
EIGHTEENTH EUROPEAN ROTORCRAFT FORUM 

BU • 07 

Paper N' 71 

CALCULATION OF THE STEADY ROTOR FLOW USING AN OVERLAPPING 
EMBEDDED GRID TECHNIQUE 

R. STANGL 
S. WAGNER 

UNIVERSITAT STUTIGART 

SEPTEMBER 15-18, 1992 

AVIGNON, FRANCE 

ASSOCIATION AERONAUTIOUE ET ASTRONAUTIQUE DE FRANCE 





CALCULATION OF THE STEADY ROTOR FLOW USING AN OVERLAPPING 
EMBEDDED GRID TECHNIQUE 

Abstract 

Dipl. lng. R. Stangl 
Prof. Dr-Ing. S. Wagner 

lnstitut fUr Aerodynamik und Gasdynamik 
Universitiit Stuttgart 

An existing explicit or implicit 3-D Euler Method for the calculation of the flow field around a 
helicopter rotor in hover was prepared for the application of a new grid technique, which allows the 
treatment of very complex configurations and of arbitrary blade motions with minimized effort. 

1. Introduction 

The single block grids, used up to now with the existing Euler codes, have proved their capabilities 
calculating the rotor flow including transonic effects, tip vortex and wake capturing. But they reach 
their limits, if more complex configurations are examined (e.g. a helicopter fuselage, a tail rotor, ... } or, 
for unsteady calculations, arbitrary blade motions are introduced. In the second case, for example, in 
principle a new grid must be generated at each time step, if a fixed outer boundary is recommended. 
Additionally the relative cell velocity ant1 the alteration of the cell volumes must be stored for each 
cell. 

Current research efforts aim to circumvent such problems with methods such as domain 
decomposition or unstructured grids. 

At a domain decomposition technique the flow domain is divided into sub domains, which accept 
easily constructed grids. In addition to the multib!ock method, grid patching (or zonal method) and 
grid overlapping are the two widely used methods of domain decomposition. 

The zonal methods require the domain to be divided in sub domains where the grids are patched 
together along common boundaries. 

The grid overlapping method (or embedded grids method) does not require such common 
boundaries but common regions to provide the means of matching the solutions between sub 
domains. One sub domain can be completely or partially embedded within another. The computation 
is separately done in each grid, and the flow variables are interchanged as boundary conditions in 
defined zones. One benefit is the possible treatment of very complex configurations by simply adding 
new grids. But in our case the main advantage is the introduction of arbitrary blade motions by 
calculating and storing only the relative motions of the grids. 

2. Baseline solution algorithm 

The governing equations of the baseline solution algorithm are the Euler-Equations formulated in a 
blade fitted, rotating coordinate system. 
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The method used is a finite volume approach that bases on characteristical flux averaging and is 
developed by Eberle (1] and further developed to be applied to rotor flow by Wagner, Hertel, Kramer 
[2,3,4,5,6,7]. An implicit iterative relaxation method is used for convergence acceleration. For 
hovering rotors the method has proven the accurate modelling of all relevant physical effects. It is 
intended to extend the code for unsteady calculations in the future. 

3. Overlapping Embedded Grid Technique 

The overlapping and embedded grid method implemented is called Chimera scheme and was first 
introduced 1983 by Steger and Benek (8] and was applied on 3-dimensional configurations by Baysal, 
Fouladi and Lessard (9]. 

The elements of an overlapping embedded grid method are: 

Conventional grid generation for the sub domains. In our case two different grids are involved: 
First the 'Body-grid', which covers the region near the rotor, and second the 'Cover-grid', which 
encloses the whole flow region including the rotor with its body-grid. 

A hole procedure to indicate regions that are computed with more than one grid and to mark the 
cells in which the solutions are transferred from the other grids. The method used is derived from 
a method first introduced by Steger and Benek (8]. 

The information transfer between the sub domains called updating herein. 

A flow solver that is adapted on the method. 

3.1. Grid generation 

3.1.1. Body grid 

The 'Body-grid' is a conventional 0-0 type mesh and is derived from the single block grid generation 
method used with our flow solver. It is generated by a differential method and solves a system of 
higher order differential equations. The solution algorithm is simple and requires only the boundary 
conditions. The distribution of the grid points is very smooth and easy to influence only with a 
variation of a few parameters. 

The algorithm applied here bases on a system of elliptical partial differential equations called 
Poisson-equations. 

X« + X"" + X~;~; = P 

y« + y"" + Y~;~; = Q 

z,, + Z"" + Z~;~; = R 

where X, Y, Z are the requested co-ordinates,;;, '1 and I; are the curvilinear co-ordinates and P, 0, R 
are called source terms. They are again determined with a system of POE's called Laplace
equations. 

P« + P"" + P~;<; = 0 

Q" + Q"" + 0~;~; = 0 

R« + R"" + Rs~; = 0 

One obtains a fourth order, decoupled equation system, which can be solved iteratively. Details are 
given by Schwarz [1 0]. 
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The first calculations are done with a grid with 128 grid points in !-direction, 35 in J-direction and 17 in 
K-direction (Figure 1). 

Figure 1 Body grid derived from conventional o grid 

For the next investigations a grid with a new far field shape will be introduced (Figure 2). This far field 
will be better suited for the special requirement of this method. 

Figure 2 Outer boundary of new body grid 

Since the volume ratio between the grid cells of the cover- and body-grid will have a great effect on 
the accuracy of the updating, there will be some investigations influencing the volume of the outer 
cells of the body-grid. 
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3.3.2. Cover grid 

There are two different mesh types in use. One has a simple cylindrical co-ordinate structure, where it 
is possible to cluster grid points in regions with high solution gradients (Figure 3). The grid shown has 
35 grid points in !-direction, 35 grid points in J-direction and 35 grid points in K-direction.The other 
cover grid has a cartesian co-ordinate structure with equivalent options clustering the grid points. 

i 
; 

Overlapping Embedded Grid I 
Body Grid : 126 x 35 x 17 

Cover Grid : 35 x 35 x 35 

Figure 3 Cylindrical cover grid with body grid and rotor 

These structures were chosen because of some advantages. First the grid generation is very fast, 
second the clustering of grid points in defined zones can be done by a short algorithm, and third one 
can identify the cell, which covered a certain point of the body grid, with minimal effort. 

3.2. Hole procedure 

As a result of over lapping, some cells of the cover grid lie inside a defined K-level of the body grid. 
But it is neither computationally economical nor desirable for the overall accuracy to compute these 
so called 'hole cells' twice. In addition, the cells of the cover grid, which abut on the hole cells, must 
be marked, because they are needed for the updating. Hence, a search method is used to create and 
locate the hole in the cover grid. 

This search procedure may be explained briefly: 

1. Specification of an initial hole boundary as a defined K-level surface KT of the body-grid 

The following steps are applied for each net plane with constant J-index (cylindrical surfaces) 

2. Determination of the cells ZcH of the level Kr of the body-grid that lie inside the cell row of the 
cover grid with constant J-index (Figure 4). • 
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Figure 4 

3. Calculation of a temporary origin P 0 of the hole 

1 Po ; 
n 

n 

I z,. 
where Po and 2, are the coordinates of the origin and the cells 

and n are the number of cells 

4. Determination of the maximum distance Dmax of the cells Zc to the temporary origin P0. (Figure 5). 

5. Searching the cells of the cover grid,which have a distance to D0 smaller than Dmax· (which lie 
inside the search circle (Figure 5)). 

C ver grid 

;I 
1\h 

Figure 5 
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6. If step 5 is fulfilled, the following computations are done for these cells: 

6.1. Searching the nearest cell Zbn of level Kr of the body-grid (Figure 6). 
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6.2. Building the vector N, which is normal to the net plane KT for this cell (Figure 6). 

6.3. Building the vector V cb between of Zc and Zbn (Figure 6). 

I 

Figure 6 

6.4. Building the dot-product D between the normal vector N and the vector V cb· 

If the dot-product Dis lower than o, the point Zc is inside the hole and it gets an IFLAG=1, 
otherwise it gets an IFLAG=O. 

7. Now we must mark the cells Xc of the coveri'Jrid, which abut on the cells with IFLAG=1: If at least 
one neighbouring cell has an IFLAG=1, this cell gets an IFLAG=-1. 

8. For a scheme that is second order accurate we need two cell rows for a boundary condition, 
therefore, we must mark the cells that border on the cells with IFLAG=-1. 
These cells get an I FLAG=2. 

The hole procedure is implemented and tested. Figure 7 shows the results of a calculation. One can 
see the initial hole boundary and one net plane of the cover grid with constant J-index. The different 
grey scales show the different values of the I FLAG. 

grid: Outer boundary 

Cover grid: Plane with l=const 
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3.3. Updating the Solution Variables 

The updating can be done in various ways, but in principle these methods are not conservative. So a 
main objective of the future work will be the search of an appropriate method. 

Up to now each cell on the outer two cell rows of the body grid gets the value of that cover grid cell in 
which its centre is placed. Because of the cylindrical structure of the cover grid this computation is 
very fast. Figure 8 shows the result of that updating. One net plane on the cover grid with a constant 
K-index is shown with a free chosen variable plotted. On the outer boundary of the body grid the 
transferred values are plotted. On detail A one can see how the structure of the cover grid influences 
the values on the body grid. 

Figure 8 Updating from cover grid to body grid 

The updating from the body grid to the cover grid is more expensive in CPU time. One way is the 
transfer of the values of the nearest body grid cell. Another tested method uses a distance weighted 
transfer of the nearest 2 to 8 cells of the body grid. 

But surely these methods must be improved for a good final result. In Figure 9 the result of such an 
updating is presented. The transfer happens only on the marked cell of the cover grid. 

constant 1- and K- Index 

Figure 9 Updating from body grid to cover grid 

This part of the overlapping embedded method will be decisive for the success and so a major part of 
the work will be investigated in the determination on the 'best'updating method. 
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4. Results 

Recently, first calculations with the new method are performed. 

The test cases computed base on a twobladed model rotor of Caradonna and Tung [11 ]. This rotor 
has a radius of6 chordlenghts, a NACA 0012 profile and is untwistaed. The Mach number at the tip 
was 0.877 and the angle of incidence was 8 degree. 

The bodygrid used has 128 grid points in !-direction, 35 grid points in J-direction and 18 grid points in 
K-direction. The level Kr of the hole procedure is at grid line 13 (Figure 7). 

The covergrid has 40x40x70 grid points in I,J,K-direction. 

In Figure 10 the z-velocity in two overlapping netplanes is plotted. The transfer from the bodygrid to 
the covergrid is clearly visible. 

Location of the 

One netplane covergrid 
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Figure 1 0 Z -velocity in two vertical netplanes under the rotor 

Because oftime restrictions only 500 Iterations were performed. The computatons are done on a IBM 
550 RS 6000 Workstation. For one iteration the computer required approximately one minute CPU 
time. 
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Figure 11 shows contour lines of the density on the blade surface and the pressure coefficient Cp 
plotted at three different y-stations: at r/R = 0.80, r/R = 0.89 and r/R = 0.96 . 
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Figure 11 Contour lines of the density and pressure coefficient 

Experimental data and prior compu1ations [7] are shown in figure 12 for a comparison. 
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Figure 12 Results of an Euler compu1ation compared with experimental data (from [11]) 
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5. Conclusions 

Until now only first preliminary calculations are done with the new grid technique. The results obtained 
are promising. But in the next months some investigations will be performed to proof the method. The 
following factors will be tested: 

The distance between the outer boundary and the level KT of the body grid. 
Some different interpolation routines. 
The difference of explicit and implicit calculations. 
The influence of the different cell size in the different grids. 

If it is possible to calculate the rotor flow with a satisfiing accuracy, this technique will be applicated to 
the extension of the code for unstady calculatons. 
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