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Abstract 

 
A finite element based method for calculating the 
structural properties of helicopter rotor blades is 
presented. In contrast to other formulations, a full 
6x6 stiffness matrix is produced with all coupling 
behaviour represented. It is capable of dealing 
with anisotropic, orthotropic and isotropic material 
properties within the section. Both static and 
dynamic behaviour results for beams and rotor 
blades with various sections are presented. 
 

Introduction 
 
From a modelling perspective, one of the most 
complicated closed section beam-type structures 
of practical importance is a helicopter rotor blade. 
They are both complex in construction and 
structural response. Typically they may be 6-10m 
in length with chord lengths and depths 
approximately 650mm wide and 100mm deep, 
respectively. Furthermore, since the 1970s they 
have been constructed from highly anisotropic 
composite materials (Carbon fibre/epoxy, 
Rohacell foam and Nomex honeycomb).  
Structurally, they may be considered as slender 
one-dimensional elements subject to extensional 
(centrifugal), twisting and bi-directional (flap and 
lag) bending loads. Their behavioural response is 
further complicated by intrinsic coupling between 
 

• centrifugal loads and twisting 
• torsional loads and extension 
• flexural loads and twisting 
• torsional moment and flexure 

 
due to the non-coincidence of shear, flexural and 
mass centres that stems from the asymmetric 
nature of the cross-section and material response. 
Indeed the latter type of coupling has been the 
centre of much attention since Mansfield and 
Sobey [1] raised the possibility of aeroelastic 
coupling on tailoring dynamic performance.   
 
The analysis of complex structures such as a 
helicopter rotor blade, at present, is practically 
impossible due to the amount of memory required. 
The amount of data for any 3-dimensional finite 
element model with sufficient elements to provide 
detailed stress-strain response is prohibitively 
large, and generally impossible to solve on 
anything other than the largest supercomputers. 

Herein, lies the crux of the problem, to apply 
appropriate modelling skills to simplify the problem 
to current processing power levels whilst at the 
same time retaining the most important physical 
responses.  It is the calculation of the cross-
sectional stiffness parameters which becomes the 
main issue in performing accurate analyses of rotor 
blade designs. The assessment of these properties 
has been investigated widely with isotropic 
sections. 
 
The development of a method which can calculate 
the equivalent 1-D beam properties for arbitrary 
sections composed of non-homogeneous 
anisotropic materials is desired by industry. In 
addition to helicopter rotor blades there are other 
examples in the aerospace industry where there is 
a need to accurately model arbitrary shaped tubes. 
These include propellers and main spars such as 
those found in the Westland Lynx tailplane. There 
are modelling opportunities outside of the 
Aerospace industry too. Sporting equipment such 
as golf club shafts, tennis rackets and ski poles and 
offshore platform structures are to name but a 
selected few examples where closed section 
composite tubes are subjected to various loads.  
Potentially, there is scope for optimising the 
composite lay-up and taper of such structures. 
 
The behaviour of beams is of great importance in 
the design of engineering structures. The dynamic 
response of helicopter rotor blades is generally 
analysed using 1-dimensional beam models with 
the overall structural properties of the section to 
reduce processing requirements. The calculation of 
the beam section properties are therefore critical in 
achieving accurate 1-dimensional beam properties 
and a full 6x6 stiffness matrix accounting for the 
coupling behaviour. There are several methods for 
calculating the behaviour of arbitrary beams. Most 
use 2D slice model representations of the section, 
these include Kosmatka [2], Wörndle [3] and Rand 
[4]. The most complete of these is Kosmatka’s 
approach which gives a good physical insight into 
the problem since all displacement functions 
(including warping) are evaluated.  Kosmatka, 
because of this detail, shows that in-plane warping 
must be considered in addition to out-of plane 
warping in the analysis of anisotropic sections. 
 
A generalised method for the analysis of beams 
with arbitrary cross-sections with non-
homogeneous anisotropic material properties is 
presented. It produces a full 6x6 stiffness matrix 
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with both material and geometric coupling 
accounted for. Both in-plane and out-of plane 
warping are permitted. The approach is finite 
element based using the MSC 
PATRAN/NASTRAN software packages, coded 
using the PCL programming language supplied as 
part of PATRAN. 
 

The Method - Theory 
 
The method presented here is based on the work 
of Bartholomew and Mercer [5] which has been 
extended to produce a full 6x6 stiffness (K) matrix 
for the beam including material and geometric 
coupling behaviour. The locations of the elastic 
centroid, centre of gravity and the shear centre 
are also calculated. The section properties can 
then be transformed to act around any of these 
locations, or any other arbitrary point. 
 
The method analyses a 3-D mesh of a slice 
through a beam cross-section (see Fig.1). The 
elements are given material properties in 
accordance to the cross-section with the correct 
orientation. The two faces of the slice are linked 
together using multi-point constraints which allow 
relative motion between the two based on 6 scalar 
freedoms – 3 translational and 3 rotational. It is 
these scalar freedoms which provide the 
information necessary to produce the 6x6 stiffness 
matrix and allow in-plane and out-of-plane section 
warping to occur. 
 
The six equations, which link the nodes on each 
face of the section and the scalar freedoms, are 
shown below: 
 

yPuQu 31)()( ωµ −+=   (1) 

xPvQv 32)()( ωµ ++=   (2) 

yxPwQw 123)()( ωωµ +−+=  (3) 

1)()( ω+= PrQr xx    (4) 

2)()( ω+= PrQr yy    (5) 

3)()( ω+= PrQr zz    (6) 
 
where Q are the dependent nodes, P are the 
independent nodes, x, y are the co-ordinates of 
the node pair in the section, µ1, µ2, µ3 are the 
scalar freedoms in translation, ω1, ω2, ω3 are the 
scalar freedoms in rotation, u, v, w are the 
displacements in translation and rx, ry, rz are the 
displacements in rotation for the nodes. 
 

 
Figure 1: A Beam Section and Associated Structure 
 
The section properties are obtained in two stages. 
The first stage involves applying unit loads to 4 of 
the scalar freedoms in turn, i.e. the axial 
translational, µ3, and the three rotational.  These 
represent axial tension, bending about the X-axis, 
bending about the Y-axis and a torsional moment 
about the longitudinal X-axis. The scalar freedoms 
µ1 and µ2 have to be restrained to zero to prevent 
rigid body rotation. This means that the other 4 
freedoms can provide flexibility data, but the two 
shear flexibilities are not available directly from the 
output. These can be found by integrating the 
displacements across the entire section and 
calculating the mean slope [6,7].  
 
The flexibilities for the two shear load cases can be 
found by using the reaction forces at the nodes 
caused by the MPCs in the bending load cases 
(moments applied to the rotational freedoms ω1 and 
ω2.) These forces are applied to the model at each 
node with the results for one face reversed. This 
distributes the shear forces about the section 
accurately, taking into account the relative stiffness 
of each element. The magnitudes of all of the 
forces have to be normalised so that the applied 
shear force is equivalent to a unit load. This varies 
with the slice length, so, for example, if the slice 
model is unity in length, then the forces from the 
bending case have to be halved to produce a unit 
load in shear. As before, µ1 and µ2 are restrained to 
zero, so only the other 4 freedoms can provide 
flexibility data. The shear flexibilities are calculated 
as before. The complete 6x6 flexibility (S) matrix is 
now available: 
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Where δx, δy, and δz are relative displacements of 
the ends of the beam per unit length, θx, θy and θz 
are relative rotations of the ends of the beam per 
unit length, Fx, Fy and Fz are the shear forces and 
axial force acting in the beam, and Mx, My and Mz 
are the bending moments and torsional moment 
acting in the section of the beam being 
considered. 
 
Shear Centre, Elastic Centre 
 
The flexibility matrix produced using this method 
is based around loading at the origin of the 
analysis co-ordinate system. However, it should 
be noted that the flexibilities for the bending and 
torsion load cases effectively centre around the 
elastic and shear centres, respectively. This is 
because an applied moment at the origin is 
equivalent to a pure moment at the elastic or 
shear centres, wherever they are located. The 
method finds the lowest energy solutions for the 
applied load cases, with the constraint that 
rotations are based around the axes defined for 
the beam section prior to analysis. The bending 
moments are therefore applied around the 
analysis axes, not the neutral axes of the section.  
 
If the origin does not coincide with the elastic or 
shear centres, then there will be coupling terms in 
the axial and shear load flexibilities due to offset 
loading. The location of the shear centre is 
governed by the relationship between the amount 
of torsion due to the applied torsion and shear 
load cases. The shear load case is centred at the 
origin, and so applies a torsional moment as well 
as the shear force. The shear load cases have 
been normalised to 1N, so the torsional moment is 
represented by the magnitude of the moment arm. 
The shear centre is calculated by: 
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where Xs and Ys are the locations of the shear 
centre with respect to the origin of the beam. 
Similarly, the elastic centre is calculated using the 
relationship of the amount of bending due to the 
axial and the bending load cases. 
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The flexibility matrix can be transformed to any 
location desired with standard transformation 
equations for section properties. The 6x6 stiffness 
(K) matrix is then produced by inverting the 
flexibility (S) matrix for the section based at the 
location to which the properties have been 
transformed. The matrix contains all coupling 
behaviour due to material and geometry.  
 
Implementation 
 
The method has been coded as a routine for use 
with MSC PATRAN [8] in PATRAN Command 
Language (PCL). The user creates a 2-D mesh of 
the cross-section of the beam to be analysed, with 
material properties and orientations defined 
correctly. The routine takes the mesh, extrudes it 
into 3-D and reassigns all the material properties 
and orientations. The MPCs are created, using the 
locations of the nodes within the cross-section, as 
described earlier. The first four load cases are then 
applied and analysed using MSC NASTRAN [9]. 
 
Once the analysis is concluded, the routine 
accesses the results, placing the 4 available 
flexibilities directly into the flexibility matrix. The 
shear flexibilities are calculated by integrating the 
axial displacements of all the nodes in the section 
to get the mean slope. This is followed by 
processing the force resultants to produce the 
shear load cases. The two new shear force load 
cases are then applied and re-analysed with 
NASTRAN. The  shear flexibilities for the two load 
cases are calculated in the same manner as before. 
The flexibility data from the calculations and the 
scalar freedoms are then added to the now 
complete flexibility matrix. The matrix can be 
processed according to the user’s requirements, 
including transformations and inverting to give the 
stiffness matrix. 
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Isotropic Rectangular Solid Section 
 
As a check of the method and the analysis code, 
the first example consists of a simple rectangular 
section composed of an isotropic aluminium alloy, 
with the origin of the co-ordinate system at the 
cross-section centroid. The results should show 
no coupling behaviour and stiffness properties 
similar to simple analytical solutions. 
 
The cross-section was 16x10mm and the material 
data was (E=70GPa and ν=0.3.) The elements 
used in this analysis were all 1mm3, therefore a 
total of 160 CHEXA elements were used which 
had linear displacement functions. 1122 MPCs 
were required to constrain the slice section model. 
The results from the stiffness matrix are shown in 
Table 1. All other results were at least 7 orders of 
magnitude lower than these six on the leading 
diagonal, indicating that no coupling behaviour 
was present. 
 
 Theory FE Error 
EA (N) 1.120x107 1.120 x107 0.00% 
EIx (N/m2)  93.33 93.33 0.00% 
EIy (N/m2) 238.9 238.9 0.00% 
GAsx (N) 3.733 x106 3.701 x106 -0.87% 
GAsy (N) 3.733 x106 3.765 x106 0.85% 
GJ (N/m2) 87.91 88.21 0.34% 
Table 1: Comparison of Rectangular Cross-
Section Properties with Theory 
 
The errors between the method and theory are 
small, the largest being with the shear stiffness 
values which were calculated using Stephen’s [7] 
shear coefficient of 0.867. In the FE method, 
these were calculated using the displacement field 
of the section which was approximated by the 
linear element displacement field. It can be seen 
from the shear stress plot for shear in X (Figure 2) 
that the stress distribution is close to the parabolic 
distribution expected, but does not reach zero at 
the free edges. This is a limitation of the elements 
being used, not the method itself. The accuracy of 
the stress field is improved by increasing the 
number of elements or by using parabolic 
displacement function elements. 
 

 
Figure 2: Shear Stress Distribution and Deformed 
Shape for Rectangular Section 
 
Isotropic Circular Tube 
 
The accuracy of the method when used to predict 
thin-walled section behaviour was also investigated. 
The section chosen was a cylindrical isotropic tube 
with dimensions of an outer diameter of 30mm and 
a wall thickness of 1mm. A total of 376 linear 
CHEXA elements were used, the number of MPCs 
required to link the two faces was 3384. 
 
The stiffness results from the analysis are shown in 
Table 2. All other values in the matrix were several 
orders of magnitude lower than these taken from 
the leading diagonal, reflecting numerical rounding 
errors, and so were ignored. There is a small 
difference between the shear stiffness values from 
this method and the analytical value taken from 
Stephen. This was due to the relative coarseness of 
the mesh, and the linear elements inability to 
produce an accurate deformed shape. The 
accuracy of this value improved to within 3% when 
the number of elements through the thickness of 
the section was doubled. The other properties also 
showed slight improvements in accuracy. The 
shear stress distribution for the thin-walled section 
is shown in Figure 3. 
 
 Theory FE Error 
EA (N) 6.377x106 6.378x106 0.01% 
EIx (N/m2) 671.2 671.3 0.02% 
EIy (N/m2) 671.2 671.3 0.02% 
GAsx (N) 1.304x106 1.229x106 -5.75% 
GAsy (N) 1.304x106 1.229x106 -5.75% 
GJ (N/m2) 516.3 516.4 0.02% 
Table 2: Stiffness Comparison for Hollow Isotropic 
Circular Section 
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Figure 3: Shear Stress Distribution for Isotropic 
Hollow Circular Section 
 
Helicopter Rotor Blade 
 
The next example is that of a helicopter rotor 
blade section, created using approximately 3000 
linear elements and 13152 MPCs. Material and 
geometric information, as supplied by GKN 
Westland Helicopters Ltd (GWHL) [10], was used 
in creating the section and finite element mesh. 
Key material locations were the torque/wing box 
and a high volume of longitudinal fibres near the 
nose. The origin of the co-ordinate system was at 
the nose of the section, with the X-axis passing 
through the tail of the blade. The material 
properties excluded anisotropy, so interaction 
terms were caused only by the geometry (see Eqn 
12). The presence of S16 and S26 terms shows 
that the shear centre is offset from the tip of the 
blade (see Fig.4), as would be expected, and is 
located near the centre of the main torsional wing 
box. The S35 and S45 terms show that the elastic 
centre is also offset from tip of the blade, but not 
by as much (see Fig.4), its precise location 
reflecting the action of stiff longitudinal fibres in 
the nose. 
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Figure 4: Location of Elastic and Shear Centres for 
Rotor Blade Example. 
 
An example of the composite in-plane shear 
stresses due to an applied torsion load is shown in 
Figure 5. Most of the load is carried by large 
numbers of ±45° plies in the main wing-box area, 
giving rise to the location of the shear centre. The 
highest in-plane shear stresses are in a thin layer of 
±45° plies near the surface above and below the 
wing-box. 
 

 
Figure 5: ‘In-Plane’ Shear Stress Due to Torsional 
Loading 
 
The flexibilities calculated for the blade compare 
well with section data from GWHL, giving 
confidence in both the method and the 
implementation. Further work using anisotropic 
sections for aeroelastic tailoring is being carried 
out. Ideally, comparisons should be made with 
experimental data, which is intended as part of the 
development process.  
 
Normal Mode Response of Composite Section 
 
A relatively simple rectangular section (Figure 6) 
was chosen for linear normal mode analysis. The 
material properties used are shown in Table 3. 
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Figure 6: Cross-Section of Normal Mode Example 
 
The example is that of an untwisted blade of 
length 1000mm. Two finite element models were 
required for the normal modes analyses, one 
using shells and solids with the material properties 
defined in Table 3 and the other made from 
beams using properties based on analysis of the 
cross-section (Table 4). The mass properties were 
calculated by summing all of the density, element 
cross-section area and centroid location terms in 
accordance with standard theory [11]. 
 

Property Carbon/Epoxy 
Composite Generic Foam 

E1 (GPa) 131.5 0.07 

E2 (GPa) 9.2 0.07 

E3 (GPa) 9.2 0.07 

ν12 0.3 0.4 

ν13 0.3 0.4 

ν23 0.45 0.4 

G12 (GPa) 4.88 0.025 

G13 (GPa) 4.88 0.025 

G23 (GPa) 3.10 0.025 

Density (kg/m3) 1600 51 

Table 3: Material Properties for Normal Mode 
Models 

 
Structural 
Property Value Mass Property Value 

EA (N) 1.203x108 Area (m2) .006 

EI11 (Nm2) 1.787x104 Mass/unit length 
(kg/m) 2.921 

EI22 (Nm2) 3.988x105 Mass Moment (ρI11) 
(kgm4)  

0.00045 

GJ (Nm2) 2.018x104 Mass Moment (ρI22) 
(kgm4) 

0.011 

k1GA (N) 2.611x107 
Torsional Mass 

Moment (ρJ) (kgm4) 
0.011 

k2GA (N) 1.172x106  

Table 4: Section Properties for Beam Elements 
 
When modelling a prismatic composite structure 
using a 1-D general beam section with an 

isotropic material, it is not usually possible to get all 
of the mass and stiffness terms correct. This is due 
to the difference in I11 and I22 requirements between 
the mass and stiffness terms. Therefore, some 
properties are only approximate to the values 
calculated by the method. The key products to 
calculate exactly for the beam model to give good 
natural frequency results are the torsional mass 
moment of inertia(ρJ), the torsional stiffness (GJ), 
the mass per unit length and EA, EI11 & EI22. These 
values alone should give rise to good correlation 
between shell and beam models of the natural 
modes of the structure. This is because the critical 
mass and stiffness terms of the models are virtually 
identical. 
 
The properties used in the beam model analysis 
are shown in Table 5. In terms of the overall mass 
and structural properties of the beams, it is only the 
bending mass moments of inertia which are 
inaccurate (4% and 9% too high for ρI11 and ρI22, 
respectively.) This is not an important issue 
because the mass moments of inertia are 
insignificant compared to the mass of the slender 
beam being accelerated by the ‘flap’ and ‘lag’ 
modes. 
 

Section 
Property Value Material 

Property Value 

A (m2) .006 E (N/m2) 2.01x1010 
I11 (m4) 8.93x10-7 G (N/m2) 8.88x108 
I22 (m4) 1.99x10-5 ρ (kg/m3) 486.67 
J (m4) 2.27x10-5 

k1 4.90 
k2 0.22 

 

Table 5: Section and Material Properties Assigned 
to Beam Model Elements 

 
The normal mode results for the shell and beam 
models are shown in Figure 7. The model has 
stress-stiffening based on a centrifugal loading due 
to a spin speed of 15Hz (900rpm). As a check, the 
reaction forces at the hub for both models were 
12.97kN, matching F=mrω2. 
 
The frequencies compare well with each other for 
each of the three modes. The beam model tends to 
be stiffer, which is due to the beam formulation not 
accounting for cross-section deformation which 
occurs in the shell and solid model. 
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Figure 7: Comparison of Natural Modes for Non-Twisted Shell and Beam Models 

 
 

Conclusions 
 
A method for calculating the stiffness properties of 
non-homogeneous anisotropic beams with 
arbitrary shapes has been presented. It provides a 
full 6x6 stiffness matrix, giving coupling terms due 
to geometric and material related effects. It has 
been shown to give results that compare 
favourably with elementary theory for a number of 
simple cases involving isotropic materials, 
including solid and thin-walled sections. An 
analysis of a helicopter rotor blade composed of 
14 different materials produced results that predict 
the elastic and shear centres as well as the 
flexibility matrix. The normal mode response of a 
composite beam with equivalent properties  
compared well with a shell model of the same 
construction. 
 
The use of standard finite element analysis 
software also allows the user to investigate the 
stress fields for all the load cases. A useful feature 
of this is the availability of the interlaminar 
stresses, allowing delamination prediction to be 
carried out, if desired. 
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