formulation the monopole term is assumed known from the motion of 
the body, which does not correspond to the interpretation given in this paper. Thus, it is not surprising 
why Long's results are not good for thicker bodies. In contrast, results presented in Figure 3 indicate an 
improved correlation for large disturbance problems. Therefore, the present interpretation of the monopole 
term seems useful in making this aeroacoustic approach more robust. 
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4.2 - Family of NACA Symmetric Airfoils 

As we did for the elliptic cylinders, a family of four-digit N ACA symmetric airfoils can be described 
by the following equations18 based on the geometry of Figure 1: 

with 

g(x2 ) = 2.0994 ~- 1.2170625- 1.575625 x,- 0.1935 x~ + 0.101625 x~- 0.0634375 x;) 

The governing parameter now is the airfoil thickness ratio h, which is equal to 0.12 for the NACA 0012, for 
example. For the pressure distribution on the upper surface we have used the following series expansion: 

with 

n 

cp(x2 ) = a,,q,,,(x2 ) + a,,q,,,(x2 ) + L>i sin [i~(l + x,Jj 
i=l 

V (x 2 - 1)' q,,,(x,)=1- 1-
4 

" ( ) - 1 Vl (x, + 1)' 'Pte Z'2 - - -
4 

A similar expansion is assumed for the lower surface. In both series <Pte and <Pte are elliptic modes used to 
describe the stagnation pressures at the leading and trailing edges respectively. 

For the non-lifting problem the function q(x,) was taken from cubic spline interpolation between 
points given by Abbott and von Doenhoff18 . These points were obtained using Theodorsen's potential 
theory and are known to correlate well with experimental results. The formulation provides good agreement 
with airfoils of thicknesses ranging from 6% to 24%. For the sake of brevity, however, Figure 4 presents only 
the results for the NACA 0012 airfoil. The difference between the results obtained using the two distinct 
interpretations of the monopole term is small because this is a thin body. However, the new interpretation 
does a better job in reproducing the region of expansion. The behavior of this solution near the trailing 
edge is not very good due to a failure of the splines in describing the stiff changes of tangent velocity in 
that region. 
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Figure 4: Pressure distribution on the surfaces of the N ACA 0012 airfoil at a = 0 degrees. 
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In two-dimensional flows the FW-H equation has three unknowns, i.e., Cp, u1 and u2 . However, 
the equation assumes intrinsically that the surface flow is attached, which provides an extra relation 
between the velocity components. To make the problem well posed, so far we have assumed a tangent 
velocity distribution q(x,) in order to solve for cp(x2 ). However, we can introduce another relation to 
allow a simultaneous solution for both distributions. One relation that is particularly suited to this case is 
Bernoulli's equation, which may be written as 

(13) 

Although simple, this is a non-linear relation. Therefore, the solution calls for an iterative scheme which 
is described as follows: 

1. A tangent velocity distribution q(x,) is assumed and equation (11) is solved for the perturbation 
pressure distribution cp(x2 ). 

2. With cp(x2 ) available, equation (13) is used to compute a new velocity distribution q(x2). 

3. Convergence is assessed by computing the following parameter: 

where the index k refers to the kth iteration and so on. If K. is less than a certain tolerance, the 
process is stopped. Otherwise, the computations resume at step 1. 

Occasionally, due to the absence of the quadrupole term in the formulation, values of cp(x2 ) near 
the leading edge may become greater than one, indicating overstagnation. In computing q(x2 ), these values 
have been reset to one. This procedure improves the stability of the iterative scheme. Experience with this 
scheme shows that for airfoils of thickness up to 12% the convergence is monotonic to values of K. of the 
order of IQ- 4 . For thicker airfoils the convergence is oscillatory and never goes below a certain level of K.. 

The thicker the airfoil, the greater should be the acceptable value of"· These oscillations occur because 
although most of the distribution of cp(x,) has settled down, values near the leading edge keep jumping 
between overstagnation and understagnation. This means that the inclusion of the quadrupole term in the 
formulation may contribute to stabilize the scheme for thicker bodies. 
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Figure 5: Results of the iterative scheme for the NACA 0012 and 0024 airfoils at"'= 0 degrees. 
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Figure 5 presents results obtained using this iterative plan. Due to thickness effects we can start the 
iterations with the free·stream velocity, which corresponds to assuming that q1.(x2 ) equals unity everywhere 
over the body. For the NACA 0012 airfoil we reach convergence in 5 iterations, with results that agree 
well with Theodorsen's potential theory. For the NACA 0024 airfoil results of the 11th iteration are 
more compressive than our standard of comparison, not describing the whole expansion and resulting in 
overstagnation near the leading edge. However, the results show that the present linear version of the 
FW-H equation behaves well when applied to a dificult test like this one. 

Further discussion is concerned with lifting problems. In reference [8] we showed that in the limiting 
case of a flat plate airfoil of zero thickness, the previous interpretation of the monopole term leads to the 
following result: 

{14) 

which is independent of the angle of attack. This is the root of the inability of previous works to describe 
circulation effects with this simplified version of the FW-H equation. In contrast, this time equation {11) 
yields 

{15) 

The integral on the right hand side is similar to the classical downwa.sh integral and depends on the velocity 
difference between upper and lower surfaces, a concept linked to circulation by definition. However, the 
equation has too many unknowns to give immediate and useful results. 

Lifting results that appear in Figure 6 were obtained using the procedure described herein. To the 
converged distribution of cp(x,) for the non-lifting case we added 

of . M,-x, D.cp(x2 ) = --
0 

sma -
1
--

X! + X2 

accordingly to both surfaces of the airfoil. Then, Bernoulli's equation was used to compute the input 
velocity distribution q(x2 ). Note that this superpoeition is allowed because the problem is linear in the 
perturbation pressure p. Note also that the term added to or subtracted from the non-lifting distribution of 
cp(x2 ) is a classical result of thin airfoil theory adapted for the present case. With the available distribution 
for the tangent velocity q(x2 ), the system {12) of linear equations was solved for the pressure distribution 
cp(x,). 
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Figure 6: N ACA 0012 airfoil at an angle of attack. 
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The system of equations was prepared in the cakulations to enforce zero difference of pressure at 
both edges of the airfoil, thus ensuring smoothness of velocity distributions and observation of the Kutta 
condition. At the leading edge this enforcement was accomplished exactly by making the coefficients a1, 

and b,, equal. At the trailing edge this condition was obtained approximately by averaging the components 
of the forcing vector at the collocation points close to the edge. 

The reasons for this difference of procedure regarding the edges is twofold. First, as observed in 
reference [8], the system matrix provides strong coupling for points in the neighborhood of a point being 
operated on, and very weak coupling for points outside this neighborhood. Second, the integral on the 
right hand side of equation (15) has a tendency to invert the pressure distributions near the trailing edge. 
This tendency is obviously a failure of the formulation which does not include the non-linear quadrupole 
term. To contrapose this inclination of the solution we need a. measure which is capable of introducing 
strong coupling with a larger neighborhood. The process of averaging the components of the forcing vector 
at certain locations is probably the least arbitrary measure to be considered in the present stage of the 
formulation. This process was used by Long16 to "condition" the forcing vector over 70% of the airfoil 
chord. Here we used the same idea, but applied it over the second half of the airfoil, as suggested by the 
most important lifting integral. Therefore, at the leading edge we used a weak coupling enforcement of the 
smoothness conditions} whereas at the trailing edge we used a stronger measure to overcome a weakness of 
the formulation in applying the Kutta condition. 

For an angle of attack of 1", agreement between the presently obtained distributions of pressure 
and tangent velocity and those given by Abbott and von Doenhoff18 is good. So is also the integrated lift 
coefficient, which can be obtained using the following simple formula: 

C/ = {I (qu- q,) dx2 
)_! 

However, the correlation deteriorates for larger angles of attack. For " equal to 5° the comparison on the 
lower surface is still good, but the solution fails to describe the whole expansion on the upper surface. As 
expected, discrepancies are larger near the leading edge. 

The failure of the present development to give an accurate description of lifting effects must again 
be attributed to the absence of the quadrupole term in the formulation. However, the interpretation given 
to the monopole term seems to contribute to the understanding of the problem and to reduce the degree 
of arbitrariness still required to obtain useful results. 

5 - Concluding Remarks 

A new interpretation has been given to the velocity vector of the monopole term. This idea arises 
from physical reasoning and is consistent with the original work of Ffowcs Williams and Hawkings2 • The 
idea indicates that in inviscid flow the monopole term should be considered unknown and additional 
relations should be used in order to solve the problem. The assumption that the monopole term is entirely 
known from the absolute motion of the body is correct for viscous How. However, for ftows with viscosity 
the quadrupole term should not be neglected because it includes the spatial derivatives of the boundary 
layer velocity field. 

This new interpretation improves the capability of a linearized version of the FW-H equation in 
predicting pressure distributions in non-lifting, large disturbance problems. The interpretation also helps 
in addressing the issue of including circulation effects in this aeroacoustic approa.ch. However, a better 
description of the lifting problem requires the use of the non-linear quadrupole term. 

A new equation has been developed for dealing with two-dimensional and steady problems. Several 
results have been obtained, either by using a known expression for the tangent velocity distribution or by 
iterating with Bernoulli's equation. The iterative scheme is very robust, in the sense that a very crude guess 
for the distribution q(x2) may be used to start the process. These results suggest that the quadrupole term 
should be used to analyze thick bodies and to correct overstagnation pressures obtained near the airfoil 
edges. 

The major conclusion, however, is that the equation of Ffowcs Williams and Haw kings should be 
regarded as a condensed form of the Navier-Stokes equation. As such, it is a single equation with more than 
one unknown. A direct solution, given only the absolute motion of the body, is not possible. Additional 
relations should be invoked to obtain a well-posed problem. 
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