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Abstract 
Recent technological developments at Eurocopter in the field of actuation based on smart materials allow the 
secondary control of the rotor blade dynamics directly within the rotating frame by means of piezo-actuated 
trailing edge flaps. Among many advantages of this technology is the possibility to control different harmonics 
of the motion of the blade, and thus taking into account the inherent time-periodicity of the rotorcraft. This 
comes along however with the necessity during controller design phases to prove accurately the stability of the 
periodic system. In this paper, we highlight the periodic aspect of the considered CAMRAD II helicopter model 
equipped with trailing edge flaps in comparison to the time-invariant pendant. Floquet stability analysis is 
performed, rising convergence issues that can lead to false estimation of the plant stability, especially when 
considering the lowly damped first regressive lagging mode. An example of such deceptive conclusions is 
presented in the case of a closed-loop system meant to destabilize the first regressive lagging mode using the 
trailing edge flaps as actuators. The convergence analysis was proved efficient to reestablish trustful Floquet 
exponents and thus conclude accurately on the stability of the time-periodic system. 

NOMENCLATURE � = fundamental period of a linear time-
periodic system, s �� = pumping or fundamental frequency of a 
linear time-periodic system, Hz � = rotor rotational frequency, Hz ���	 = input signal vector. 
��	� = state vector. ���	 = output signal vector. � ��  = time variables, s ���	 = time-periodic state matrix ���	 = time-periodic input matrix ���	 = time-periodic measurement matrix ���	 = time-periodic feedthrough matrix �� = time-constant state matrix �� = time-constant input matrix �� = time-constant measurement matrix ��  = time-constant feedthrough matrix ��� ��	 = transition matrix from state at � and state 
at ���� = blade lagging moments, Nm ���� = trailing edge flaps deflection, deg �� �� = integers from 1 to �

ABBREVIATIONS 

LTI Linear Time-Invariant 
LTP Linear Time-Periodic 
HHC Higher Harmonic Control 
MBC Multiblade coordinates 
TEFs Trailing Edge Flaps 

1. INTRODUCTION 

Rotorcraft engineers have always been 
fascinated from the potential of active rotor control 
allowing the modulation of the lift distribution over 
the rotor disk beyond the first harmonic. The 
possibility of shaping the lift distribution over the 
rotor disk directly affects different disciplines like 
dynamics (vibration), aero-acoustics (noise) and 
aerodynamics (performance, fuel consumption, etc). 
Therefore, the beneficial usage of the additional 
rotor control degrees of freedom – such as individual 
blade pitch for blade root actuated systems, trailing 
edge flap deflections for flap actuated systems or 
blade twist change for rotor systems with active twist 
– will lead to significant advantages in the disciplines 
listed above.  

However, the possibility to influence higher 
harmonics raises the helicopter inherent issue of 
time-periodicity. In order to properly control such 
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systems, the control law has to be carefully selected 
and the design to account for the time-periodic 
aspect of the plant. In the similar manner the rotor 
behavior might be improved, it can indeed also be 
degraded by disadvantageous choice of control. 
Time-invariant simplification of periodic systems 
gives satisfying approximations of helicopter rotor
models when defined in multiblade coordinates. 
Though, proving the stability LTP systems remains a 
necessary drill as performance of control can be for 
instance reduced because of periodic effect not 
accounted for. 

We propose therefore in this paper to present the 
analysis, mostly based on the Floquet theory, of a 
time-periodic helicopter plant. It will be shown that: 
• Considering the LTI averaged model only during 

analysis cannot lead to trustful conclusions on the 
stability of the plant, even if defined in MBC.  

• The number of time-steps over one period 
contained in the LTP model influences greatly the 
Floquet value and thus the conclusion on the 
stability of the system. 
After an overview on active rotor systems and 

linear time-periodic systems, a reliable time-periodic 
numerical model obtained from the comprehensive 
helicopter software CAMRAD II [0] and verified by 
flight test data will be presented. A short theory 
overview on the Floquet stability analysis will be 
given. Convergence issues on the stability results 
will be discussed and a mean to overcome them in 
order to conclude trustfully on the stability of the 
system will be proposed. 

2. ADVANCED ACTIVE ROTOR SYSTEMS 

Although the idea of active rotor control has 
already been introduced into helicopters decades 
ago starting with higher harmonic actuation of the 
main rotor swashplate [2,3], advanced active rotor 
solutions evolved with the availability of piezo-
actuated trailing edge flaps which do not affect the 
primary rotor controls – and thus the safety of the 
helicopter – in case of potential malfunctions. The 
related research activities culminated in the world’s 
first flight of a helicopter with active trailing edge 
flaps in 2005 – a BK117 derivative developed and 
operated by Eurocopter, see Fig. 1. 

Successful open and closed-loop flight tests of 
this system were performed in different disciplines 
e.g. in the field of vibration reduction [4]. A detailed 
description of several design issues for the active 
rotor of the BK117 is given in [5]. The high interest in 
the rotorcraft community in such kind of active rotor 
systems is also documented in a similar full scale 
system based on a MD900 main rotor and equipped 
with trailing edge flaps which has recently been 
tested in the large NASA Ames wind tunnel [6]. 

Nevertheless, the exploration of the full potential 
of active rotor systems needs not only adequate 

progress in the hardware world but also in the 
software world asking for advanced control schemes 
and techniques. A typical approach applied at the 
beginning of HHC was to perform main control tasks 
in the frequency domain taking into account the 
limited capabilities of the hardware at that time i.e. 
low sampling rates e.g. compared to blade passage 
frequencies. 

In the meantime, progress in control hardware 
allows performing control tasks also in the time 
domain with high sampling rates of 1 kHz and 
beyond. The underlying mechatronic systems 
enable the engineers to apply modern and complex 
control theories to active rotor systems such as  !
synthesis [7] featuring a high number of controller 
states. Nevertheless – for full exploration of the 
active rotor system potential – adequate plant 
models in the time domain are required for model 
based control approaches. 

Fig. 1: Experimental system equipped with piezo-
actuated trailing edges (© Eurocopter) 

3. LINEAR TIME-PERIODIC ASPECT OF 
HELICOPTERS 

Neglecting the tail rotor for a conventional 
helicopter configuration, the system composed of 
main rotor and fuselage is typically described by a 
time periodic system of equations. The time 
periodicity is evoked by the superposition of the 
forward flight speed of the entire vehicle plus the 
main rotor rotation speed leading to velocity 
asymmetries on advancing and retreating side of the 
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rotor. Thus, the time-periodicity is introduced into the 
motion equations of the helicopter and its 
subsystems by azimuth-dependent aerodynamic 
loads. 

To account for these properties particular to 
rotorcraft, the helicopter plant dynamics can be 
generally written as linear time-periodic system �"	
of order n with m inputs and p outputs as follows 

(1) �"	#�$� % &' �( )�
* ��	 + ���	
��	 , ���	���	���	 + ���	
��	 , ���	���	-
where 
��	 % ./ is the state vector, ���	 % .0 the 
input vector, ���	 % .�, ���	 % ./1/ the state matrix, ���	 % ./10 the input matrix, ���	 % .�1/ the 
measurement matrix, and ���	 % .�10 the 
feedthrough matrix of the system. 

The periodicity of the matrices yields the 
properties: 

(2) $� % &' �( 2���� , �	 + ���	��� , �	 + ���	��� , �	 + ���	��� , �	 + ���	
-

where the fundamental period � of this system 
corresponds to the fundamental frequency �� �+��3�, commonly known also as pumping frequency. 

For the application of conventional control 
theories based on time-invariant systems, it is 
preferable to modify this system of equations into a 
time-invariant pendant 4"�5: 
(3) 4"�5#�$� 6�
* ��	 + ��
��	 , �����	���	 + ��
��	 , �����	-

 Nevertheless, any transformation of time 
periodic systems to time invariant ones is leading to 
an approximation for arbitrary systems as 
information is lost. In the rotorcraft community this 
approach is widely applied using multiblade 
transformations and coordinates before averaging 
the system matrices with respect to the rotor 
azimuth. The introduction of multiblade coordinates 
preserve some contributions of time periodicity 
mapping it into spatial directions related to the cyclic 
multiblade coordinates. 

Comparing the response of linear time invariant 
systems with linear time periodic systems, it can be 
demonstrated that harmonic inputs and outputs of 
time invariant systems are related to the same single 
frequency while a single harmonic input into a time 
periodic system can lead to multi-harmonic outputs 
at different frequencies. Thus, controller concepts 
based only on linear time-invariant systems do not 
fully exploit the plant properties for control purposes, 

see also [8].  
An example is the usage of 2/rev input for 

vibration control of a four bladed rotor system. The 
2/rev input acts on time periodic properties of the 
plant which e.g. can be seen in the dependency of 
2/rev conrol authority versus flight speed. In hover – 
assuming approximately axial symmetry and thus no 
system periodicity – no control authority is available 
for hub load control based on 2/rev while it is 
possible for high flight speeds with high system 
periodicity. Averaging of the matrices for a linear 
time-invariant system leads to a loss of controllability 
of the hub loads for 2/rev input. 

Nevertheless, in order to exploit the time periodic 
character of the plant for control purposes, adequate 
time-periodic models are required based either on 
numerical models using a model based approach or 
on models identified by tests. 

4. NUMERICAL MODEL 

4.1. Active Rotor Equipped with TEFs 

The experimental system on which the numerical 
model is based is composed of a BK117 airframe 
serving as test bed and of a hingeless main rotor 
system of type Boelkow featuring blades which 
originally evolved from the prototype blades of the 
EC145, see [9]. The advanced planform of the 
blades shows inboard tapering and a swept back 
parabolic tip, see Fig. 2. The rotor has a diameter of 
11m and an equivalent chord of 0.325m. Although 
the aerodynamic layout is kept unchanged 
compared to the prototype blade, the structural 
dynamic characteristics are significantly modified 
due to the integration of the trailing edge flap 
modules and due to different blade tuning which is 
e.g. highlighted by a very low blade torsion 
frequency. The blades offer three different locations 
in spanwise direction for the insertion of the trailing 
edge flap modules. The baseline configuration 
places two active flap modules at the inboard and 
mid position while the outboard position is occupied 
by a dummy module. Thus, the trailing edge flap 
system of the ADASYS rotor is characterized by the 
key figures of Table 1: 

Table 1: Blade and trailing edge flaps dimensions
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The TEFs are controlled by piezo actuators 
featuring one pair of actuators per module. This 
technology offers advantages in the case of loss of 
power supply due to the inherent stiffness of the 
piezo actuators and in view of high actuator 
bandwidth. Due to the flexibility of the piezo stacks 
and other elements of the flap modules, the resulting 
deflection of the trailing edge flaps depends not only 
on the control input but also on aerodynamic and 
inertia flap hinge moments which have to be 
adequately taken into account for modeling 
purposes. 

Fig. 2:  ADASYS rotor blade featuring active 
trailing edge flaps 

4.2. CAMRAD II Numerical Models 

Similar to the hardware, the aeroelastic rotor 
model of the ADASYS rotor originates from the 
prototype blade model as well using the 
comprehensive rotor code CAMRAD II [10]. The 
structural dynamic description of the blades is 
modified in order to account for the design changes 
e.g. required for the installation of the trailing edges. 
The implementation of the trailing edge flaps lead to 
a partial re-design of the rotor blade at the radial 
positions of the trailing edge flaps. Special cut-offs 
had to be considered during the design process in 
order to allow the installation of the actuation 
modules. These cut-offs have an impact on local 
stiffness and inertia data as well. 

Regarding the modeling of the trailing edge flaps 
the applied rotor code CAMRAD II offers the 

possibility to consider them as rigid bodies attached 
to the flexible rotor blade by hinges. It is important to 
note that the aeroelastic model incorporates the 
TEFs not only as aerodynamic devices but also as 
structural dynamic components with dynamic 
degrees of freedom in order to adequately account 
for trailing edge flap control flexibility. Thus, the 
commanded trailing edge flap deflection might differ 
from the actual trailing edge deflection due to 
aerodynamic and inertia loading. The locations of 
the hinges are defined by three coordinates in radial, 
chordwise and normal direction of the rotor blades. 
For the definition of the TEF rigid bodies, flap mass, 
flap centre of gravity and flap moment of inertia 
about the hinge axes are required. In order to assign 
flexibility and damping of the flap actuator, the 
implementation of hinge spring and hinge damper 
providing stiffness and viscous damping are typical 
means in multibody codes. In the current model 
actuator dynamics are neglected and only actuator 
flexibility is accounted for. This approach is in line 
with the high natural frequencies observed by 
testing. 

In view of aerodynamic modeling, the airfoil 
tables used for the application of lifting line theory 
within CAMRAD II had to be extended in order to 
include the trailing edge deflection angle. The 
aerodynamic layout of the rotor blade is based on 
airfoils of the last generation of the OA series from 
the French research organization ONERA. For the 
table look-up approach of the CAMRAD II rotor 
code, the aerodynamic coefficients of the airfoils are 
compiled in table form depending on angle of attack 
and Mach number. For application of TEFs, these 
tables have to be extended by an additional 
dimension – the TEF angle – for those airfoil 
sections which are affected by the implementation of 
the flaps. For the extension of the airfoil tables, thin 
airfoil theory built the theoretical and numerical 
backbone as at the time of the model set-up only 
limited CFD results were available. Due to the 
consideration of linearized airfoil theory, it exists 
restrictions for Mach numbers, angles of attack and 
flap deflection angles. For the implementation of the 
Mach number dependency, compressibility effects of 
the derivatives are considered according to the 
Prandtl-Glauert rule up to a Mach number of 0.75. 
Regarding angles of attack and flap deflection 
angles, the theory is related to attached flow 
conditions which matches also the design point for 
the operation of the trailing edge flaps thus not 
posing a severe limitation in application. 

Fig. 3 shows a fan diagram of the ADASYS rotor 
in a hover case (i.e. axisymmetrical conditions) 
presenting the blade mode frequencies of interest 
for active control purposes. 
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Fig. 3:  Fan diagram of the ADASYS rotor. 

The special dynamic layout of the ADASYS rotor 
is reflected by a low fundamental torsion frequency 
and a pronounced coupling of the torsion mode with 
the second flap mode in the vicinity of the nominal 
rotor speed. This behavior is also visible in Fig. 4 
showing the gain of the pitch link loads in hover case 
versus actuation frequency. High gains are noted in 
the vicinity of the fundamental torsion frequency 
confirming the special role of the fundamental 
torsion mode with respect to active rotor control 
using trailing edge flaps. More information on the 
aeroelastic issues of the ADASYS rotor can be 
found in [5]. 

In this paper, the forward flight at 100kts (7 +'89:)  is retained for the model along the analysis. 

Fig. 4:  Dynamic pitch link loads due to flap 
excitation. 

The motion of the blades is described using the 
five first dynamic modes: 1st lagging, 1st and 2nd

flapping, 1st torsion and 2nd lagging modes defined in 
multiblade coordinates.  

The helicopter airframe body modes, as well as 
the inflow modes, are in this case not taken into 

account for simplicity purposes. The model 
corresponds therefore to an isolated rotor. It results 
in a dynamic order � + ;' for the LTP model defined 
in multiblade coordinates. The state vector can 
therefore be written as: 

(4)

 +&<* =>?  <* =@ <* A>?  <* A@ <* B>?  <* B@ <* C>?  <* C@--���<=>?  <=@ <A>?  <A@ <B>?  <B@ <C>?  <C@(D

where the upper index represent the number of the 
mode*, and the lower one the coordinate†. The 
structure of the resulting system matrix can therefore 
represented as bloc matrices with: 

• EF� � % .F�1F�, a diagonal unity matrix.

• �GG��	 � % .F�1F� and �GF��	 � % .F�1F�, 
containing the coupling between the 
states and their derivatives, and thus the 
information on the dynamics of the 
system.

• HF� % .F�1F�, the zero matrix of order 20.

The original matrix can be rewritten in blocs as: 

(5) ���	 +
I
JK �GG��	 �>L��	

EF� HF� M
NO

4.3. Time Averaging and Loss of Information 

As for every periodic signal, the elements of the 
state matrix can be expanded in term of Fourier 
series in order to reach the harmonic components 
contained in the periodic signals.  

In Fig. 5 to Fig. 7, the different harmonics of the 
elements of the dynamic matrix ���	 are illustrated 
in order to observe coupling occurring in the different 
harmonics. For each element, the Fourier expansion 
is build and the P-th coefficient of the this expansion 
is placed in the matrix �0.  

It is important to notice that the considered model 
is defined in multiblade coordinates, so that its 
pumping frequency is ��QRS + 9�� as demonstrated 
in Ref. [1, 11].  

                                                     
* 1 for first lagging, 2 for first flapping, 3 for second flapping, 4 for 
first torsion and 5 for second lagging modes. 
† 0 for collective, c for longitudinal cyclic, s for lateral cyclic and d 
for differential. 
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Fig. 5: ��, '-th harmonic of the state matrix. 

Fig. 6: �G, �st harmonic of the state matrix. 

Fig. 7: �F, 2nd harmonic of the state matrix. 

The coupling of the collective and cyclic 
coordinates to the differential coordinate is absent of 
the zeroth harmonic, and corresponds to the LTI 

averaged matrix. 

This coupling is restored when the 1st harmonic 
and higher are taken into account, re- building the 
time-periodic representation of the helicopter in term 
of Fourier series.  

This phenomenon was also observed in [8] in 
which the lead-lag moment response of the rotor 
blade to an impulse on the collective coordinate 
leads to almost no response on the differential 
coordinate for the LTI representation. 

In Fig. 8, the lead-lag moments’ response of the 
system to an initial disturbance of the first differential 
lagging mode results in significant couplings of the 
cyclic coordinates for the LTP system, whereas 
negligible for the LTI one. The definition of the 
equations of motion in multiblade coordinates before 
averaging moderates the loss of information as this 
spatial transformation restores some small part of 
the time dependency and thus couplings. 
Nevertheless, the loss of information is obvious and 
confirms the fact that only minor coupling is retained 
using the MBC transformation. 

Fig. 8:  Time-response of the model to an initial 
perturbation of the first differential lagging 
mode. 
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� + �T� + �UVW

Fig. 11: Elementary closed-loop feedback structure
destabilizing the lowly damped first lagging
mode for the LTP or LTI models.

Fig. 9: Frobenius norm of the helicopter model 
matrices, all are normed to 1. 

The time dependency of the system is not 
negligible, so that any controller design for which 
stability is a sensitive aspect shall be checked by 
means adapted to the analysis of time-periodic 
systems. 

Fig. 9 provides an overview of the time 
dependency of the system matrices in term of matrix 
norm up to the 8-th harmonic. The Frobenius norm 
(see Appendix) of the Fourier expanded matrices 
are computed and normed to unity to somehow give 
a measure of the quantity of information included in 
each harmonic. 

Neglecting harmonics above the second 
harmonic in the periodic system matrices is foreseen 
to give a good approximation of the LTP system. 

5. LTP SYSTEMS AND CONTROLLER DESIGN 

We considered the simple closed-loop system of 
Fig. 11 that aims at destabilizing the rotor system. 
Inputs are the TEFs deflections  �UVW.  The blade 
lagging moments �T� are fed back with a gain 
designed to displace the poles of the poorly damped 
first lagging mode to the limit of stability. The plant 

consists in the numerical model �"	 and 4"�5
presented in the previous part. The LTI model is 
computed from the LTP one retaining the zeroth 
harmonic of the system matrices only. 

We compute the root locus of the LTI system in 
closed-loop for an increasing gain (Fig. 10) in order 
to bring the poles of the first lagging mode near to 
the imaginary axis. An adequate gain is retained and 
the LTP and LTI closed-loop systems are used to 
compute the time-response simulation to an initial 
first regressive lagging mode disturbance of Fig. 12. 
The response of the LTI system is as expected 
stable. On the other hand, the LTP system response 
is diverging slowly indicating instability that could not 
be foreseen analyzing the LTI system stability only. 
This illustrates also the importance of considering 
LTP system as well during controller design, as a 
disadvantageous choice can lead to unexpected 
results when applied straightforward to the time-
periodic helicopter plant. 

To avoid such unpleasantness, the analysis of 
the stability of the periodic system in closed-loop 
shall be performed. 

Fig. 10:  Root locus of the destabilized closed-loop 
system. 

6. FLOQUET STABILITY ANALYSIS 

The Floquet analysis [12] is used in the case of 
dynamic systems whose matrices are time-periodic. 
This well known and very powerful method is 
particularly adapted to investigate the stability of 
time-periodic plants, e.g. the helicopter rotor that is 
2�-periodic. Further details can be found in Mohler 
[13] for general time-periodic systems. Application to 
a helicopter plant is extensively presented by 
Johnson [14].  

Valuable contributions on the optimization of run 
time based on the consideration of the symmetry of 
the rotor blade done by Peters et al. [15, 16] with the 
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concept of Fast-Floquet theory. Considering the X-
planes of symmetry of the rotor‡, a reduction of 
computer time by a factor X can be achieved in 
comparison to the classical Floquet approach. 
Subramanian et al. [17] and Venkataratnam et al. 
[18] also considered parallel computing to reduce 
run time. All these techniques aim at reducing the 
computer time because of formidable run time 
necessary to compute models of order over 100. 

In the case of interest§ however, and because of 
progress in computing capacities, run time does not 
constitute a limitation. To give indications, the most 
critical computation realized that will be presented 
later in this paper was run within the minute. The 
choice of the well known classical Floquet theory 
was therefore made in this paper.    

The theoretical background for the calculation of 
the Floquet exponents will be depicted in the next 
section.  

6.1. Algorithm for the Calculation of the 
Floquet Exponents 

A brief overview of the classical  Floquet theory 
[12] for stability analysis is given in Appendix. In 
practice [15], the monodronomy matrix  ��� '	
needs to be calculated. Its eigenvalues are the 
Floquet values that can conclude on the stability of 
the LTP system. 

As the monodromy matrix relates the state at �
to the state at ��, the homogeneous equation 
                                                     
‡ This approach applies therefore only to even-bladed rotors. 
§ The considered model has an order 40. 


*��	 + ���	
��	 of the periodic system can be 
rewritten: 

(6) $� ���* �� ��	 + ���	��� ��	
The matrix ��� '	  can be calculated by 

integrating �* �� '	 + ���	��� '	 over one period. 
Wang et al. [19] illustrates a numerical method to 
this purpose**. The monodromy matrix is calculated 
by integrating Eq. (8) over one period. The Y Zth 
column of ��� '	 corresponds to the resolution of 
Eq. (8) using as initial condition 
�'	 the Y Zth 
column of the identity matrix [. This calculation 
therefore needs to be operated � time if � is the 
order of ���	. The algorithm to conclude on the 
stability of the system using the classical Floquet 
theory follows logically: 

Listing 1: Algorithm for the stability analysis by 
means of Floquet Analysis. 

a) Calculation of ��\ '	
Integration of 
*��	 + ���	
��	 to provide the 
columns of ��� '	. In mathematical form: 

��� '	 + �
GD ?  
/D 	� ]^_`_�$Y % �� ���
                                                     
**This method is based on the assumption that the differential 
equation has a minor time dependency. Using the same method 
for differential equations with a great time dependency could 
result in serious convergence issues, and is investigated 
specifically for the helicopter plant in this paper.
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Fig. 12: Time-response of the closed-loop LTI and LTP systems to an initial first regressive lagging 
mode disturbance, forward flight at 100kts 
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a�bcde�Yc��cf��^_�_geh�Yc��
*��	 + ���	
��	�]Y�^�Y�Y�Yhd�ic�jY�Yc��
aD�� + '	 + �'?' �ka  '? '	�
b) Eigenvalues

Calculation of the eigenvalues  �la	a%�G/� of ��� '	  
c) Conclusion

Is the system asymptotically stable? $Y % �� ��mlam n � ? 

The decisive point is the integration of the 
homogenous equation 
*��	 + ���	
��	. In the case 
of models generated by CAMRAD II, the matrix ���	
is time-discrete. The model is discretized in o
azimuth steps over one period and indexed with p % ��o� such that �q + ���pr�	 corresponds to the 
matrix at the azimuth step pr�, where the time-step 
is r�� + �� os . 

Different methods exist for the integration. Wang 
et al. [19]  proposes the use of a second-order 
Runge-Kutta (RK2) scheme for the Y-th column of ��� '	. Because of possible convergence issues 
related to the importance of time-periodicity in the 
models, the use of the classical ;-th order Runge-
Kutta (RK4) integration scheme is foreseen to give 
better results: 

Both schemes have been implanted in C-MeX 
functions of MATLAB to ensure low run times††. 
There are benchmarked later on in this paper to 
conclude on convergence issues. 

6.2. Verification of Numerical Code 

A simple example presented in Van der Kloet et 
al. [20] is considered as a reference for the testing of 
the algorithm. The maximal numerical error 
observed in the calculations when comparing the 
results from the numerical code and the analytical 
solution for the eigenvalues in the s-plane was  t + '''u; and therefore validated the integration 
scheme.   

However, Wang et al. [19] showed that the time 
step for the integration plays a great role in the 
precision and convergence of the algorithm. In the 
case of the helicopter model, time-step requirements 
could be more demanding than for the basic 
example. These issues are investigated using a 
complex helicopter model in the next section. 

7. CONVERGENCE ISSUES 

Floquet theory is based on the fact, that the 
information of the behavior of a LTP system is fully 
contained in one period. Using Floquet theory 
means looking at the system as if it is discretized in 

                                                     
†† The implementation of the code in C-Mex MATLAB function 
reduced the run time by a factor 10. 

time steps equal to the system period. 

There exists a unique map from each state within 
a period to the same state after one period. The 
eigenvalues of these maps are alike, and they are 
the Floquet exponents. But like in digital control, a 
sampling only makes sense if the sampling rate fits 
the dynamics that are to be captured. This is a 
parallel to the Floquet theory. Problems with the 
Floquet theory will occur when the pumping 
frequency of the system is much greater or smaller 
than the frequencies of the internal dynamics‡‡: 

• If the pumping frequency is much greater than 
the frequencies of internal dynamics, they are 
well captured by the Floquet exponents. Again 
drawing the parallel to sample data systems this 
corresponds to a high sampling rate. On the 
other hand, the calculation of the Floquet 
exponents from one period is more complex 
because of the high amount of data. The 
convergence of the algorithm worsens and the 
calculations necessitate high integration time 
step. 

• If the pumping frequency is much smaller than 
the frequencies of the internal dynamics, all 
Floquet exponents of a stable system will lie 
close to zero in the z-plane. 

Fig. 13  Root locus of Floquet exponents of the 
destabilized LTP system with 100 
steps/rev.

                                                     
‡‡ There is an additional problem defining frequencies for  internal 
dynamics, as the definition common to LTI theory is not  
applicable to LTP systems. The frequencies of the internal 
dynamics have to be calculated from a system response in order 
to be properly detected.
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Only in the case when the frequencies of the 
internal dynamics have a similar order of magnitude 
compared to the system period Floquet theory can 
provide the illustrative results desired. The Floquet 
exponents will have to be checked for convergence 
in the case of the helicopter rotor model, which has 
modes with frequency below and above the pumping 
frequency. 

As for every method based on the integration of 
discrete system, the time-step is foreseen to be the 
cause of the deficiency. 

7.1. Interpolation of Models 

As we could only obtain models in CAMRAD II 
with up to 100 steps per revolution, a way shall be 
found to obtain a much more precise decomposition 
of the system over one period§§. To overcome this 
difficulty, the matrices of the models are interpolated 
linearly element-wise to augment the number of 
steps per revolution. This corresponds to an 
upsampling. This method shall be tested though as it 
could lead to unreliable results.  

Fig. 14:  Comparison of the Floquet exponents for 
interpolated and directly computed 
CAMRAD II LTP models. The integration 
scheme is RK4. 

To this purpose, models with 50, 60, 80 and 100 
steps/rev have been computed directly in CAMRAD 
II. Using a 50 steps/rev discretized model as 
baseline, the other models are interpolated using 
upsampling rate of 1.2, 1.6 and 2.0 obtaining thus 
the models with 60, 80 and 100 steps respectively. 

                                                     
§§ This corresponds to a diminution of the time step, or an 
upsampling of the data. 

The possibility to use the Fourier harmonic 
components �0 of the periodic matrix ���	 to 
restore the time series with an increased number of 
steps has been also considered. The choice of linear 
interpolation has nevertheless been made as this 
simple method gives satisfactory results.  

Fig. 14 presents the comparison of the Floquet 
exponents in open-loop calculated from CAMRAD II 
models and interpolated models. Different 
observations can be made. Only a residual error can 
be observed between the values of the Floquet 
exponents of interpolated models and the originals 
ones: The interpolation method is considered as 
valid in this paper for the use on CAMRAD II 
helicopter rotorblade.  

The influence of the number of integration steps 
is obvious as the exponents move with an increasing 
number of steps. When situated near the stability 
limit mlam n �, the exponents undergo this influence 
more intensively. The close-up of Fig. 14 presents 
an example of such strongly influenced exponents.  
They correspond in this case to the lowly damped 
first and second blade lagging modes. 

7.2. Convergence of Floquet Exponents 

The analysis is pursued further augmenting 
significantly the number of discrete matrices 
representing the LTP helicopter system over one 
period in order to investigate the convergence of the 
Floquet exponent’s calculation, especially with 
respect to those lowly damped lagging modes. 

In Fig. 15, the number of steps per revolution is 
increased with linear interpolation from 100 
steps/rev up to 10000 steps/rev. The RK4 
integration scheme is used to compute the 
monodromy matrix. The motion of the Floquet 
exponents is obvious for low number of steps/rev 
and decelerates when the number of steps/rev 
increases strongly indicating convergence. 

To investigate the convergence, the norm of the 
exponents obtained with the RK2 and RK4 
integration scheme are plotted in Fig. 16 with an 
increasing number of steps. As expected, for a low 
number of steps/rev, in the domain where the 
convergence index varies strongly, the RK4 method 
produces more reliable results than the RK2 one. 
The computation is considered as convergent above 
500 steps/rev. 
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Fig. 15:  Floquet exponents of the open-loop 
system for an increasing number of 
steps/rev. The integration scheme is RK4. 

Fig. 16:  Norm of the vector of Floquet exponents 
for an increasing number of steps/rev, 
comparison of the RK2 and RK4 
integration schemes. 

8. BENEFIT  OF THE PRESENTED ANALYSIS 

The results observed in the convergence analysis 
are taken into account for the stability investigations 
of the LTP system in closed-loop. 

The locus of the Floquet exponents of Fig. 13 is 
reconsidered not only for an integration using 100 
steps/rev that was proven to have a insufficient time-
steps, but this time with a discretization up to 10000 
steps/rev.  

The Floquet exponent corresponding to the first 
regressive lagging mode is clearly influenced by the 
number of steps/rev used for the calculation of the 
transition matrix (close-up in Fig. 17), and moreover 
crosses the stability border when the number of 
steps is increased consequently. This effect has a 
major impact on the conclusions concerning the 
stability of the system. This also restores trustful 
results that could not be obtained with insufficient 
number of steps/rev. 

Going further we reduced slightly the gain of the 
feedback structure. The locus of Floquet exponents 
is build and convergence analysis is performed 

concluding that the system is stable. This is 
confirmed by the time-response of Fig. 19. 

  

Fig. 17:  Locus of the Floquet exponents of the 
closed-loop system for an increasing 
number of steps/rev. The integration 
scheme is RK4. 

Fig. 18:  Locus of the Floquet exponents of the 
closed-loop system with a reduced gain 
compared to Fig. 10 and Fig. 17. This case 
is ensured to be stable. 
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Fig. 19:  Time-response of the stable closed-loop 
LTI and LTP systems. Stability was 
ensured with convergence study on the 
precision of the Floquet exponents. 

CONLCUSIONS 

We presented in this paper the analysis of a 
time-periodic helicopter model based on the 
Eurocopter demonstrator equipped with active 
trailing edge flaps. This model has been tested and 
verified during different flight campaign and 
constitute a reliable system plant. The analysis of 
the harmonics of LTP system confirms that 
important information is lost when the system is 
averaged resulting in a time-invariant pendant of the 
original plant and neglecting interconnections 
occurring in higher harmonics. 

Neglecting this periodic information means in 
most of cases no arm with respect to stability if, for 
instance during a controller design, sufficient phase 
reserve is planned to overcome the uncertainty 
induced by the suppression of higher harmonics. 
However the analysis using Floquet theory provides 
a straightforward mean to prove stability.  

We presented in this paper convergence 
investigations with respect to numerical integration 
related to the calculation of the Floquet exponents. 
An example of misuse of stability analysis is 
presented as well as a mean to overcome this issue. 
By interpolating linearly the model matrices forming 

the LTP model, and thus up-sampling the data, it 
was possible to obtain trustful results and thus to 
conclude on the stability of a time-periodic system. 
Such a method is foreseen to be particularly 
adapted to check the stability of time-periodic plants 
when the controller design is based for simplicity 
reasons on time-invariant systems.  

This approach is however not suited for an 
analysis in the frequency domain. As Floquet 
stability analysis is applied to the homogenous part 
of LTP systems, input/output behavior, as well as 
damping estimation, cannot be implemented in the 
view of LTI systems. This constitutes one of the 
major limitations of the method, and could be for 
instance perfectly coupled with lifting techniques for 
the analysis of the LTP models represented by a 
lifted LTI representation. 

APPENDIX 

Frobenius Norm 
The Frobenius matrix norm can be defined for a 

matrix � % v/1/�composed of elements P�Y w	, as 

(7) x�xW + yzmP�Y w	mFa{
Floquet Theory Overview 

We consider the system of order � for a time� % &' �(. The homogenous differential equation of 
Eq. (1) can be written: 

(8) 
*��	 + ���	
��	  
Since the degrees of freedom of a dynamic 

system at t must be a linear combination of the state 
at ��, the homogeneous solution can be formulated 
as 

(9) 
|��	 + ��� ��	
��	  
where ��� ��	 % ./1/ corresponds to the state-
transition matrix (also called monodromy matrix) 
relating the state at � to the state at ��. Inserted in 
Eq. (8), one comes to: 

(10) �* �� ��	 + ���	��� ��	
Teschl [21] demonstrated that the monodromy 

matrix also has the following properties: 

(11)

���F ��	 + ���F �G	���G ��	���F �G	 + �}>��G �F	��� �	 + [��� , � �� , �	 + ��� ��	 �
Using Eq. (8) and (10), as well as the periodicity 

of ���	, the differential equation for  ��� ��	
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becomes: 

(12)
jj� 4��� , � �� , �	5 + ���	��� , � ��	�

and thus proves that ��� , � ��	 is also solution of 
eq. (10). It can therefore be written as a linear 
combination of ��� ��	  using the constant matrix ~���	 % ./1/: 
(13) ��� , � ��	 + ~���	��� ��	�

We now define the constant matrix ���=	 % .�1�
and ���	 % .�1� such as

  

(14) ~���	 + _��D�	U���	 + ��� ��	_}��D�	D�
Using the properties of Eq. (11), one can prove that 

(15) ��� ��	 + ���	_��D}D�	�}G���	�
and then straightforward that ���	 is a complex �-
periodic non-singular matrix. This corresponds to 
one of the principal results of the Floquet theory.

Using Eq. (13), it follows that 

(16) ��� , o� ��	 + ~���	���� ��	�
where o is an integer counting the number of 
periods. It clearly illustrates that the information 
describing the solution is contained in the state-
transition matrix over one period. And therefore, only 
a single period is needed to conclude on the stability 
of the LTP system.  

Let the complex matrix � % ./1/  be the matrix of 
eigenvalues*** of ~���	, and � % ./1/ the matrix of 
eigenvalues of ����	. As both matrices have the 
same eigenvectors, one can state that: 

(17)

������	 % v/1/�bei^��^h��

���
��� ~��'	 + ����	�������	}G���'	 + ����	�������	}G~��'	o + ����	�����}G���	o���'	 + ����	�o���}G���	

-�
which is determinant for conclusions on stability. 
Using these two properties, a stability criterion can 
be formulated using either the eigenvalues†††�la	a%�G/� of � or ��a	a%�G/� of �, as �� + ��3��d���	:
(18)

�^_�b�b�_PYb�hb�P8�b�h�d_ ��$Y % �� �� � ��	��_��Y	 n 'c`�`_b�_i�Y�_d��9	�mlYm n � -
                                                     
*** We assume the system is non singular. 
†††Or also diagonal elements in this case. 

This criterion is illustrated in Fig. 20. 

  ��	��_��a	 n ' �9	�mlam n �
Fig. 20: Stability criterion of Floquet exponents and 

multipliers

In practice, the matrix ~���	 needs to be 
calculated in order to generate the eigenvalue matrix � and therefore conclude on the stability of the LTP 
system. Eq. (13) is valid for all � and especially for � + �� + ', hence in this equation: 

(19)
��� '	 +���8����:	 ~�'	���''	

+���8�����	�� ~�'	
The matrix ~�'	 + ��� '	  can be calculated by 

integrating �* �� '	 + ���	��� '	 over one period.  

Runge-Kutta Integration Scheme 

2nd Order 

For the computation of the transition matrix, the 
second-order Runge-Kutta integration scheme to 
compute the i-th column of  ��� '	 can be written 
as: 

(20)

$p % �� o Z �����
q�G + 
q , r�9 ��G , �F	�
]^_`_� )��G + �q
q�F + �q�G�
q , r��G	-

]Y�^�Y�Y�Yhd�ic�jY�Yc���
GD + �'?' �ka  '? '�
4th Order 

In the case of the fourth-order scheme: 

(21)

$p % �� o Z �����
q�G + 
q , r�9 ��G , 9�F , 9�� , ��	�

]^_`_�
��
�
���
�G + �q
q�F + ��q�G , �q9 � �
q , r�9 �G��� + ��q�G , �q9 � �
q , r�9 �F��  + �q�G�
q , r���	

-
]Y�^�Y�Y�Yhd�ic�jY�Yc���
GD + �'?' �ka  '? '�
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