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Abstract 
Although, a constant tip loss fac

tor is at best a crude representation of 
threewdimensional flow effects, it has found 
widespread use because of its simplicity and 
accuracy in both hover and forward flight per
formance and dynamic analysis calculations. 
This paper will show that a time-dependent 
formulation for tip loss factor, instead of a 
constant, is preferable for rotor blade dynamic 
analysis in forward flight. Substantiation for 
this new formulation is based upon analy
sis and simple reasonings that relate to H-34 
flight test data, with respect to time histories 
of the radial distributions of blade air loads and 
flapwise bending moment. 

Notation 

B = tip loss factor 
b = number of blades 
c = blade chord, inches 

t:>.B = ratio of tip loss length to blade 
radius, l·B 

Cr = thrust coefficient 
e = flapping hinge offset 1 inches 
R = blade radius, inches 
r = distance of blade element from axis 

of rotation, inches 

• = wake spacing, inches 
t = time, seconds 

T(t) = tip loss time dependent function 
T.M .• = thrust moment (moment of lift on 

blade &bout flapping hinge), in-lb 
u = free stream velocity, in/sec 
0 = rotor blade angular velocity, ra.dfsec 

W!F = frequency of blade first fl.apwise 
bending mode 

'I' = rotor blade azimuth angle, degs. 

Introduction 

In design and analysis of rotor blades, a general 
practice is to use two-dimensional aerodynamic the-
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ory along the entire length of the blade with exception 
of the blade tip region, where three-dimensional flow 
effects are more pronounced. For the blade tip, these 
effects are approximated by the use of a tip loss factor, 
B < I. In this manner the assumption is made that 
the lift acts out to the radial station, BR, and is, zero 
in the region, 1 - B R. Two-dimensional profile drag 
is applied throughout the length of the blade and as
sumed unaffected by the tip loss factor. The tip loss 
factor, B, is selected so as to best approximate the 
lift distribution of the true three-dimensional blade. 
A thorough discussion of the theoretical considera
tion ·of tip losses in helicopter analysis is given by 
Johnson (Ref. 1). With respect to tip loss factor, a 
recent review is reported in the literature by Peters 
et al. (Ref. 2). The classical tip loss formulae due to 
Wheatley and Sissingh, which are a function of blade 
aspect ratio are given respectively by 

c 
(I) AB=-

2R 

and 

AB = !:_ 
3R 

(2) 

Other forms of the factor, derived from Prandtl 's two
dimensional theory, are a function of the wake spacing 
(Refs. 2, 3, and 4) and given by 

AB = v'2bCr (3) 

or 

!:>.B- ..fCT 
- b ( 4) 

where b is the number of blades, and CT is the thrust 
coefficient. 

Peters et al. (Ref. 2) introduce a new tip loss 
formula which includes both wake spacing and aspect 
ratio: 

AB _ .:_ [ 1 + 6.394(~) l 
- 1.

283 
R 1 + 16.06(:) + (3.856;)2 (5) 

Tip loss factor as set forth in equations (1) through 
(5), can be extremely useful in hover analysis and 
performance calculations in forward flight. However, 
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this paper will show that a preferred formulation for 
rotor dynamic analysis in forward flight should be 
time dependent. The time--dependent formulation is 
a simple extension of any of the tip loss factors given 
in equations {I) through (5) as follows: 

where 

tlB(t) = tlB(,P) = tlB T(t) 

1 + cos21t 
T(t) = 

2 
= 1 +cos 2!1t 

2 

(6) 

{7) 

Substantiation for this proposed formulation will now 
be discussed. 

Rationale for Time-Dependency 

In forward flight the radial distribution of air
loads on the blade varies with azimuthal angle, 1t , 
and hence with time. It follows that the gradient of 
lift at the tip and hence the gradient of bound circula
tion at the tip, :; , also vary with time. Consequently, 
the three-dimensional flow at the blade tip and the 
associated tip loss factor also vary with time. 

Figure I compares the radial distribution along 
the blade as determined by two-dimensional blade el
ement theory, with the actual loading. In contrast to 
fixed wing lift distribution, the dynamic pressure on 
a rotor blade is proportional to r2. This concentrates 
the lift more toward the tip such that the gradient or 
loss of lift, shown by ~~, exceeds that for fixed wings. 
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Figure 1. Actual vs. two-dimensional blade loading. 

Shown in Figure 2 are measured airload distri~ 

butions for an H-34 helicopter in level flight at 112 
knots. The data is from Reference 6. Plotted are 
measured air load distributions for 1t = 6', 36', 66' 
and 96'. 

Clearly, the gradient of blade airloads and hence tip 
loss factor are a function of l{f, blade azimuth position. 
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Figure 2. Change in blade airload distribution with u~ 
imuth. 11·31 at 112 kts. (Ref. 6). 

Figure 3 illustrates the importance of properly 
accounting for tip loss to accurately predict blade 
fiapwise bending moment. In Fig. 3.a tip loss is ne
glected and lift is assumed fully effective to the blade 
tip. Here, aerodynamic lift is balanced by centrifugal 
force and the resulting fiapwise moment in the tip re
gion is small. In contrast, Fig. 3.b shows. the blade 
with tip loss factor introduced. 

Figure 3. Effect of tip los" on blade flapwise bending. 

We observe that as the tip is unloaded, a sub
stantial down bending of the tip is introduced re-
sulting in a significant negative flapwise bending mo
ment being introduced. We conclude that variation 
of tip loss with azimuth would result in significant 
flap wise bending motion of the blade tip. Anyone 
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Figure 4. Comparison of calculated and measured blade 
a.irload time histories (outboard blade stations). 
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Figure 5. Comparison of calculated and measured blade 
airload time histories (inboard blade station). 



who has viewed motion pictures of rotor blades in 
forward flight as recorded by a hub-mounted cam
era that turns with the rotor, will observe noticeable 
flexing of the blade tip per rotor revolution. This can 
be attributed to azimuthal or time-dependent tip loss 
variation. 

Comparison with Test Data 

To this date, Scheiman's (Ref. 6) H-34 flight test 
data represents the most complete set of measured 
airloads and corresponding flapwise, chordwise, and 
torsional moment.<:~ as welJ as blade motions, ever pub
lished. In using this data to compare with analysis, a 
number of researchers have found the same paraodx 
that we will report in this paper. The paradox is that 
at high speed (JJ > 0.20) one can obtain reasonably 
good correlation with the measured air loads using 2-
D airfoil data in a forward flight blade airloads analy
sis that assumes uniform inflow. Such a comparison is 
shown in Figures 4 and 5 for the 112-knot case. Fig
ure 4 compares calculated and measured blade airload 
time histories for the outboard sections of the blade 
(r/R = .9, .8, and.75), while Figure 5 gives the corre
sponding comparison for those sections of the blade 
further in ( r / R = .55, .40, and 0.25). Calculations 
are done using a fully-coupled blade dynamic analy
sis (Myklestad), as described in References (5) and 
(7), while flight test data is taken from a NASA re
port, Ref. (6). With this kind of agreement on blade 
airloads, the researcher is somewhat taken back when 
the corresponding blade response results in the rela
tively poor agreement in blade flapwise bending mo
ment time history as shown for r/ R = 0.80 in Figure 
6. 

Azimuth {deorees) 

Figure 6. Comparison of measured and calculated flapwise 
bending at rj R = 0.80 (constant tip !oSB). 

Observe that maximum discrepancy between 
test and analysis occurs in the regions 1P = 0° and 
'11 = 180' .That is, even neglecting rational consider-

ations, a totally emperical approach to resolving the 
difference between test and analysis might consider 
a second harmonic cosine function with zero phase. 
Also, recall that the first flap bending mode for a 
uniform articulated blade occurs about 

(8) 

This means we could expect good blade response to 
2P excitation. 

In proposing a time-dependent tip loss factor 
t..B(t), it would be desireable to develop the func
tion based upon previous constant tip loss functions, 
t..B. Since constant functions were developed for 
both hover and forward flight, it seems reasonable to 
assume for the general case, D..B was derived based 
upon a lift distribution corresponding to the hover 
case. In forward flight the blades experience a lift. dis
tribution at '11 = 0' and at '11 = 180', that is similar 
to the lift distribution in hover. Recall the moment 
of the thrust about the flapping hinge is essentially 
a second harmonic function with its maximum values 
at these positions. For this reason, a well known ex
pression relating to trim of a rotor in forward flight 
is, "The helicopter flies on the rotor blades in the fore 
(w = 180') and aft (w = 0") positions." 

Derivation of Function, T(t) 

With these genera) concepts understood, now 
consider the lift distribution on the blade at a repre-· 
sentative azimuth angle 'It. This is shown in Figure 
7. 

prU dr ___..--

• 

Figure 7. Lift distribution on blade at repre!!lentative az. 
lmuth angle, 11. 

In the figure, r, and r, represent the strength 
of the blade root and tip vortices respectively, where 
the blade's total bound circulation is given by 

fo=f,+r, 

and from Figure 7 we write 

r 
dr, = r(r) Rdr 

Integrating, the total tip vortex can be written 

1 J.R r, = 1i , r(r)rdr 

·1 :.i6 

(9) 

(10) 

( 11) 



But thrust moment or the moment of the lift about 
the flapping hinge is given by 

T.M.~ = 1R p U f(r) r dr (12) 

Comparing the integrands of Equations (11) and (12) 
we conclude that the strength of the tip vortex will 
vary with azimuth, 'II, similar to the azimuth varia
tion of thrust moment. We would expect that the tip 
loss would vary in the same manner. 

Thrust Moment Time Histories 

Plotted in Figure 8 are the measured and calcu
lated time histories of thrust moment from the 112-
knot case of Ref. 6, where the H-34 is in high-speed 
level flight. Note the good agreement between calcu
lated and flight-measured values. 
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Figure 8. Compari!'lon of calculated and measured time his
tories of thrust moment. 

Observe that the function is primarily a second 
harmonic function of the form: 

T(t) = 1 +cos2flt = 1 +cos2'li 
2 2 

(14) 

From the previous discussion we conclude for forward 
flight that tip loss is a function of time (azimuth, 
'li). In addition the strength of the tip vortex can 
be related to the integrated thrust moment along the 
blade. For a trimmed rotor in forward flight the az
imuthal history of thrust moment closely follows 

f('li) = cos2'li. (15) 

This leads to the following tip loss factor for forward 
flight: 

!J..B(t) = !J..BT(t) = !J..B ( 1 + c;s 2flt) . (16) 

Substantiation of Results 

Consider once more the 112-knot case for the 
11-34 in level flight for which both time histories of 
blade airload (at 6 radial stations) and blade bend
ing moment (at 5 radial stations) are available. Recall 
that Figures 4 and 5 show reasonably good correla
tion between measured and calculated airloads using 
a simple uniform inflow model. In contrast, if we now 
assume constant tip loss, !J..B, and obtain the blade 
response at r / R = 0.80, we obtain the relatively poor 
agreement shown by Figure 6. 

Let's repeat the calculation, except now let the 
tip loss factor vary with time such that 

The function T(t) is shown plotted in Figure 9. 
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Figur~ 9. Time-dependent tip toss function, T(t). 

Physically, the function !J..B T( t), represents a 
varying of the rotor tip effective area, 'If = 0° to 'It = 
360°. 

Figure 10 compares calculated and measured 
bending moment ti.me histories with the time depen· 
dent tip loss factor introduced into the 112-knot H-
34 calculations. Comparison of these results shows 
the dramatic improvement in correlation that can 
be achieved by more accurate accountability for tip 
loss. Study of similar calculations done by other re
searchers shows in general (with constant tip loss) 
that there is failure to duplicate the relatively sharp 
increase and decrease in the bending moment distri· 
bution that occurs on the retreating side of the rotor. 
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Conclusions 

This paper has shown that a time-dependent 
formulation for tip loss factor, instead of a constant, 
is preferable for rotor dynamic analysis in forward 
flight. For application, tip loss, D.B, is obtained from 
the equation of the analyst's choice (see Eqtns. (1) 
through (5) ). This term is then multiplied by the 
function, T(t), given by Eqtn. (7) and used in the 
blade analysis in this form. 

Rationale for substitution of this function is 
based upon the following: 

• Tip loss is a function of time (azimuth, 'll). 

• Tip loss factor at 'll = 0' and W = 180' can be 
taken as that for hover, D.B. 

• The amount of tip loss is related to the strength 
of the tip vortex. 

• The strength of the tip vortex is related to the 
integrated thrust moment along the blade. 

• For a trimmed rotor in forward flight the azimuth 
history of thrust moment is primarily a second 
harmonic function (Eqtn. (15)). 

From the above we can postulate a tip loss factor of 
the form 

Introducing this factor into the airloads as applied to 
a blade dynamic analysis in forward flight yields ex
cellent correlation between measured and calculated 
blade bending moments as shown in Figure 10 . 
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Figure 10. Comparison of meMured and calculated Oapwi!Je 
bending at r/ n = 0.80 (time-dependent tip loos). 
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