
ADVANCED COUPLED AEROELASTIC 

ANALYSIS OF HELICOPTER ROTOR SYSTEM 

F. Abduhakimov1, V. Bondarev1,  

S. Dadunashvili2, A. Konovalov2, V. Vedeneev1  

1 – Lomonosov Moscow State University, Moscow, 

Russia;  

2 – VR-Technologies, Moscow, Russia, 

Abstract: 

 

Comparing to other flight vehicles, aerodynamics of helicopter blades is time-

periodic. For blade flutter analysis this feature requires development of special tools, 

taking the flow time-dependency into account. 

In this study, we develop a framework for the flutter analysis of the full blade 

model based on Floquet theory. A finite-element beam model governs the blade, 

whereas the flow is governed by quasi-static aerodynamic functions. An in-house 

software is developed to integrate the aerodynamics into Nastran finite-element model 

for solving both static and dynamic aeroelastic problems.  

 

1. Introduction 

 

Flutter of helicopter rotor blades can yield significant blade damage and crash of a 

helicopter, and is not acceptable at all regimes. To predict flutter conditions, at most 

flight vehicles the steady flow and equilibrium position of the structure are considered 

as the base state subject to stability analysis. On the contrary, the base state of helicopter 

rotor blades is time-dependent, because the blades oscillate during the rotor rotation 

(blade flapping motion). In Russian helicopter industry, for the flutter prediction two 

approaches are used. The first is the Floquet applied to a simple two-degree system for 

the blade section, which can predict flutter in the first bending and first torsional modes 

[1, 2, 3, 4]. The second approach applied to higher-modes is the averaging of the flow 

field over the rotation cycle, and flutter analysis of the blade in the time-independent 

flow [1, 2, 98]. Clearly, both approaches have essential disadvantages: the first can be 

applied only to the simplest flutter modes, whereas the second does not take the flow 

periodicity into account. 

The history of rotor blades aeroelasticity is shorter than this time for fixed wing. 

Wright brothers built the first their flying aircraft in 1903, whereas the first flight of 

Sikorsky R-4 was in 1942. In other words, initial gap of analysis of the fixed and rotary 

wing is 39 years. Moreover, the aerodynamics and dynamic behavior of the rotors are 

more complicated. Therefore, nowadays, rotor blades aeroelastic analysis is the wide 

field of study that needs more and more precise methods and approaches.  

One of the first papers was provided by Loewy [13], where the wide spectrum of 

aeroelastic problems had been consolidated in one article. Books [1, 2, 3] provide 

information about helicopter design, stress analysis, aerodynamics, structural dynamics 

and aeroelasticity. The detail review of rotor aeroelasticity was presented by Friedman 



[9]. Another detailed analysis is given by Ormiston [14]. The approach of unsteady 

aerodynamics consideration is shown in [7] by Peters. Some approaches and 

assumptions based on aerodynamics from forward flight were incorporated into the 

aeroelastic analysis in [10]. Flutter analysis for helicopter with anisotropic supports is 

considered by Pavlenko and Zvolanek in [4, 5].The role of unsteady aerodynamics, 

including dynamic stall, was analyzed, together with the treatment of nonlinear 

aeroelastic problems in forward flight. Finite element solutions were also considered, 

together with the treatment of coupled rotor-fuselage problems in [15]. 

The time-domain fully coupled unsteady aerodynamics and structural elasticity has 

long history, however, this way is time expensive and difficult for check because of 

analysis time. One of the examples of this analysis type is shown in [6]. 

This article describes an advanced coupled aeroelastic analysis of helicopter rotor 

system that takes the blade flapping motions into account. 

In this study, we develop a framework for the flutter analysis of the full blade model 

based on Floquet theory. A finite-element beam model governs the blade, whereas the 

flow is governed by quasi-static aerodynamic functions. In-house software is developed 

to integrate the aerodynamics into Nastran finite-element model for solving both static 

and dynamic aeroelastic problems.  

The paper is organized as follows. The section 2 is the description of structural and 

aerodynamic models used to design an aeroelastic blade model. Section 3 describes 

three solution steps used to predict flutter: the first step is the calculation of nonlinear 

static aeroelastic equilibrium state of the blade under the action of period-averaged flow 

field; the next step, is the analysis of flapping oscillations by assuming small blade 

motion; finally, these flapping oscillations are analyzed with respect to aeroelastic 

stability based on Floquet theory. At each step, coupling of structural and aerodynamic 

models and the way they are implemented into MSC.Nastran are described. In section 

4, we show an example of flutter analysis of a helicopter in design. Finally, section 5 

concludes the paper. 

 

2. Computational model 

 

1.1 Structural model 

The finite element MSC.Nastran model of the blade is created along the 

construction axis of the blade (fig. 1). Beam elements (CBEAM) are used for modeling. 

For each cross section, the following parameters are set: area, moments of inertia, 

displacement of the shear center, displacement of the neutral axis and non-structural 

mass. Concentrated masses that model such structural elements as fasteners, are 

modeled by COMN2 elements.  

 

Fig. 1 Coordinate system 



2.1 Aerodynamic model 

Calculation of blade flutter prediction consists of three steps: 1) Coupled 

aeroelastic calculation of the stationary (static) state of a rotating blade, taking into 

account the translational flight of the helicopter; 2) Computation of flapping 

oscillations of the blade; 3) The calculation of the blade flutter, taking into account the 

flapping oscillations. 

For the first solution step, aerodynamic loads averaged over the period of rotation 

are computed. To calculate flapping oscillation, variable aerodynamic load, computed 

without taking oscillations into account, and the change in aerodynamic loads, caused 

by the motion of the blade section during the oscillation process, are calculated in the 

linear approximation. Finally, for the last step aerodynamic loads are linearized with 

respect to flapping oscillation. 

 

Calculation of aerodynamic loads on the blades 

The computation of the aerodynamic forces acting on the blades is performed in 

the following order: 

 calculation of the induced speed in the plane of the rotor disk; 

 computation of the total velocity vector of the flow around the blade profile 

section, as well as the angle of attack and the Mach number in the blade section; 

 calculation of aerodynamic coefficients in the blade section; 

 determination of aerodynamic loads acting on the blade. 

Basic assumptions: 

 According to the strip hypothesis, the aerodynamic lift and drag coefficients in the 

section are determined by the experimental aerodynamic characteristics of the blade 

profile obtained in a plane-parallel flow. 

 The influence of the unsteady flow features on the aerodynamic characteristics of 

the blade cross section is not taken into account. 

 Uniform distribution of induced velocities in the plane of the rotor disc in oblique 

flow regimes around the rotor is accepted. 

 The rotations of the flat blade cross-sections caused by deformations of the blade 

axis are neglected.  

 

Rectangular coordinate systems used 

The calculation of the aerodynamic load is conducted in a coordinate system 

rotating with rotor. This coordinate system is defined as follows: the Y axis is directed 

along the rotor shaft upwards, and the Z is axis along the axis of the blade. The X axis 

is perpendicular to the Y and Z axes and complements them to the right-hand triple 

(fig. 2). This coordinate system will be called the global coordinate system. 

 

Fig. 2. Coordinate system 
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The coordinate system associated with the blade section is also used (Fig. 3): X⃗⃗ i
pr

 

is a unit vector directed along the chord of the i-th section of the blade in the direction 

of the blade rotation; Y⃗⃗ i
pr

 is a unit vector directed upward perpendicular to the chord of 

the i-th section of the blade; Z⃗ i
pr

 is unit vector normal to the i-th blade section (this 

vector supplements X⃗⃗ i
pr

 and Y⃗⃗ i
pr

 to the right-hand system). 

When calculating aerodynamic loads, a third coordinate system is used in which: 

X⃗⃗ i
air is unit vector directed downstream, Y⃗⃗ i

air is the unit vector directed perpendicular 

to the flow, Z⃗ i
air is vector complementary X⃗⃗ i

air and Y⃗⃗ i
air to the right-hand system. 

 

Fig. 3. Coordinate system associated with the flow 

Calculation of the induced velocity 

Induced velocity ϑ1 , which, according to accepted assumptions, is uniformly 

distributed over the rotor disk and directed along the axis of the rotor shaft. Induced 

velocity is opposite to the thrust force. The inducted velocity in the plane of the rotor 

disk is determined from the expression: 

(1)        𝜗1 = �̅�1𝜔𝑅   

where 𝜔 = 2𝜋 ∙ ν is the angular velocity of the rotor; ν is the frequency of rotation of 

the rotor; 𝑅 is the radius of the rotor; �̅�1 is relative induced velocity, determined from 

the system of equations (2): 

(2)     

{
 
 

 
 

𝜆 = 𝜇 ∙ 𝑡𝑔𝛼𝑟𝑜𝑡𝑜𝑟 − �̅�1

С𝑇 = 𝑎∞ ∙ 𝜎𝑟 (
𝜑0,7−𝛼
3

∙ (1 +
3

2
𝜇2) +

𝜆

2
)

�̅�1 =
0,25 ∙ С𝑇

𝜒2√𝜇2 + 𝜆2

 

where 𝜆 is inflow ratio; 𝜇 =
𝑉𝑟𝑜𝑡𝑜𝑟 ∙cos (𝛼𝑟𝑜𝑡𝑜𝑟)

𝜔𝑅
 is the coefficient of the rotor operating 

regime; 𝛼𝑟𝑜𝑡𝑜𝑟 is the attack angle of the rotor, i.e., the angle between the design plane 

of the rotor, perpendicular to the rotor shaft, and the incident flow velocity vector; С𝑇 

is rotor thrust coefficient; 𝑎∞ is the derivative of the lift coefficient of the blade profile 

with respect to the angle of attack; 𝜎𝑟 =
𝑘𝑏 ∙𝑏

𝜋𝑅
 is the rotor filling ratio; 𝜑0,7−𝛼 = 𝜑𝑐𝑝 −

𝛼0 + 𝜑𝑑 is the pitch angle of the undeformed blade at a relative radius r̅ = 0,7 taking 

into account the angle of zero lifting force of the profile; 𝜒 is tip loss factor of the rotor. 

𝑉𝑟𝑜𝑡𝑜𝑟 is the helicopter velocity relative to the flow, 𝑘𝑏 is number of rotor blades; 𝑏 is 

length of blade section chord; 𝜑𝑐𝑝 is collective pitch set by the rotor control system; 𝛼0 
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is the angle of zero lifting force of the profile; 𝜑𝑑 is the angle of the geometric blade 

twist at a relative radius r̅ = 0,7. 

One of all the solutions of (2) is accepted as a valid root ϑ̅1, positive or negative, 

depending on whether the rotor creates a positive or negative lift: 

{
 
 

 
 �̅�1 > 0 , 𝜑0,7−𝛼 > −

3

2

𝜇 ∙ 𝑡𝑔𝛼𝑟𝑜𝑡𝑜𝑟

1 +
3
2𝜇

2

�̅�1 < 0 , 𝜑0,7−𝛼 < −
3

2

𝜇 ∙ 𝑡𝑔𝛼𝑟𝑜𝑡𝑜𝑟

1 +
3
2𝜇

2

                                           

Determination of the velocity vector of flow around blade section  

The components of the total velocity vector (in the global coordinate system) of 

the flow around  i-th section of the blade are calculated in the following way: 

𝑉𝑥𝑖
𝑡𝑜𝑡(𝑡) = 𝑉𝑟𝑜𝑡𝑜𝑟 cos(𝛼𝑟𝑜𝑡𝑜𝑟) sin(𝜔𝑡) + 𝜔𝑅𝑖 

𝑉𝑦𝑖
𝑡𝑜𝑡 = 𝑉𝑟𝑜𝑡𝑜𝑟 sin(𝛼𝑟𝑜𝑡𝑜𝑟) − 𝜗1 

where 𝑅𝑖 is the distance from the rotor shaft to the i-th section. The magnitude of the 

total velocity vector is determined from the expression: 

|�⃗� 𝑖
𝑡𝑜𝑡(𝑡)| = √(𝑉𝑥𝑖

𝑡𝑜𝑡(𝑡))
2

+ (𝑉𝑦𝑖
𝑡𝑜𝑡)

2
 

 

Determination of the angle of attack of the blade section and the Mach number  

Mach number Mi of the incident flow in the i-th section of the blade is calculated 

according to the relation: 

𝑀𝑖(𝑡) =
|�⃗� 𝑖

𝑡𝑜𝑡(𝑡)|

𝑎𝑠
 

where 𝑎𝑠 is local speed of sound. The attack angle of the blade profile is calculated 

based on the relationship: 

𝛼𝑖(𝑡) = 𝜑𝑐𝑝 + 𝜑𝑠𝑒𝑐 + 𝑅3𝑖 + 𝛷𝑐𝑦𝑐𝑙𝑖𝑐 + 𝛼𝑓𝑙𝑜𝑤(𝑡) 

where 𝜑𝑐𝑝 is collective pitch set by the rotor control system; 

𝛷𝑐𝑦𝑐𝑙𝑖𝑐 =

{
 
 

 
 𝜑𝑐𝑦𝑐𝑙𝑖𝑐 𝑠𝑖𝑛(𝜔𝑡)

−𝜑𝑐𝑦𝑐𝑙𝑖𝑐 𝑠𝑖𝑛(𝜔𝑡)

𝜑𝑐𝑦𝑐𝑙𝑖𝑐 𝑐𝑜𝑠(𝜔𝑡)

−𝜑𝑐𝑦𝑐𝑙𝑖𝑐 𝑐𝑜𝑠(𝜔𝑡)

 

where each of the four options corresponds to the phase shift of the cyclic pitch by 0, 

π/2, π , 3π/2 of azimuth, which corresponds to the creation of a rotor thrust forward or 

backward, or roll to the right or left (only these four options were considered in 

analysis); 𝜑𝑐𝑦𝑐𝑙𝑖𝑐  is cyclic pitch amplitude; 𝛼𝑓𝑙𝑜𝑤(𝑡) = 𝑎𝑟𝑐𝑡𝑔 (
𝑉𝑦𝑖
𝑡𝑜𝑡(𝑡)

𝑉𝑥𝑖
𝑡𝑜𝑡(𝑡)

)  is the angle 

between the total velocity vector of the flow around of the blade section and the plane 

of the rotor disk; 𝜑𝑠𝑒𝑐  is geometric twist of the cross section;  𝑅3𝑖  is angular 

displacement (twist) around the Z axis for the i-th section. In the first step of calculation 

𝑅3𝑖 = 0. 

   



Determination of aerodynamic coefficients 

The lift force coefficient Cy and the drag coefficient Cx are computed on the basis 

of experimental data, containing the dependencies of Cy and Cx on the angle of attack 

and the Mach number. 

 

Calculation of the average aerodynamic loads per unit length 

The calculation of the load per unit length acting on the blade in the coordinate 

system associated with the incident flow (coordinate X is directed along the flow) is 

made on the basis of relations and: 

Δ𝑋𝑎𝑖
𝑎𝑖𝑟(𝑡) = 𝐶𝑥𝑖(𝛼𝑖(𝑡),𝑀𝑖(𝑡))

𝜌 ∙ |�⃗� 𝑖
𝑡𝑜𝑡(𝑡)|

2

2
∙ 𝑏 

𝛥𝑌𝑎𝑖
𝑎𝑖𝑟(𝑡) = 𝐶𝑦𝑖(𝛼𝑖(𝑡),𝑀𝑖(𝑡))

𝜌 ∙ |�⃗� 𝑖
𝑡𝑜𝑡(𝑡)|

2

2
∙ 𝑏 

where 𝜌 is air density. In the global coordinate system, the loads take the form: 

ΔXi(t) = X1i
 air ∙ ΔXai

air(t) + Y1i
 air ∙ ΔYai

air(t) 

ΔYi(t) = X2i
air ∙ ΔXai

air(t) + Y2i
air ∙ ΔYai

air(t) 

where 𝑋1𝑖
 air, 𝑋2𝑖

 air, 𝑌1𝑖
 air, 𝑌2𝑖

 air are components of vectors 𝑋 𝑖
airand �⃗� 𝑖

air, respectively. 

In first step of analysis, static aeroelasticity is investigated, for which the loads 

are averaged over the rotation period of the blade: 

𝛥𝑋̅̅ ̅̅ 𝑖 =
1

𝑇
∫𝛥𝑋𝑖(𝑡)𝑑𝑡

𝑇

0

 

𝛥𝑌̅̅̅̅ 𝑖 =
1

𝑇
∫𝛥𝑌𝑖(𝑡)𝑑𝑡

𝑇

0

 

where 𝑇 =
2𝜋

𝜔
 is the period of blade rotation. The integration is performed by the 

trapezoidal method with 100 steps in the integration period. The components of the 

aerodynamic forces in a given section of the blade (that is, in a given FEM node) are 

calculated as follows: 

𝐹𝑎𝑒𝑟𝑜 𝑖
𝑥 = 𝛥𝑋𝑖̅̅ ̅̅ ̅ ∙ 𝑙𝑖 

𝐹𝑎𝑒𝑟𝑜 𝑖
𝑦

= 𝛥𝑌𝑖̅̅ ̅̅ ∙ 𝑙𝑖 

where 𝑙𝑖 is the length of the FEM element adjacent to the given node and located closer 

to the axis of rotor rotation. 

The moments of forces acting on the i-th section have the form of a vector 

product: 

�⃗⃗� 𝑖 = (𝑋𝑝𝑐 − 𝑋𝑂)  ∙ 𝑋 𝑝𝑟 𝑖 × 𝐹 𝑎𝑒𝑟𝑜 𝑖 

where 𝑋𝑝𝑐 is the distance along chord from the leading edge of the blade section to the 

center of pressure, 𝑋𝑂 is the distance along the chord from the leading edge of the blade 

section to the point of intersection of the blade construction axis with the cross section 

(that is, to the FEM node), 𝐹 aero 𝑖 = {𝐹aero 𝑖
𝑥 , 𝐹aero 𝑖

𝑦
, 0} is vector of aerodynamic force. 

 



Linearization of aerodynamic forces 

The calculation of linearized aerodynamic forces is carried out in the following 

order: 

 Calculation of the first harmonics of the Fourier series expansion of aerodynamic 

forces. 

 Calculation of disturbances of aerodynamic forces in the first approximation as 

functions of velocity (translational) and rotation of the cross section. 

 The calculation of the Coriolis force in the first approximation as a function of 

the blade section velocity (translational and angular). 

The first harmonics are calculated as follows: 

Fcos i
x =

1

T
∫ΔXi(t) cos(ωt)dt

T

0

 

Fsin i
y

=
1

T
∫ΔYi(t) sin(ωt)dt

T

0

 

The vector of the total air velocity in case of flapping oscillations is 

V⃗⃗ total i = V⃗⃗ i
tot − v⃗ i 

where �⃗� 𝑖
𝑡𝑜𝑡  is the average value of the velocity obtained in the static aeroelastic 

calculation,  𝑣 𝑖 is blade section velocity caused by its oscillation. Therefore, the length 

of the velocity vector is 

|V⃗⃗ total i| = |V⃗⃗ i
tot − v⃗ i| ≈ |V⃗⃗ i

tot| −
V⃗⃗ i
tot ∙ v⃗ i

|V⃗⃗ i
tot|

 

The change of the angle of attack caused by the forward movement of the blade section  

(3)      αvi
′ ≈

vxiVyi
tot − vyiVxi

tot

(Vi
tot)2

  

Loads per unit length without consideration of flapping oscillations are defined as 

follows: 

ΔXai
air(t) = Cxi(αi(t),Mi(t))

ρ ∙ |V⃗⃗ i
tot(t)|

2

2
∙ b 

ΔYai
air(t) = Cyi(αi(t),Mi(t))

ρ ∙ |V⃗⃗ i
tot(t)|

2

2
∙ b 

And the expressions for loads, taking into account the flapping oscillations, are of the 

form: 

Fi
x = Cxi (αpr i

0 + αpr i
′ + αvi

′ ,
|V⃗⃗  i
tot − v⃗ i|

as
)
ρ|V⃗⃗ i

tot − v⃗ i|
2

2
b 

Fi
y
= Cyi (αpr i

0 + αpr i
′ + αvi

′ ,
|V⃗⃗ i
tot − v⃗ i|

as
)
ρ|V⃗⃗ i

tot − v⃗ i|
2

2
b 



where 𝛼𝑝𝑟 𝑖
0  is the average value of the angle of attack (obtained in a static calculation), 

𝛼𝑝𝑟 𝑖
′  is the additional angle of attack caused by the rotation of the section during 

vibrations, 𝛼𝑣𝑖
′  is additional angle of attack caused by the translational motion of the 

section during vibrations (3). 

Thus, the expressions for the disturbances of aerodynamic forces take the form: 

Fi
′ x = Axi

x vxi
glob

+ Ayi
x vyi

glob
+ Aαi

x αpr i
′ glob

 

Fi
′ y
= Axi

y
vxi
glob

+ Ayi
y
vyi
glob

+ Aαi
y
αpr i
′ glob

 

where the index «glob» denotes the global coordinate system. 

The perturbation of the moment of aerodynamic forces is represented through the 

vector product: 

�⃗⃗� 𝑖 = (𝑋𝑝𝑐 − 𝑋𝑂)  ∙ 𝑋 𝑝𝑟 𝑖 × 𝐹 𝑡𝑜𝑡𝑎𝑙 𝑖  

where 𝐹 𝑡𝑜𝑡𝑎𝑙 𝑖 = {�̅�𝑖
′ 𝑥 ∙ 𝑙𝑖, �̅�𝑖

′ 𝑦
∙ 𝑙𝑖, 0} 

 

Calculation of  Coriolis Force and Moment 

The velocity and rotation of the cross section point in case of flapping oscillations 

is 

𝑣 0 = (

𝑉0𝑥
𝑉0𝑦
𝑉0𝑧

)𝑒𝑖𝜔𝑡 

𝛼 = (

𝐴𝑥
𝐴𝑦
𝐴𝑧

)𝑒𝑖𝜔𝑡 

The velocity of rotation of the cross-section point in case of flapping oscillations is 

𝑑𝛼

𝑑𝑡

⃗⃗⃗⃗  ⃗
= (

𝑖𝜔𝐴𝑥
𝑖𝜔𝐴𝑦
𝑖𝜔𝐴𝑧

)𝑒𝑖𝜔𝑡 = (

𝜔𝛼𝑥
𝜔𝛼𝑦
𝜔𝛼𝑧

)𝑒𝑖𝜔𝑡 

The relative velocity of the blade section is: 

𝑣 𝑟 = ((

𝑉0𝑥
𝑉0𝑦
𝑉0𝑧

) + (

−𝑦𝜔𝛼𝑧
𝑥𝜔𝛼𝑧

𝑦𝜔𝛼𝑥 − 𝑥𝜔𝛼𝑦
))𝑒𝑖𝜔𝑡 

where 𝑟  is radius vector from the FEM node. 

Coriolis force at the point of the blade section is 

𝐹 𝑐𝑜𝑟 = 𝑓𝑥𝑒 𝑥 + 𝑓𝑧𝑒 𝑧 

where 𝑓𝑥 = −2𝑚𝛿�̃� (𝑉0𝑧 + 𝑦𝜔𝛼𝑥 − 𝑥𝜔𝛼𝑦) 𝑒
𝑖𝜔𝑡; 𝑓𝑧 = 2𝑚𝛿�̃�(𝑉0𝑥 − 𝑦𝜔𝛼𝑧)𝑒 𝑧𝑒

𝑖𝜔𝑡; �̃� 

is the angular velocity of the blade around the rotor shaft, 𝛿 = 𝛿(𝑥 − 𝑥∗, 𝑦 − 𝑦∗) is the 

delta function (since the mass of the section is concentrated at the point corresponding 

to the non-structural mass of the FEM). The total force of Coriolis in cross section as 

follows: 



𝐹 𝑐𝑜𝑟 𝑡𝑜𝑡 = ∫𝐹 𝑐𝑜𝑟𝑑𝑠
𝑆

= 𝑓𝑥 𝑡𝑜𝑡𝑒 𝑥 + 𝑓𝑧 𝑡𝑜𝑡𝑒 𝑧 

𝑓𝑥 𝑡𝑜𝑡 = (−2𝑚�̃�𝑉0𝑧 − 2𝑚�̃�𝑦0
∗𝜔𝛼𝑥 + 2𝑚�̃�𝑥0

∗𝜔𝛼𝑦) 𝑒
𝑖𝜔𝑡 

𝑓𝑧 𝑡𝑜𝑡 = (2𝑚�̃�𝑉0𝑥 − 2𝑚�̃�𝑦0
∗𝜔𝛼𝑧)𝑒

𝑖𝜔𝑡 

where (𝑥0
∗, 𝑦0

∗) is the distance between the node FEM and the point of non - structural 

mass. 

The moment of Coriolis force at the point of blade section is 

�⃗⃗� 𝑐𝑜𝑟 = 𝑟 × 𝐹 𝑐𝑜𝑟 = 𝑦𝑓𝑧𝑒 𝑥 + (−𝑥𝑓𝑧)𝑒 𝑦 + (−𝑦𝑓𝑥)𝑒 𝑧 

The total moment of Coriolis force in cross section is 

�⃗⃗� 𝑐𝑜𝑟 𝑡𝑜𝑡 = ∫�⃗⃗� 𝑐𝑜𝑟
𝑆

𝑑𝑠 = 𝑚𝑥 𝑡𝑜𝑡𝑒 𝑥 +𝑚𝑦 𝑡𝑜𝑡𝑒 𝑦 +𝑚𝑧 𝑡𝑜𝑡𝑒 𝑧 

𝑚𝑥 𝑡𝑜𝑡 = 𝑦0
∗(2𝑚�̃�𝑉0𝑥 − 2𝑚�̃�𝑦0

∗𝜔𝛼𝑧)𝑒
𝑖𝜔𝑡 

𝑚𝑦 𝑡𝑜𝑡 = −𝑥0
∗(2𝑚�̃�𝑉0𝑥 − 2𝑚�̃�𝑦0

∗𝜔𝛼𝑧)𝑒
𝑖𝜔𝑡 

𝑚𝑧 𝑡𝑜𝑡 = −𝑦0
∗ (−2𝑚�̃�𝑉0𝑧 − 2𝑚�̃�𝑦0

∗𝜔𝛼𝑥 + 2𝑚�̃�𝑥0
∗𝜔𝛼𝑦) 𝑒

𝑖𝜔𝑡 

 
Linearization of aerodynamic loads relative to flapping oscillations 

Expressions for forces linearized with respect to flapping vibrations have the 

form: 

𝐹𝑖
′ �̃� = 𝐴𝑥𝑖

�̃� 𝑣𝑥𝑖
𝑔𝑙𝑜𝑏

+ 𝐴𝑦𝑖
�̃� 𝑣𝑦𝑖

𝑔𝑙𝑜𝑏
+ 𝐴𝛼𝑖

�̃� 𝛼пр 𝑖
′ 𝑔𝑙𝑜𝑏 

𝐹𝑖
′ �̃�
= 𝐴𝑥𝑖

�̃�
𝑣𝑥𝑖
𝑔𝑙𝑜𝑏

+ 𝐴𝑦𝑖
�̃�
𝑣𝑦𝑖
𝑔𝑙𝑜𝑏

+ 𝐴𝛼𝑖
�̃�
𝛼пр 𝑖
′ 𝑔𝑙𝑜𝑏 

 

3. Solution sequence 

1.1 Calculation of averaged nonlinear aeroelastic state 

In this section the deformed state of the blade under the action of centrifugal force 

and the averaged (over the rotation period) aerodynamic load is calculated. The 

calculation of the coupled aeroelastic problem is performed in the solver SOL 400 of  

MSC.Nastran. Aerodynamic loads are calculated as static concentrated forces and 

moments at the nodes of the FEM. 

Since the aerodynamic load depends on the deformed state of the blade, the 

problem is solved using the method of successive approximations. The calculation 

algorithm is as follows: in the first step, the aerodynamic forces acting on the 

undeformed blade are calculated, and the stress-strain state under the action of these 

forces is calculated; in the next step, the aerodynamic forces acting on the deformed 

rotor are recalculated and the stress-strain state is recalculated under the effect of 

recalculated loads; further iterations are repeated until the convergence is achieved. 

The resulting stress-strain state is the solution of the two-way coupled aeroelastic 

problem, since the aerodynamic loads, under the action of which the stress-strain state 

was obtained, were calculated for the same state. 

Calculations at every iteration, are performed taking finite deformations 

(geometric nonlinearity) and aerodynamic nonlinearity (expressed in a nonlinear 



dependence of the coefficients of aerodynamic forces on the angle of attack) into 

account. 

Python program was developed to calculate the aerodynamic forces, integrate 

aerodynamics into the Nastran FEM model and control the calculation process. 

 

2.1 Calculation of forced rotor blade oscillations at horizontal flight 

regimes 

It is assumed that under the action of a periodic aerodynamic load, the blade 

experiences small oscillations around the static equilibrium position, and the harmonic 

of rotor rotation frequency gives the dominant contribution to the oscillation process. 

In addition to the variable aerodynamic load, calculated without taking 

oscillations into account, the change of aerodynamic loads caused by the motion of the 

blade section during the oscillation process is taken into account in the linear 

approximation. Also, the structural damping of the blade is considered. 

Calculation of flapping oscillations is conducted in the frequency domain. The 

mass matrix is taken from the calculation of static aeroelasticity. The stiffness matrix 

consists of a structural stiffness matrix obtained from the calculation of static 

aeroelasticity and a aerodynamic stiffness matrix composed of the corresponding 

coefficients in the expressions for the linearized aerodynamic forces. The damping 

matrix consists of structural damping matrix and aerodynamic damping matrix 

composed of the corresponding coefficients in the expressions for linearized 

aerodynamic forces. 

To export stiffness, mass and structural damping matrices from static nonlinear 

elastic calculation and use them in the calculation of the flapping oscillations, 

commands on the DMAP macro language are added to the corresponding calculation 

files. 

 

3.1 Calculation of blade flutter  

At this stage, the flutter is calculated taking into account the flapping oscillations 

performed by the blade. Since the unperturbed state studied for stability is periodically 

dependent on time (flapping oscillations), the stability analysis is carried out using the 

Floquet theory [8]. 

For computations, solver SOL 109 of MSC.Nastran is used. The following system 

of equation is solved: 

𝑀�̈� + 𝐵�̇� + 𝐾𝑢 = 𝐵𝑎�̇� + 𝐾𝑎𝑢 + 𝐵𝑘�̇� + 𝐵𝑎 𝑐𝑜𝑠�̇̇� 𝑐𝑜𝑠(𝜔𝑡) + 𝐵𝑎 𝑠𝑖𝑛�̇� 𝑠𝑖𝑛(𝜔𝑡) +
𝐾𝑎𝑢 𝑐𝑜𝑠(𝜔𝑡) + 𝐾𝑎𝑢 𝑠𝑖𝑛(𝜔𝑡)  

where 𝑀,𝐵, 𝐾  are structural matrices of mass, damping and stiffness, 𝐵𝑎, 𝐾𝑎  are 

aerodynamic matrices of damping and stiffness, 𝐵𝑘  is a damping matrix generated by 

Coriolis force, 𝐵𝑎 𝑐𝑜𝑠�̇̇� cos(𝜔𝑡) + 𝐵𝑎 𝑠𝑖𝑛�̇� sin(𝜔𝑡) + 𝐾𝑎𝑢 cos(𝜔𝑡) + 𝐾𝑎𝑢 sin(𝜔𝑡) are 

aerodynamic matrices that define periodically varying coefficients of the system of 

equations. 

  



Floquet theory 

For a linear system: 

(4)     
𝑑𝑋

𝑑𝑡
= 𝐴(𝑡)𝑋 

with a piecewise-continuous periodic matrix 𝐴(𝑡 + 𝜔) ≡ 𝐴(𝑡), the fundamental matrix 

of solutions normalized at t = 0 has the form: 

𝑿(𝑡) = Ф(𝑡)𝑒𝛬𝑡 

where Φ(t) is piecewise smooth periodic matrix, and Ф(0) = Ф(𝜔) = 𝐼 and Λ is a 

constant matrix; 𝐗(𝑡 + 𝜔) = 𝐗(𝑡)𝐗(𝜔). 
The matrix 𝐗(𝜔) = 𝑒𝛬𝜔  is the monodromy matrix of a system with periodic 

coefficients, and its eigenvalues are the multipliers of this system. A linear 

homogeneous periodic system with a continuous matrix is stable if the multipliers lie 

inside of the unit circle |𝜌| ≤ 1. 

In the case of small blade motions around the equilibrium position at flapping 

vibrations, the linearized system of equations of motion takes form: 

(5)    [𝑴]�̈� + [𝑩(𝒕)]�̇� + [𝑲(𝒕)]𝒖 = 𝟎 

where the stiffness and damping matrices have periodic coefficients with a period equal 

to the rotation period. 

The change of variables v = u̇ system (5) is reduced to the form (4): 

(6)    {
�̇�
�̇�
} = [−[𝑴]

−𝟏[𝑩(𝒕)] −[𝑴]−𝟏[𝑲(𝒕)]
𝑰 𝟎

] {
𝒗
𝒖
} 

To construct the monodromy matrix, it is necessary to solve 2n systems of equations 

on the same period with the initial conditions 

{
𝒗(𝟎)
𝒖(𝟎)

} = [
𝑰 𝟎
𝟎 𝑰

] 

where n is the dimension of the system and I is the unit matrix of dimension n. 

Unfortunately, this theory can be implemented in practice only for sufficiently 

low-dimesional systems. Otherwise, it is necessary to integrate over the period too 

many times and with very small increments. To overcome this problem, we can switch 

to the modal coordinates of the system [M]ü + [K]u = 0 and restrict ourselves by the 

first k modes: 

{
𝒗
𝒖
} ≈ [

𝝋𝒌
𝝋𝒌
] {
𝒑
𝒒} 

The number of solutions per period will be reduced to 2k, and the minimum integration 

step will be determined by the maximum (k-th) eigenfrequency of the system 

(convergence study is required for each specific case, but as a rule, 100 steps for the 

minimum period is sufficient). When normalizing by mass [𝜑]𝑇[𝑀][𝜑] = 𝐼, system (6) 

is converted to the form: 

(7)    {
�̇�
�̇�
} = [−

[𝝋𝒌]
𝑻[𝑩(𝒕)][𝝋𝒌] −[𝝋𝒌]

𝑻[𝑲(𝒕)][𝝋𝒌]
𝑰 𝟎

] {
𝒑
𝒒} , {

𝑝(0)
𝑞(0)

}=[
𝐼 0
0 𝐼

] 

And the monodromy matrix of dimension 2k x 2k will be composed of solution vectors 

(7) 

𝑿(𝝎) = [
𝒑(𝝎)
𝒒(𝝎)

] 



However, it is not necessary to convert system (5) into (7). Instead, the 

monodromy matrix in modal coordinates can be obtained as follows: we need to 

integrate system (5) over the rotation period 2k times with initial conditions (7) or in 

physical coordinates {
u̇(0)
u(0)

} = [
φk 0
0 φk

]. And the matrix composed of solution vectors 

in physical coordinates of dimension 2n x 2k is converted into modal coordinate. 

(8)    𝑿(𝝎) = [
[𝝋𝒌]

𝑻[𝑴][�̇�(𝝎)]

[𝝋𝒌]
𝑻[𝑴][𝒖(𝝎)]

] 

If the eigenvalues of the matrix (8) are located in the unit circle, the system is stable. 

 

4. Results of the flutter analysis 

 

The aeroelastic analysis with full blade model of unmanned aircraft (Fig. 1Fig. 1) 

was performed. Three parts of analysis were carried out: coupled aeroelastic calculation 

of the stationary (static) state of a rotating blade, taking into account the translational 

flight of the helicopter; computation of flapping oscillations of the blade; the calculation 

of the blade flutter, taking into account the flapping oscillations, using Floquet theory. 

The calculations were performed at flight 81 regimes. Flutter regimes, as corresponding 

flutter modes, are found. 

 
Fig. 1. Heavy unmanned helicopter 

In cases of flutter regimes the flutter oscillations were prevented by using 

additional weights installed on the blade and optimizing their position. Weights with 

different masses were modeled as concentrated masses at the CEM nodes using the 

CONM2 elements. The position of the weights was varied both along the axis of the 

blade and along the chord of the blade section.  
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5. Conclusions 

 

 In this paper, a framework for the flutter analysis of the full blade model based 

on Floquet theory was developed. Python scripts were written to integrate the 

aerodynamics into Nastran finite-element model for solving both static and dynamic 

aeroelastic problems. This framework can be applied to study different flutter modes, 

and takes the flow periodicity into account. 
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