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ABSTRACT 

This paper provides an overview of techniques developed for the application of Support Vector Regression 
(SVR) in the domain of simulation and system identification of helicopter dynamics. A generic high fidelity 
FLIGHTLAB helicopter model is used to train and validate a number of pitch response SVR models. These 
models are then trained using flight data from a Sikorsky Seahawk helicopter. The SVR simulation results 
show significant promise in the ability to represent aspects of a helicopter’s dynamics at a high fidelity. To 
achieve this, it is important to provide the SVR kernel with knowledge of past inputs that encompass the 
delay characteristics of the helicopter dynamic system. In this case, the use of Nonlinear Auto Regressive 
eXogenous input (NARX) network architecture achieves this goal. Good performance was achieved using 
input data that encompassed between 300 to 500 ms worth of historic response. 

1. INTRODUCTION 

This paper provides an overview of techniques 
developed for the application of Support Vector 
Regression (SVR) in the domain of simulation and 
system identification of helicopter dynamics. SVR is 
a machine-learning technique that provides a ‘black 
box’ approach that may enable a more simplistic 
method for simulation whilst retaining acceptable 
levels of accuracy. SVR is the regression form of the 
more widely used Support Vector Machine (SVM) 
classification method. In this paper, the term SVM 
will refer to both the classification and regression 
methods, whereas SVR will specifically be used for 
the regression form. 

The basis of the following work originally stemmed 
from the growing levels of complexity required from 
simulators to appropriately represent the rotary wing 
platforms in use by the Australian Defence Force 
(ADF). The ADF is currently acquiring and 
transitioning into service multiple helicopter 
platforms including the Eurocopter ARH Tiger, 
NHIndustries MRH-90, Sikorsky MH-60R, and 
Boeing CH-47F, all of which require simulation 
support. The Australian Defence Science & 
Technology Organisation (DSTO) provides some of 
this support. DSTO uses flight dynamic simulators to 
perform Human Machine Interface (HMI) studies, 
and to assist in accident investigation. 

At present, the traditional technique for the dynamic 
modelling of helicopters and their systems involves 
the collection of flight data and aircraft specifications 
from which physics based theoretical equations are 
generated and validated. It is a time consuming 
process that requires the availability of a significant 
amount of data. The data required is often 

proprietary or commercial-in-confidence, leading to a 
lack of availability, which can result in less than 
optimal simulations. 

Another modelling approach involves the system 
identification of helicopter dynamics using frequency 
analysis techniques. This is a parameter estimation 
method in which measured aircraft responses are 
essentially inverted to extract a subset of the system 
model. This modelling approach requires flight data 
for aircraft response to a control input frequency 
sweep. Such flight data can be difficult to obtain 
from non flight-test aircraft due to the inherent risk of 
airframe structural stress when undertaking 
frequency response manoeuvres. 

The implementation of a black box approach using 
machine-learning techniques may provide an option 
for a more simplistic method of simulation. A black 
box model can be defined as a machine with known 
or specified performance characteristics but whose 
constituents and means of operation are not 
necessarily known or specified by the user.  For a 
given set of inputs, an expected set of outputs can 
be generated without explicitly knowing the 
relationship between input and output. A black box 
simulation would ideally only require flight data that 
is readily available to the operator of the helicopter 
platform. 

Machine learning, using methods such as Neural 
Networks (NNs) and more recently SVMs, are a 
popular method for the implementation of black box 
modelling. The choice of using SVR for this 
investigation rather than other techniques based on 
NNs is due to the increased exposure and promised 
advantages of SVMs, including easier to train and 
more robust learning. 



 

2. SUPPORT VECTOR MACHINES 

SVMs arose from the area of statistical learning 
theory[1] and were originally proposed by 
V.N.Vapnik[2] in the early 1990s for the application of 
pattern classification. Since his seminal work, SVMs 
have been applied to a multitude of applications and 
undergone various transformations. Although the 
primary use of SVMs remains predominantly in the 
domain of classification, of particular interest is their 
use for regression in the form of SVR. 

 

2.1 A Comparison with other Machine Learning 
Techniques 

Since their inception, SVMs have been quite 
successful in solving real life problems and lifting the 
interest in statistical learning theory. Applications 
vary from face recognition[3] and text categorisation[4] 

to predicting stock market indices[5] and modelling 
aerodynamic data[6]. 

Scholkopf et al [7] provided one of the original 
comparisons for classification between an SVM with 
Gaussian kernel, a Support Vector (SV) method 
hybrid with back-propagation, and a classical Radial 
Basis Function (RBF) machine. The results show 
that the SVM reached highest accuracy in the 
application of handwritten digits recognition. Another 
early SVR comparison was conducted by Mukherjee 
et al[8]. Various approximation techniques including 
NNs and RBFs were applied to a chaotic time 
series. The SVM algorithm showed excellent 
performance here as well, outperforming other 
functions in most cases. 

SVMs have performed favourably when compared to 
neural networks. One of the more relevant 
comparisons for this investigation is that of  
Fan et al [6] who compare the generalisation ability of 
SVMs and NNs in the field of modelling aerodynamic 
data.  

The key performance differences between SVMs 
and NNs relate to the minimisation principles [9] on 
which they are based on. SVMs are founded on 
Structural Risk Minimisation (SRM) that minimises 
an upper bound of the generalisation error, whereas 
NNs are based on Empirical Risk Minimisation 
(ERM) that minimises the error on the training data. 
ERM can lead to local minima and over-fitting issues 
that need to be addressed by elaborate learning 
techniques. In contrast SRM generates a unique 
solution. This makes the application of SVMs in the 
real world a much easier prospect by removing the 
complexity associated with NN training for good 
general performance. 

 

2.2 Support Vector Regression 

A brief overview of SVR theory is presented below. 
A more thorough derivation is available from 
Vapnik’s original work [2] [9], as well as tutorials, 
examples and overviews available in the references 
[1] [10] [11] [12] [13] [14]. 

Conceptually, SVM inputs are mapped to a higher 
dimensional, so-called feature space in which a 
decision surface lies. The support vectors 
themselves exist in the feature space of the SVM 
process and dictate the geometry of the decision 
surface. It is this decision surface that classifies 
each of the inputs in relation to the corresponding 
output, and it is the ability of the system to correctly 
classify previously unseen data, otherwise known as 
its ability to generalise, that dictates its usefulness. 
SVR differs from classification by approximating a 
function for the continuous output rather than that of 
a discrete response. 

Given a set of N training points, where each 
example consists of an input vector, 

€ 

x i , and a label, 

€ 

yi, such that: 

(1) 

€ 

x i ⊆ R   

(2) 

€ 

yi ⊆ R    

The object is to find a regression function 

€ 

ˆ Φ x( ) = y  
that can approximate any new examples with the 
same underlying probability distribution 

€ 

P x,y( ) . 

To allow for nonlinear regression functions, the 
training points are mapped from the current input 
space 

€ 

X  to a much higher dimensional feature 
space 

€ 

Z  using a nonlinear mapping 

€ 

ϕ . The 
regression function 

€ 

ˆ Φ  is defined to have at most 

€ 

ε  
deviation from the obtained targets 

€ 

yi for all the 
training data, where the constant 

€ 

ε  is chosen by the 
user. In other words, all the training points must lie 
within 

€ 

ε > 0 of the following linear hyperplane in 
feature space: 

(3) 

€ 

ˆ Φ x( ) = w⋅ ϕ x( ) + b   

where 

€ 

w  is the normal vector of the hyperplane, 
and the constant 

€ 

b is the bias. 

To deal with noisy data, slack-variables 

€ 

ζi  and 

€ 

ζi
* 

are introduced to penalise points outside the 

€ 

ε  
region. This corresponds to dealing with an 

€ 

ε -
insensitive loss function defined by: 

 

(4)
 

€ 

ζ
ε

=
0 if ζ ≤ ε
ζ −ε otherwise

⎧ 
⎨ 
⎩ 

  

 



 

The SVR solution can then be found by solving the 
primal Quadratic Programming problem (QP): 

 

(5)
 

€ 

minw,b,ζ
1
2
w 2

+C ζi +ζi
*( )

i=1

N

∑
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥    

subject to, 

€ 

yi − w⋅ ϕ x i( ) − b ≤ ε +ζi
w⋅ ϕ x i( ) + b − yi ≤ ε +ζi

*

ζi,ζi
* ≥ 0  

 

Conceptually, the first term achieves maximal 
margin for the hyperplane such that there is 
maximum distance between each of the points. The 
second term penalises the presence of any points 
outside the 

€ 

ε  region. The constant 

€ 

C  defines the 
trade-off between the two terms. The problem above 
represents a convex function with a unique minimum 
constrained to lie within a cube, although this 
solution occurs in the higher dimensional feature 
space due to the vector 

€ 

w .  

Another formulation known as the dual QP problem 
is defined to constrain the solution to the input 
space, which is much simpler to compute. Suppose 
that the kernel 

€ 

k(x i,x j )  is chosen such that the dot 
product in the feature space is equivalent to the 
kernel function in input space: 

 

(6) 

€ 

k x i,x j( ) =ϕ x i( )⋅ ϕ x j( ) 
 

Using Lagrangian multipliers 

€ 

α i  and 

€ 

α i
* with the 

kernel trick above, the dual formulation is defined: 

 

(7)

 

€ 

maxα

−
1
2

α i −α i
*( ) α j −α j

*( )k x i,x j( )
i, j=1

N

∑

−ε α i −α i
*( ) + yi α i −α i

*( )
i=1

N

∑
i=1

N

∑

⎧ 

⎨ 
⎪ 
⎪ 

⎩ 
⎪ 
⎪ 

 

subject to 

€ 

0 ≤ α i,α i
*{ } ≤ C , and 

€ 

α i −α i
*( )

i=1

N

∑ = 0
 

 

Conceptually, the optimisation problem above 
corresponds to finding the flattest function in the 

feature space. Solving for 

€ 

α i  and 

€ 

α i
*, the 

regression function for 

€ 

ˆ Φ  is given by: 

(8) 

€ 

ˆ Φ x( ) = α i −α i
*( )k

i=1

N

∑ x,x i( ) + b   

 

2.3 Kernel Functions 

The constraint on the choice of kernel function in the 
SVM is to enable operations to be performed in the 
input space rather than the potentially high 
dimensional feature space. Specifically, the kernel 

€ 

k(x i,x j )  chosen must satisfy the property such that 
the dot product in the feature space is equivalent to 
the kernel function in input space (Equation 6). This 
provides a way of addressing the curse of 
dimensionality which states that the difficulty of an 
estimation problem increases drastically with the 
dimension, 

€ 

Z , of the space. 

Smola and Scholkopf [1] describe the theorems and 
relevant corollaries used to characterise such 
kernels. Several well-known functions that can be 
used as kernels are provided in Table 1. Other 
possible kernel types include Splines, closed form B 
Splines, additive summing of kernels and Tensor 
products. For the results presented herein, a linear 
kernel is used for its computational performance and 
simplicity. 

 

Table 1: List of commonly used SVM kernels. 

Kernel Function Comments 

Polynomial 

€ 

x i ⋅ x j +1( )
d  Becomes a linear 

kernel when d=1 

Radial Basis 
(Gaussian) 

€ 

exp −
x i ⋅ x j

2

2σ 2

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
 

Commonly referred to 
as the Gaussian 
function 

Radial Basis 
(Exponential) 

€ 

exp −
x i ⋅ x j

2σ 2

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
 

Commonly referred to 
as the radial basis 
function (RBF) 

Multi Layer 
Perceptron 

 

€ 

tanh ρ x i ⋅ x j( ) +ϑ( )
 

This is representative 
of the Neural Network 
equivalent 

Fourier 
Series 

€ 

sin N + 12( ) x i ⋅x j( )
sin 1

2 x i ⋅x j( )( )  
Defined on the interval 

€ 

−
π
2
,π
2

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
 

 

 

 

 



 

3. MODELLING OF HELICOPTER FLIGHT 
DYNAMICS 

To provide a complete mathematical simulation of a 
helicopter’s flight dynamics, one needs to represent 
the aerodynamic, structural and internal dynamic 
effects that once combined are influenced by the 
pilot controls and by external atmospheric 
disturbances [15]. Helicopter behaviour is dominated 
by the main and tail rotors, but limited by local 
effects that grow in influence at the limits of the flight 
envelope. These include, but are not limited to, 
blade stall, power limits, and control limits. 

The method of modelling or extracting helicopter 
system dynamics or characteristics from flight test 
data is known as system identification. Machine 
learning techniques are a form of system 
identification when applied in this context. 

There is little available in the literature on the use of 
SVMs for the system identification of a helicopter. Of 
most relevance is the recent work done by Bhandari 
et al [16] where an RBF kernel is investigated for the 
function estimation of a small scale helicopter. A few 
non-coupled models are developed to predict the 
longitudinal, lateral and tail rotor control inputs 
needed to achieve a desired flight trajectory, i.e. the 
inverse of a flight model. Flight data was initially 
post-processed through a Butterworth filter to reduce 
noise. Three data sets of 120 Hz resolution were 
constructed for training, validation and test 
purposes. These data sets relate control input 
directly to the appropriate angular rate of the aircraft. 
The initial SVR results look promising, although the 
extent of how well the model generalises is unclear. 

Bhandari also developed a SVR model to predict 
pitch rate directly from longitudinal cyclic control, 
similar to the aims of this investigation. The testing 
and validation mean square errors are much higher 
than for the inverse problem above, yet the results 
show the correct trends. It is again unclear how well 
the model generalises or how the SVM was trained. 
It appears that input history was not implemented 
into their SVM model, likely resulting in the phase 
shifting of their results, and hence not suitable for 
dynamic modelling. 

More progress with machine learning techniques is 
evident with the use of neural networks for helicopter 
system identification, particularly with the work of 
Mudigere, Kumar et al[17] [18]. The predicted response 
of various models to control inputs have been 
satisfactory, though of most interest to the 
application of SVMs is that of the network 
architecture used to provide the dynamic system. 
The models are based on the Nonlinear Auto 
Regressive eXogenous input (NARX) network 
architecture for the identification and control of 
dynamical systems, first proposed by Narendra et al 
[19]. The NARX architecture introduces dynamics to 

an otherwise static network model using Tapped-
Delay-Lines (TDL) to feed past outputs and past 
inputs as inputs to the current model. Figure 1 
depicts the architecture of a NARX network that is 
capable of modelling dynamics when trained using 
back propagation. The number of past values 
(TDLs) that are fed back into a NARX model is not 
defined and depends on an understanding of the 
order and degree of the system being identified. 

NARX 
Model

y(t+1)

Tapped Delay Lines

u(t)

u(t-1)

u(t-2)

u(t-n+1)

y(t)

y(t-1)

y(t-2)

y(t-n+1)

z-1

z-1

z-1

z-1

z-1

INPUT

OUTPUT

 
Figure 1: The NARX architecture to modelling 
system dynamics.  

Previous work by the author [20] investigated the use 
of SVMs to model the longitudinal pitch dynamics of 
a helicopter using flight data. A simple NARX like 
model structure was implemented, where pitch rate 
was predicted based on historical pitch rate, pitch 
angle, and control input measurements. The model 
was trained using 180 Hz resolution data from a high 
fidelity flight dynamic model, as well as the use of 
real flight test data. A range of RBF and linear 
kernels were tested, with the results published 
showing good accuracy and potential for further 
modelling. It was stated that to achieve good results 
it is important to provide the machine with 
knowledge of past inputs that encompass the delay 
characteristics of the helicopter dynamic system. 
Also, the relationship, rather than the mechanics, 
between the significant variables that represent the 
dynamic system must be well understood. 

The SVR technique proposed herein follows on from 
the author’s previous work above and uses a pure 
NARX model and linear kernel to demonstrate the 
potential for system identification and modelling of 
helicopter responses. 

 



 

4. SUPPORT VECTOR REGRESSION OF 
HELICOPTER PITCH DYNAMICS 

A simulation of the pitch dynamics for a helicopter is 
presented to demonstrate application of the 
proposed SVR modelling technique. Using a NARX 
network and SVR with linear kernel, a FLIGHTLABi 
helicopter model is used to provide training data. 
Results from 2 models (Figure 2) are presented in 
this paper.  Each model predicts the pitch angle, 

€ 

θ , 
in response to a longitudinal control input, XB. The 
first model is trained using control response data at 
30 knots airspeed. The second model is trained 
using control response data ranging from hover to 
40 knots airspeed. The second model also includes 
airspeed as an additional training input. 

SVR 
Model 1

y(t+1)

Tapped Delay Lines

u(t)

u(t-1)

u(t-n+1)

y(t)

y(t-1)

y(t-n+1)

z-1

z-1

z-1

LONGITUDINAL 
CYCLIC, XB
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ANGLE, �

  

 

SVR 
Model 2
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y(t)

y(t-1)
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z-1

z-1
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z-1
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CYCLIC, XB

 
Figure 2: SVR Model Architectures implemented for 
simulation of helicopter pitch response. 

                                                        
i Developed by Advanced Rotorcraft Technology, Inc (ART), 
Sunnyvale, California, USA 

The MATLABii environment is chosen to implement 
and develop the SVR models. This is achieved using 
the Spider SVM toolboxiii with LIBSVM as the 
primary code for the regression algorithms. 

 

4.1 Flight Data: FLIGHTLAB Helicopter Model 

FLIGHTLAB is the current helicopter-modelling 
environment used by DSTO. It is a commercial tool 
developed by Advanced Rotorcraft Technology Inc. 
(ART), for rotorcraft modelling and analysis. 
FLIGHTLAB is based on the Scope environment, 
which is an interpretive language that uses 
MATLAB-like syntax together with new language 
constructs for building and solving non-linear 
dynamic models. FLIGHTLAB provides a large 
range of aerospace and dynamics related 
components, which are used to develop flight 
models using object oriented design. 

FLIGHTLAB uses multi-body dynamics to simulate 
real-time models. Generic modelling components 
are assigned specific values and parameters 
defining the aircraft. Each component is a self-
contained dynamic entity that is interconnected to all 
other components through a child and parent 
structure. Solution components then take care of the 
kinematic and force interactions throughout the 
model. 

A conventional medium sized twin-engine helicopter, 
with counter clockwise rotating rotor, was developed 
in the FLIGHTLAB environment. This model 
provides a source of noiseless data, which is highly 
amenable to the development of SVR modelling 
techniques. Table 2 provides a brief list of the major 
model parameters. The FLIGHTLAB model provides 
data at 180 Hz, which is then reduced to 10 Hz 
when training the SVR model. 

Table 2: FLIGHTLAB Helicopter Parameters. 

Rotor Parameters Main Rotor Tail Rotor 
Radius (ft) 26.7 5.2 
Chord (ft) 2.1 N/A 
No. of blades 4 4 
Rotor Speed (rpm) 256 1232 
Rotor Twist (deg) -12 -14 
Airfoil Type NACA 23012 N/A 

 

Weight 20,400 lbs 
Engine Type 2 X Turboshaft 
Engine Power 2,800 SHP 

 

Control System Rate based, with attitude 
stabilisation 

Longitudinal Cyclic 
Range 

0 to 100% 
(+’ve nose up) 

                                                        
ii Produced by MathWorks, 3 Apple Hill Drive, Natick, 
Massachusetts, USA 
iii Developed by Weston, J., Elisseeff, A., BakIr, G., and Sinz, F.:  
http://www.kyb.tuebingen.mpg.de/bs/people/spider/index.html 



 

4.2 Method: SVR Training and Validation 

The training data is scaled so that its mean and 
standard deviation are equal to one. Although not 
necessarily required, the normalisation of training 
data avoids certain inputs having more influence 
than others. This is particularly important when input 
variables have vastly different ranges, such as 
angles in radians and velocity in knots. It also allows 
some consistency in the choice of hyper-parameters 

€ 

ε  and 

€ 

C when using different datasets, which would 
otherwise require more specific choices. 

(9) 

€ 

x scaled =
x − x 
σ x

 

The regularisation coefficient, 

€ 

C , controls the trade 
off between training error and model complexity. A 
small value will increase the training errors, while a 
large value will lead to minimal training errors and a 
stronger correlation with the training data at the 
expense of generalisation (referred hereon as hard 
margin behaviour). It is noted from the literature [21] 
that the value of 

€ 

C  seems to have negligible effect 
when the insensitivity factor, 

€ 

ε , is well chosen. 
Values of 

€ 

C  in this paper are varied from 0.01 to 
1000. 

The insensitivity parameter, 

€ 

ε , determines the level 
of training accuracy for the SVM by controlling the 
width of the 

€ 

ε -insensitive zone. If 

€ 

ε  is larger than 
the range of the target values, then fewer support 
vectors are chosen. If 

€ 

ε  is set to zero, hard margin 
behaviour is expected. Generally, the value of 

€ 

ε  
should increase when greater noise levels are 
present in the data. A good initial selection is to set 

€ 

ε  to the accuracy desired. Values of 

€ 

ε  in this paper 
are varied from 0.0001 to 1. 

Quantitative validation is conducted by measuring 
the Mean Quadratic Loss (MQL) with comparison to 
the FLIGHTLAB output.  A validation data set is then 
used as a method of both kernel parameter selection 
and performance testing. 

(10) 

€ 

Mean Quadratic Loss =
1
N

yactuali − ypredicted i
2

i=1

N

∑  

The training data set is chosen such that the model 
is taught aspects of positive and negative pitch 
response over a range of pitch angles and 
frequencies. A successive positive and negative 
impulse response and a pulse frequency sweep 
from 0 to 2Hz are used for this paper as shown in 
Figure 5. 

Validation is performed using the training dataset as 
well as a specific validation dataset. The validation 
datasets include responses that have not been 
previously seen by the SVM. Three (3) validation 
datasets are chosen such that the generalisation 

capability of the SVR Plant is tested. In this case a 
higher amplitude sinusoidal doublet and frequency 
pulse are chosen to test responses to unseen pitch 
dynamics for Model 1 (see Figure 6 & Figure 7). A 
step input response is used for Model 2 (Figure 8). 

For the validation process, the initial conditions and 
input profile are chosen to begin the simulation. The 
initial conditions are used to begin the SVR 
prediction process where every subsequent time 
step builds upon the previous prediction of the SVR 
model. The predictions are then compared using 
MQL to the dynamic response of the FLIGHTLAB 
model that also began with the same initial 
conditions and input profile. 

 

4.3 Discussion: Model 1 Pitch Response 

An SVR model was developed to predict pitch angle 
response to a longitudinal control input at an 
airspeed of 30 knots. The model was trained using 
data at 10 Hz resolution. A linear kernel with a 
NARX network was developed as shown for Model 1 
in Figure 2. One training dataset (Figure 5), and two 
validation datasets (Figure 6 & Figure 7) were used. 
This model required three variables to be defined. 
These included the SVM related insensitivity factor, 

€ 

ε , the regularisation coefficient, 

€ 

C, and the NARX 
related number of TDLs. 

Figure 3 and Figure 5 show the effect in choice of 
TDL on the performance of the SVR when compared 
to both the original training data and the validation 
datasets. Good performance can be achieved 
provided that knowledge of past inputs is available. 
These inputs need to encompass the delay 
characteristics of the helicopter dynamic system. In 
this case, performance is deemed to become 
adequate with a TDL value of 3 or above. Because 
the model performs at the same rate as the training 
data, in this case 10 Hz, a TDL value of 3 represents 
the last 300ms of data. 

Using a TDL value of 5, the insensitivity factor and 
regularisation coefficients are then varied to 
determine the models performance characteristics. 
When tested against it’s training dataset, Figure 9 
shows that a well chosen 

€ 

ε  has greater influence 
than 

€ 

C . In this case, a low value of 

€ 

ε  is guaranteed 
a low MQL error. The same trend is seen when 
tested against the unseen validation datasets (see 
Figure 11). The training data and validation data 
error surfaces have very similar shapes with a local 
minimum located at 

€ 

ε = 0.1 and 

€ 

C = 0.1. No hard 
margin behaviour is apparent, most likely due to the 
noise free flight data used from the FLIGHTLAB 
model. 

Interestingly, the value of 

€ 

ε  does not have as much 
influence on the number of support vectors used 



 

when compared with the choice in regularisation 
coefficient, 

€ 

C  (see Figure 13). A value of 

€ 

C  that is 
greater than 0.1 requires significantly less support 
vectors, yet provides for similar good performance 
when compared to lower values of 

€ 

C . A lower 
number of support vectors would allow faster 
computational performance and a quicker training 
time. 
 
 
4.4 Discussion: Model 2 Pitch Response 

The second SVR model was developed to predict 
pitch angle response to a longitudinal control input at 
various airspeed values. This model was also 
trained using data at 10 Hz resolution. Similarly, a 
linear kernel with a NARX network was developed 
as shown for Model 2 in Figure 2. One training 
dataset, similar to Model 1 but for speeds from hover 
to 40 knots in 5-knot increments, and one validation 
dataset (Figure 8) were used. For this model, the 
validation dataset involved a sustained step input 
whose pitch response varied the airspeed of the 
helicopter. Similar to Model 1, the insensitivity factor, 

€ 

ε , the regularisation coefficient, 

€ 

C, and the NARX 
related number of TDLs needed to be defined. 

Again, the importance of the NARX network in 
allowing a length of past inputs to capture the delay 

characteristics of the helicopter response can be 
seen from the results in Figure 4. For this case, a 
TDL of 5 (500ms of data) provides best performance 
against the training and validation datasets. Of 
interest is the degradation in performance against 
the training data when higher values of TDL are 
used. 

The MQL error surface is shown for a TDL value of 5 
and variation in 

€ 

ε  and 

€ 

C  for testing against the 
training (Figure 10) and validation (Figure 12) 
datasets. Similar surfaces are seen for both data 
sets, and again the influence of 

€ 

ε  on model 
performance is most evident, similar to Model 1. As 
was also seen with Model 1, the value of 

€ 

C  has the 
greatest influence on the number of support vectors 
used (Figure 14). 

In comparison to Model 1, Model 2 is inherently 
better able to generalise when larger pitch angles 
are achieved, particularly when such pitch angles 
involve significant variation in airspeed. This can be 
seen in Figure 8 where the time response of both 
models is shown against the third validation data 
set. Here, Model 2 is better able to predict the 
reduction in pitch angle over time, although not to 
the same level as the validation data. 
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Figure 3: Model 1 MQL predictive error against the 
Training and Validation datasets with variation in 
TDL. 

€ 

ε = 0.01 and 

€ 

C = 0.1. Validation dataset 1 & 
2 are used 
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Figure 4: Model 2 MQL predictive error against the 
Training and Validation datasets with variation in 
TDL. 

€ 

ε = 0.01 and 

€ 

C = 0.1. Validation Dataset 3 is 
used. 
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Figure 5: Training Dataset. Model 1 Performance is shown against its training dataset for TDL values of 1 
and 5. 

€ 

ε = 0.01 and 

€ 

C = 0.1. 
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Figure 6: Validation Dataset 1. Model 1 
Performance is shown against unseen data for a 
TDL value of 5. 

€ 

ε = 0.01 and 

€ 

C = 0.1. 
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Figure 7: Validation Dataset 2. Model 1 
Performance is shown against unseen data for a 
TDL value of 5. 

€ 

ε = 0.01 and 

€ 

C = 0.1. 
 

0 5 10 15 20
20

40

60

80
INPUT

Lo
ng

itu
di

na
l C

yc
lic

 (%
)

 

 

0 5 10 15 20
30

35

40

45

Ai
rs

pe
ed

 (K
ts

)

Time (sec)
 

 

0 5 10 15 20
−1

0

1

2

3

4

5

6
OUTPUT

Pi
tc

h 
An

gl
e 

(d
eg

)

Time (sec)
 

 

Validation Dataset 3
Model 1 − TDL 5
Model 2 − TDL 5

 
Figure 8: Validation Dataset 3. Performance of Model 2 is shown against unseen data for a TDL value of 5. 
For comparison, Model 1 results are also presented. 

€ 

ε = 0.01 and 

€ 

C = 0.1. 
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Figure 9: Model 1 MQL predictive error against the 
Training dataset. Variation in 

€ 

ε = 0.0001:1 and 

€ 

C = 0.01 :1000, TDL = 5. 
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Figure 10: Model 2 MQL predictive error against the 
Training dataset. Variation in 

€ 

ε = 0.0001:1 and 

€ 

C = 0.01 :1000, TDL = 5. 
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Figure 11: Model 1 MQL predictive error against the 
Validation Datasets 1&2. Variation in 

€ 

ε = 0.0001:1 
and 

€ 

C = 0.01 :1000, TDL = 5. 
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Figure 12: Model 2 MQL predictive error against 
Validation Dataset 3. Variation in 

€ 

ε = 0.0001:1 and 

€ 

C = 0.01 :1000, TDL = 5. 
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Figure 13: Model 1 Number of Support Vectors 
produced after training. Variation in 

€ 

ε = 0.0001:1 
and 

€ 

C = 0.01 :1000, TDL = 5. 
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Figure 14: Model 2 Number of Support Vectors 
produced after training. Variation in 

€ 

ε = 0.0001:1 
and 

€ 

C = 0.01 :1000, TDL = 5. 



 

 
5. APPLICATION WITH FLIGHT TEST DATA 

A small selection of flight test data recorded at 20 Hz 
from a Sikorsky Seahawk helicopteriv is provided for 
training and testing of the SVR model. The training 
(Figure 15) and validation (Figure 16) datasets show 
pitch response to longitudinal cyclic input at hover 
conditions. Although the datasets are very small, this 
data provides an opportunity to train an SVR model 
using non-noise free data. Because only hover data 
was provided, the Model 1 NARX architecture was 
used. 

Best performance against the validation dataset 
represents a TDL of 8, corresponding to 400ms of 
historic data. In this case, increasing level of TDL 
does not aid in performance against the unseen 
validation data (see Figure 17). The MQL predictive 
error surface against the training dataset (Figure 18) 
is very similar to the previous models taught with 
noiseless FLIGHTLAB data. In this case, a low value 
for 

€ 

ε  and 

€ 

C provide the best performance against 
the validation data (Figure 19), even though the 
number of support vectors required show hard 
margin behaviour (Figure 20). 
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Figure 15: Training Dataset. Model 1 Performance 
is shown against Seahawk helicopter training data 
for TDL values of 1 and 10. 

€ 

ε = 0.01 and 

€ 

C = 0.1. 
 
 
 
 
 
 

                                                        
iv Recorded during the 1994 ADF Airborne Trials of the    
S-70B2 Helicopter. Provided courtesy of the Aircraft 
Maintenance and Flight Trials Unit (AMAFTU) 
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Figure 16: Validation Dataset. Model 1 
Performance is shown against unseen Seahawk 
helicopter data for a TDL value of 10. 

€ 

ε = 0.01 and 

€ 

C = 0.1. 
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Figure 17: Model 1 MQL predictive error against 
Seahawk Training and Validation datasets with 
variation in TDL. 

€ 

ε = 0.01 and 

€ 

C = 0.1. 
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Figure 18: Model 1 MQL predictive error against the 
Seahawk Training dataset. Variation in 

€ 

ε = 0.0001:1 and 

€ 

C = 0.01 :1000, TDL = 10. 

10−4

10−2

100

10−2

100

102

104

10−2

100

102

Cepsilon

M
Q

L 
er

ro
r

 
Figure 19: Model 1 MQL predictive error against the 
Seahawk Validation dataset. Variation in 

€ 

ε = 0.0001:1 and 

€ 

C = 0.01 :1000, TDL = 10. 
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Figure 20: Model 1 Number of Support Vectors 
produced after training. Variation in 

€ 

ε = 0.0001:1 
and 

€ 

C = 0.01 :1000, TDL = 10. 
 

 
6. FURTHER DISCUSSION 

The SVR results presented here show good 
generalisation capability when presented with 
unseen data. The choice in insensitivity factor, 

€ 

ε , 
has greater influence than the regularisation 
coefficient, 

€ 

C , to achieve low MQL. But in all cases, 
it is important to provide the plant with knowledge of 
past inputs that encompass the delay characteristics 
of the helicopter dynamic system. The use of NARX 
network architecture achieves this goal. Good 
performance requires a number of TDL that 
encompass between 300 to 500 ms worth of historic 
data. 

The amount of Seahawk flight data available for 
training and validation was too limited to draw any 
major conclusions with comparison to the other SVR 
models. Although the other models were presented 
with noise free FLIGHTLAB data, the training 
performance was found to be similar to the Seahawk 
based model. 

SVR exhibits one major disadvantage in comparison 
to traditional modelling and other machine learning 
techniques such as NNs. In its current form, a single 
SVR model is at best only a Multiple Input Single 
Output (MISO) system. A complete non-linear 
helicopter flight dynamic model will require many 
individually trained SVRs linked together as sub 
systems to provide the outputs that define a flight 
path. 

It is likely that the most efficient method of 
developing a high fidelity flight model will be one that 
is a combination of both SVR and traditional 
modelling techniques. An SVR model may also be 
used to provide methods in which to reshape or 
reduce noise in flight response data. For example, a 
pure sinusoidal control response could be simulated 
from a limited flight data set, such that system 
identification can then be achieved using frequency 
analysis techniques.  

The application of SVR models would lend itself well 
to application in the control system domain. This 
may include online system identification and over 
the horizon control, similar to many NN applications 
that are popular for use in Unmanned Aerial 
Vehicles today.  

Unlike NNs, the use of SVR may lead to easier 
certification for use in manned aircraft or within 
commercial airspace. Risk mitigation would be 
easier due to the mathematical basis of the 
Structural Risk Minimisation and statistical learning 
principles on which SVMs are founded on. 

 



 

7. CONCLUSIONS 

The SVR model results show significant promise in 
the ability to represent aspects of a helicopter’s 
dynamics at a high fidelity. To achieve this, it is 
important to provide the model with knowledge of 
past inputs that encompass the delay characteristics 
of the helicopter dynamic system. In this case, the 
use of NARX network architecture achieves this 
goal. Good performance requires a number of 
Tapped Delay Lines (TDL) that encompass between 
300 to 500 ms worth of historic data. 

None of the SVR models presented here model the 
effects of dynamic cross coupling, hence further 
work may be beneficial in this area. Further work is 
also recommended to investigate the SVR 
generalisation capability when appreciable noise is 
evident in the flight data stream. 
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