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Summary
We present the fundamentals of the analysis

technique of a skid helicopter landing which takes
into account all necessary design features of this
landing gear type and modern-day requirements of
the standard documents as to its design. We compare
the results of the design studies with the experimental
data and results obtained using other techniques.

Introduction
The design techniques which were used over

several tens of years possessed a number of
simplifications and in essence copied the traditional
approach to the analysis of aircraft landing gear
absorption concerning the calculation of shock-
absorbing elements loads. In the framework of such
an approach called "classical" in [2] the front and rear
landing gear springs are simulated separately without
regard for a skid and their proper deformations during
landing are determined by means of preassigned
calculational or experimental diagrams of springs
static compression. In real service conditions,
however, a helicopter can extremely seldom perform
an autorotation landing in the strictly horizontal
position. At the moment of ground touch the
helicopter will most likely have some bank or pitch
angle or their combination. In this case FAR-29 and
FAR-27 require the supporting evidence for energy
intensity of each landing gear element under its most
unfavorable conditions.

At present the investigations of the skid landing
gear helicopter landing dynamics are carried out by
specialists of the leading helicopter companies [1, 2].
They are based on the application of the present-day
finite element systems for the helicopter drop
dynamics analysis. It is seen from the results of these
studies that the structure under investigation was
simulated rather accurately and we solved the
problem of both overall and local strength during
landing. At the same time the investigators [2] note
that the analysis takes plenty of time and this
methodology can be used in the case when the
structural parameters have already been determined.

Further studies are needed to optimize the
structural parameters of the skid landing gear from
the viewpoint of using composites and searching for
the most efficient structure geometry. The authors
have developed a technique for the dynamic analysis
of helicopter landing under various landing conditions.
The basis for this technique is the consideration of
main design features of the landing gear influencing its
shock-absorbing capabilities. The design model of the
landing gear structure makes it possible to simulate
rather accurately landing gear-to-fuselage attachment

conditions, to take into account friction between
moving structural elements and skid-on-ground
friction.

It should be noted that the general strategy of
investigations [1, 2] supposes that the problem of
landing gear structure strength is solved concurrently
with the simulation of the helicopter landing
dynamics. In the study being suggested these two
problems are separated into independent ones. To
design the skid landing gear it is important to
determine properly and rather rapidly the level of
acting loads in each landing case to provide the
design strength analysis with necessary accuracy. The
subsequent checking strength analysis can be carried
out using the same finite element method at the rather
large number of finite elements but now at the level of
solving a static problem.

1. Skid Landing Gear Design Model
The main purpose of the skid landing gear is to

prevent helicopter structure destruction at the hard
autorotation landing, that is, to absorb landing shock
energy. In this case the shock-absorbing structural
landing gear elements (as a rule, they are elastic
springs) can also operate under conditions of plastic
material deformation when they gain large
displacements. The necessity to take into account
geometric and physical nonlinearity of the skid
landing gear structural elements deformation as well
as connection of front and rear springs with skids
results in significant complication of this unit analysis
and design techniques.
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the initial curvature vector; ( 321 ϕϕϕ �� ) are the angles
of unit vector coincidence {ei} of the local coordinate
system ξηζ  connected with the section, with the unit
vectors {ij} of the common; i.e. base system

���	1  (Fig. 1). The axes ξηζ  coincide with the
main central axes of the spring section, the moments
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Mξ, Mη, Mζ  and rigidities EJξ, EJη, GJ are written
with respect to them.

The theory of large bar displacements [3] was
used to take into account the geometric nonlinearity
phenomenon in the landing gear structure
deformations. In the framework of this theory the
elastic center position in space of the bar arbitrary
section (Fig. 1) is completely determined by three

solid angles of the section rotation ���� 321 ϕϕϕ ; to
find these angles three integro-differential equations
are written:

The connection between the angles of the section
rotation and linear coordinates of the corresponding
point on the elastic line in space is determined by the
equations:
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The external load vector {Mx, My, Mz} is written
with the use of the bar equilibrium equations in the
base coordinate system ���	1 . The bending

moments are converted into the local section axes
ξηζ  with the aid of the known matrix of coordinates
alignment L [3]:

{Mξ, Mη, Mζ} = L {Mx, My, Mz} (3)

Relations (1), (2) and (3) make it possible to
determine the position in space of the bar elastic line.
The integration constants C1, C2, C3, C4, C5, C6 are
found by the bar attachment conditions. Six
additional equations are made up for this purpose. In
the matrix form relations (1) – (3) in the combination
with the equations for integration constants are
written in the following form:

0=��� ��	 , (4)

where X is the vector of the basic unknowns
���� 321 ϕϕϕ  and ��

�
� ; P is the generalized loading

parameter.
In this problem formulation the theory of large

bar displacements makes it possible to calculate the
statically determinate bar systems. As the skid
landing gear is a statically indeterminate structure, the
additional calculation methods are needed.

Matrix equation (4) can be written separately for
each landing gear spring. In this case we obtain the
extended system of equations:
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In system (5) the subscript "I" refers to the rear
spring and the subscript "II" denotes the front spring.

The skid provides the concurrent deformation of two
springs. According to the preliminary analysis of real
landing gear structures the proper displacements of
skids under the action of design load are small as
compared to the large displacements of springs and
practically have no influence on shock absorption. In
the design model, therefore, each skid is specified as
an absolutely rigid bar providing the geometric and
structural connection between the front and rear
springs without regard for its proper deformations.
The force method is used to calculate the statically
indeterminate model formed.

Fig. 2

The basic system of the force method is obtained
by the introduction of additional cuts along the right

and left skids and twelve unknown forces 
�

�
�  (i = 1,

…, 12) corresponding to these cuts (Fig. 2). To find
the unknown forces we used conditions of zero
equality of the displacements along the corresponding
directions in the cuts section [6]: 0=∆

�
. Then

system (4) in the final form will be written as follows:














=∆

=∆
=
=

������������

������������������������������������������

������������

������������

������������

���

���

���

���

0

0

0

0

12112

1211

121

1221


�����


�����


������


������

���

���

�����

����

   (6)

The integral functions of nonlinear equation
system (6) were digitized with the aid of the
integrating matrix method [5] using the integrating
matrices of the so-called "third type" which take into
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account the arbitrary position of the base coordinates
origin along the bar and the finite number of
integrand discontinuities along the integration
interval. To solve system of equations (6) we used the
Newton-Raphson method. By the technique
developed we compiled a calculation algorithm for a
computer and carried out a test analysis of static
loading for the landing gear structure of a light multi-
purpose helicopter. It should be noted that in the
framework of this paper we consider solely the
structures that retain their elastic properties to the
point of destruction. It is these properties that the
helicopter landing gear structure being analyzed
possesses; the helicopter landing gear has springs
made of glass-reinforced plastic-based composite. At
present we have developed a technique which makes
it possible to take into account plastic deformations
accumulation in the landing gear spring material
(metal springs) but it is not considered in this paper.

Fig. 3

Fig. 4

Fig. 5

As an example we present the calculation for the
landing gear loading case at the vertical landing
which corresponds to load standards in FAR-29
paragraph 29.501-(b). Figure 3 presents the scheme
of landing gear loading and points for measuring
displacements during tests (1, 2, 3, 4 are the points of
load application and measurement of structure
displacements). The displacements as a function of
the external load value in the vertical ( �	1 ), lateral

( �	1 ) and longitudinal ( �	1 ) directions

respectively are shown in Figs. 4, 5 and 6. During
tests the displacements were measured up to 70% of
the external load. According to the experimental
measurements, the dependence of point 1
displacements is conventionally denoted as ∴ , the
dependence of point 2 displacements – as ⊥ , the
dependence of point 3 displacements – as Ο, and the
dependence of point 4 displacements is designated as
. It should be noted that there exist longitudinal
displacements of the force application points (Fig. 6)
under the action of vertical load alone which are due
to geometric nonlinearity of deformation and this fact
was obtained as a result of calculations with quite
reasonable accuracy.

Fig. 6

The application of the integrating matrix method
to the landing gear structure analysis makes it
possible to simulate properly the spring-to-fuselage
attachment conditions. The spring attachment fittings
of the landing gear under consideration are
represented schematically in Fig. 7. The point of the
bracket K rotation fixed in position on the fuselage is
removed with respect to the spring elastic axis by an
eccentricity value r0; during spring deformation the
bracket slides along the spring axis rotating about this
point. Strictly speaking, such a structure is a
geometrically changeable one, but consideration of
the difference of actual friction forces in the left-hand
and right-hand clamps makes it possible to simulate
properly the deformed state of the spring for each
specific case of loading. For this purpose we
introduce additional unknowns determining the
geometry of the structure being deformed: increment
of the distance between the left-hand and right-hand
brackets ∆S (along the arc coordinate) and rotation
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angles of the brackets θ1, θ2 (Fig. 7). The equations
for their determination complement system of
equations (6) and at each step of the integration
solution of this system the integrating matrices must
be converted since during loading the length of one of
the integration sections changes along the spring
elastic line.

Fig. 7

Fig. 8

Fig. 9

Such a model was used to reconstruct the
experiment for determining a diagram of rear spring
static compression of the landing gear under study.
The scheme of spring loading and attachment on the
test stand corresponds to Fig. 7. The displacements of
the force application points in the vertical ( �	1 ) and

horizontal ( �	1 ) directions respectively are shown
in Figs. 8 and 9. The difference in displacements of

the left-hand and right-hand spring cantilevers is
explained by the difference in forces of the initial
motion of the left-hand and right-hand brackets; as a
result one of them slides along the spring, and the
other merely rotates about the stationary attachment
point but does not slip. The consideration of this
phenomenon made it possible to simulate properly the
conditions of the landing-gear structure attachment
and to study a problem of the influence of these
conditions on the stress-strain state of the structure on
the whole. In addition, this model made it possible to
solve a problem of identification of the elastic and
rigid characteristics of the landing-gear composite
springs using the test results on static compression
since the model takes into proper account the spring
attachment conditions on the test stand.

The three-dimensional landing gear model
developed allows the static stress-strain state of the
structure to be calculated for any design case of
helicopter landing agreed in FAR-29, FAR-27
requirements. Besides, this model is used in the
quasistatic approach to the solution of the helicopter
landing dynamics problem.

2. Helicopter Landing Dynamics
Analysis

According to FAR-29 instructions, in the analysis
of the helicopter landing dynamics the fuselage is
specified as a rigid body with the mass concentrated
at the point of the center of gravity which possesses
the given inertia characteristics. The landing surface
in the analysis is specified as an analytical plane fixed
to the earth coordinate system O2X0Y0Z0 which may
be horizon-oriented by means of angles of lateral and
longitudinal inclinations. The common origin of the
normal OXgYgZg and fixed OXYZ coordinate systems
is at the helicopter fuselage center of gravity (Fig.
10). The base axes ���	1  of the landing gear
design model are specified with respect to the fixed
coordinate system. Since the skids are simulated as
rigid bars then the forces of the earth reaction Ri

(i=1,..,4) are reduced to the front and rear ends of
each skid. In this case the skid friction on the landing
surface is given by means of the corresponding
friction coefficients. During the landing analysis the
forces Ri  must be determined at each moment of
time, that is, they should be added to the number of
basic unknowns.

Fig. 10
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We have thus considered the helicopter landing
as a body motion in space under the action of its own
weight, the main rotor thrust and earth reaction
forces. The helicopter attitude at any moment of time
is completely determined by three linear coordinates x,
y, z and three solid angles: of bank γ, yaw ψ and pitch ϑ.

The quantities of the earth reactions specified in
earth axes are converted into the body-fixed axes by
means of the directional cosines matrix:

The inverse conversion of the deformed structure
geometry determined in the base coordinate system
into the normal axes is carried out with the aid of the
inverse matrix �

�� ϕ
−
ϕ =1  obtained by transposition of

matrix (7).
The helicopter motion from the moment when the

skids touch the landing surface is described by the
known equations of dynamics:
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Here { }
���




 ΣΣΣ= ��  and =� {ΣMx,

ΣMy, ΣMz} are the principal vector and the principal
moment of external forces; =� {Jx, Jy, Jz} is the
helicopter fuselage inertia tensor. The numerical
integration in time of system of differential equations
(8) with the use of (7) and (6) makes it possible to
determine the helicopter attitude and landing gear
loads at each moment of time. Since the numerical
solution in the landing gear deformed state analysis is
based on the Newton iteration method then the most
time-consuming part of calculations is to make up a
partial derivative matrix [6]. In the general case the
vector of basic unknowns has a rather large

dimension: X = {XI, XII, ������

��

121 ��  ∆S, θ1, θ2, R1,
…, R4}. This fact called for optimization of the
problem solution algorithm. The time necessary to
calculate one landing case amounts from 15 to 40
minutes depending on the complexity of landing
conditions realization in each specific case.

As examples of the helicopter landing simulation
with the aid of the technique developed we present

the analysis results for the cases of horizontal landing
and one skid landing (with the initial angle of bank

�510 �=γ ) in Figs. 11 and 12. The comparison of the

analysis results with those of landing simulation by
the technique realizing the "classical" approach is
shown in Fig. 11. The quantities of Ri reactions as a
function of time are given in Figs. 11, a and 12, a; the
vertical displacements ∆hi of the spring-skid
connection points against time are presented in
Figs. 11, b and 12, b (the numbers of the points i
correspond to Fig. 10); the solid angles of bank γ, yaw
ψ and pitch ϑ  as a function of time are shown in Figs.
11, c and 12, c.

a

b

c

Fig. 11.  – front spring,  – rear spring:
by classical approach;  – front spring,

 – rear spring: by technique suggested
In Fig. 11, a we see the effect of load

redistribution
to the front
and rear
landing gear
springs due to

Lϕ =

ψγψγ−ψ
γψϑ+γϑϑψγ−γϑψϑ−
γψϑ−γϑγψϑ+γϑψϑ
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the skid influence. In addition to this landing gear
elements load redistribution the inclusion of the skid
makes it possible to adjust the helicopter attitude at
any moment of time by the pitch angle (Fig. 11, c).
One skid landing case cannot be calculated by the
technique realizing the "classical" approach.

The simulation results for the case of one skid
landing with a lateral restriction are given in Fig. 13.
In this case one of the points of the spring-skid
connection encounters a stationary lateral obstacle
which constrains sliding of this point along the
landing surface. Here the landing gear structure
experiences a shock which is transmitted to the
fuselage structural elements. Figure 13 presents
variation in time of the vertical reaction quantities in
the fittings of spring-to-fuselage attachment (the
conventional symbols of points 1, 2, 3, 4 correspond
to those in Figs. 12, a and 12, b).

a

b

c

Fig. 12.  – point 3,  – point 4
 – point 1,  – point 2

Fig. 13
The analysis of this landing case is not included

in FAR-29 requirements but it is a necessary present-
day calculation condition in the skid landing gear
design.

3. Concluding Remarks
The technique developed was used in designing

the skid landing gear of a light multi-purpose
helicopter and allowed good results to be achieved
both at the stage of design and at the stage of
checking strength analysis.

The application of the technique developed is not
restricted by the helicopter landing dynamics
analysis. The technique makes it possible to study
landing safety to exclude: a) possibility for helicopter
structure elements to touch ground when the landing
gear springs are compressed both during landing on
the horizontal place and in the presence of
longitudinal and lateral inclinations; b) possibility for
a helicopter to turn over during landing with the
initial angle of bank to the lateral inclination.

The technique makes it possible to develop crew
recommendations for the most advantageous landing.
The further development of the technique enables us
to study a problem of helicopter transverse balancing
on the inclined place. This problem is solved for the
scheme of a wheel landing gear but it cannot be
studied for the skid landing gear if the complete
model of such a landing gear like the considered one
is not used.
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