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ABSTRACT 

Recent advances in technology have allowed for smaller, cheaper, and more versatile unmanned aerial 
vehicles (UAVs) to become prolific throughout both the military and civilian spheres. Using many small, VTOL 
capable UAVs in a multi-agent system (MAS) allows for continuous tracking of multiple targets, surveillance 
below tree-lines, and closer views of the targets. MAS coordination schemes and enhanced vehicle autonomy 
have become increasingly important to help alleviate operator workload when using a group of such UAVs in 
a hostile environment. Current aerospace applications of coordinated MAS’s typically rely on leader-follower 
control schemes, which are inherently vulnerable to communication and sensor loss and often require human 
input for complex tasks. Meanwhile, other industries have successfully implemented decentralized methods 
for coordinating numerous vehicles, requiring only local information about neighboring agents in order to 
determine new positions. The decentralized methods do not require communication or GPS functionality, 
ensuring a more robust MAS in contested environments. This project, called “UV-CoRE,” developed a 
simulation framework to characterize the benefits and limitations of various MAS control methods. The UV-
CoRE framework was based on an existing, in-house JAVA simulation environment, adding multi-agent 
coordination capabilities, various 2-D mission scenarios, and a variety of MAS coordination schemes for 
comparison. Results from the simulation have shown that a blending of decentralized and leader-based MAS 
control methods is necessary to design a safe, effective, and reliable coordinated multi-agent system. The UV-
CoRE simulation environment is capable of modeling custom agents, control algorithms, and mission 
scenarios for related future studies. 
 

NOMENCLATURE 

2-D Two-dimensional 

AI Artificial Intelligence 

ASDL Aerospace Systems Design 

DoE Design of Experiments 

GPS Global Positioning System 

IR Infrared Radiation 

ISR Intelligence, Surveillance, 
Reconnaissance 

LED Light-Emitting Diode 

LIDAR Light Detection and Ranging 

MAS Multi-Agent System 

NATO North Atlantic Treaty Organization 

NPS Naval Postgraduate School (U.S) 

RRT Rapidly Exploring Random Tree 

SONAR Sound Navigation and Ranging 

UAS Unmanned Aerial System 

UAV  Unmanned Aerial Vehicle 

UV-CoRE Unmanned Collaboration & Research 
Environment 

VTOL Vertical Take-off and Landing 

1.  INTRODUCTION 
In the last decade, military operations in areas such as 
Afghanistan and Libya have added significant 
numbers of unmanned aerial vehicles (UAVs) to 
NATO allies’ arsenals1. These unmanned agents have 
become crucial elements in the global fight against 
extremism as well as humanitarian missions: they 
allow for targeted intelligence operations in areas 
where it might be dangerous, costly, or time-
consuming to send human troops and manned 
aircraft. Increased intelligence helps prevent civilian 
casualties and keeps commanders better informed in 
rapidly-changing, complex combat environments, 
supporting NATO’s vision1 of “360 degree situational 
awareness.” The defense industry has emphasized 
the need for better continuous tracking of targets, 



especially in urban environments where obstacles and 
areas of low visibility hinder current ISR capabilities.  
 
Recently, advances in computer hardware, software, 
and data processing have allowed for smaller, 
cheaper, and more versatile UAVs to become 
available both in military and civilian markets. New 
commercial, off-the-shelf (COTS) solutions for 
security and surveillance offer a variety of options to 
fill gaps in intelligence-gathering operations. The 
Aeryon SkyRanger™ sUAS multi-copter, for example, 
can handle high winds, maneuver between buildings, 
and go below tree lines while recording high-resolution 
EO/IR video for up to 50 minutes of continuous 
operation—for an almost negligible acquisition cost 
compared to today’s unmanned assets2,3,19. 
 
A coordinated multi-agent system (MAS) comprised of 
several of these new, inexpensive UAVs would add 
immensely to the ISR capability that regular ground 
infantry troops currently have, especially without the 
levels of intelligence support that are typically only 
available to more specialized operations. Also, for 
special operations, a coordinated MAS could 
effectively replace multiple levels of expensive 
intelligence-gathering aircraft. Depending on sensor 
and bandwidth availability, future systems could relay 
pictures, video, sound, and IR signatures directly to 
ground troops as well as to central command centers. 
A notional illustration of this scenario is shown in the 
Operational View-1 (OV-1) of Figure 1. A coordinated 
MAS of UAVs such as the one shown in the OV-1 
would greatly reduce mission costs, increase the 
quality of intelligence, and reduce the time delay 
between intelligence gathering and troop action.  
 

 
Figure 1. Operational View-1 (OV-1) for a Notional 

Urban Infantry Mission Using an MAS of UAVs. 

 
2. MOTIVATION 
Conducting flight operations and monitoring data from 
multiple aircraft simultaneously could easily 
overwhelm operators in the field. Therefore multi-
agent coordination schemes and vehicle autonomy 
have become increasingly important to alleviate 
operator workload and allow for increased focus on 
the sensor data instead.  As UAVs mature in terms of 
autonomy and coordination, multi-agent systems will 
become increasingly effective in more complicated 
missions.  
 

Currently, most aerospace applications of coordinated 
multi-agent systems rely on leader-follower control 
schemes and require human input for complex tasks. 
This control design passes information quickly and 
reliably when all agents are in communication, but it is 
inherently vulnerable to communication and sensor 
dropouts.  
 
For example, the U.S. Naval Postgraduate School 
(NPS) has successfully coordinated up to 50 aircraft 
in its ARSENL project6. However, the aircraft were 
reliant on constant Wi-Fi communication, had two 
designated subgroup “leaders”, and were remotely-
controlled by two human operators. The U.S. Office of 
Naval Research (ONR) worked instead with fully-
autonomous aircraft, but they again used a leader-
follower scheme and only managed up to 9 aircraft at 
a time8. Loss of a “leader” aircraft in either case could 
result in mission failure or possibly loss of the entire 
group of aircraft.  
 

 

Figure 2. NPS ARSENL Program Controlled up to 50 

Aircraft in Two Sub-Groups.6 

Meanwhile, non-aerospace applications have 
successfully implemented decentralized methods for 
rather complex tasks, requiring only local information 
about neighboring agents in order to reposition 
vehicles. For example, Harvard University’s “Kilobots” 
project successfully managed a group of 1,024 small, 
inexpensive, fully-autonomous ground vehicles10. The 
group was able to self-assemble into various complex 
shapes when given high-level human requests, 
relying only on a local data exchange between nearby 
infrared LED transmitters and infrared photodiode 
receivers.  
 

 

Figure 3. Harvard Kilobots Form Shapes Using only 

Local Sensing and Communication20. 

The decentralized methods often take much more 
time to move agents to desired locations, require very 
sterile and well-understood environments, and may be 



unpredictable after long periods of time. However, 
focusing primarily on using local information and 
allowing agents to self-determine their positions 
allows for a more emergent system, which will be safer 
and more robust in contested environments.  
 
Further research is necessary to determine the proper 
blending of available control and coordination 
methods in order to design a safe, effective, and 
reliable coordinated multi-agent system.  
 
3. LITERATURE REVIEW 

The general literature search for this project spanned 
a multitude of subjects in order to create a realistic 
mission scenario and incorporate state-of-the-art MAS 
control methodologies. Research started with general 
information about UAVs as well as military, police, and 
rescue groups’ operations with current manned and 
unmanned assets. Next, detailed information was 
gathered on a variety of available control methods to 
coordinate and most effectively use a group of UAVs 
to complete missions with differing metrics and 
constraints. 
 
3.1 Market Basis for Multi-Agent Systems 

Research has shown that UAVs offer great cost and 
capability benefits, in addition to keeping humans out 
of dangerous situations. As shown in Figure 4, 
unmanned aircraft such as the MQ-1C Grey Eagle, 
MQ-9 Reaper, or MQ-1 Predator can offer up to three 
times the endurance of the comparable manned MC-
12 Liberty7, enabling longer missions that span wider 
distances. Manned aircraft such as the Liberty that are 
used for mid-altitude surveillance often cost 10’s of 
millions of dollars for acquisition alone, while the 
electric quadcopter replacements that are envisioned 
in this project are on the order of $2,000-$10,0002 

each. Furthermore, the small, electric quadcopters 
require comparatively negligible maintenance and 
operating costs per mission.  
  

 

Figure 4. Surveillance Aircraft Endurance7. 

Urban infantry special operations missions are often 
complex events, involving a variety of assets and 
intermediaries to aid in intelligence gathering and 
mission execution:  mid-altitude MQ-1 Predator-type 
aircraft support electronic warfare (EW), intelligence 

surveillance reconnaissance (ISR), and other fixed-
wing as well as rotary assets below. Ground troops 
may also carry hand- or rail-launch UAVs such as the 
AeroVironment RQ-11 Raven to collect additional 
information closer to their locations. Intelligence 
gathered by the aircraft above goes through central 
command groups before reaching the troops, adding 
additional delays into the system and not always 
providing the ground troops with current information.  
 
With smaller UAVs added into the troop’s arsenal and 
launched from a safe starting “observation point,” the 
platoon-level soldiers could easily view intelligence 
data real-time and help commanders make more 
informed decisions. In some cases, the troops could 
remain at the observation point gathering data and 
would never need to entire the hostile area.  
 
3.2 Multi-Agent System Control 
Establishing mature methods for coordination and 
control methods for the multi-agent system is key to 
effectively using the assets without overwhelming the 
troop’s resources or actually introducing additional 
risk into the missions. In order to conduct a mission 
successfully with minimal human operator 
involvement, the agents as well as the MAS need 
proper path planning, obstacle avoiding, target 
detection, and agent coordination logic.  
 
In controlling such a multi-agent system, sometimes 
called a “swarm,” the robotics industry offers some 
textbook criteria for developing safe and robust control 
methods. The “Four Laws of Swarm Control” 
recommend the following: proper swarm methods 
must be local, scalable, safe & reactive, and 
emergent4. “Local” limits the agents to acting on 
information that they have sensed or know 
themselves; “scalable” refers to a system that can 
handle many agents or few and also remain functional 
with larger or smaller processing & memory 
capabilities. “Safe & reactive” requires that each agent 
is capable of basic autonomous vehicle operation, 
with a reactive artificial intelligence (AI) capability that 
properly responds to changing environments and 
does not require input from another agent or system. 
Finally, an “emergent” system is one where the local 
AI rules transfer to the global system without creating 
problems for the overall group, and the agent behavior 
is predictable. The system should be designed such 
that an operator can control the agents from a “swarm” 
level, without having to interact directly with any of the 
individual agents in the MAS.  
  
3.2.1 Swarm Coordination Methods  
Numerous methods of coordinating a group of UAVs 
were found during the literature search. The most 
applicable for this project were centralized techniques 
using leader-follower relationships and decentralized 
techniques using consensus, partitioning, and 
distributed networking control methods.18  
As previously discussed, the leader-follower scheme 
is the most common used today for aerospace 
applications. This method, illustrated in Figure 5, 



designates a leader that either gives explicit 
instructions to each of the agents or at a minimum 
provides a guiding direction for the others to follow. 
This method is very efficient and predictable; it can 
handle complicated environments better than the 
other methods if the leader has proper instruction, 
sensing capabilities, and communication with the 
followers. If necessary, a human can easily override 
and control the system to finish a mission.  

 

Figure 5. Leader-Follower Method for MAS Control. 

For even more efficient movement or to track multiple 
targets, a hierarchical structure with subgroups led by 
subleaders could also be implemented—similar to 
what was employed in the NPS ARSENL project and 
shown in Figure 6. However, these systems are 
inherently susceptible to problems that arise often in 
contested environments: communications and/or 
sensor dropouts as well as agent loss would leave 
agents without proper direction, in the absence of 
other coordination methods. 

 

Figure 6. Leader-Follower with Subgroups Method for 

Large MAS Control and Multiple Targets. 

On the decentralized side of the spectrum, the 
simplest coordination technique is using a “boids” 
flocking method, pictured in Figure 7. Agents 
continuously look at near-neighbors based on their 
own near-field sensing capabilities to judge relative 
positions and heading. A pre-programmed desired 
offset from other agents allows each to maintain safe 
separation as well as proper cohesion to the moving 
group. Each agent seeks to maintain this offset and 
also align with the heading of its neighbors by 
adjusting its velocity and heading, as necessary. This 
simple technique can be quite effective at moving a 
group together in a complex environment, but it does 
not allow for each agent to do a specific, different task.   

 

Figure 7. Boids Method for MAS Control. 

A more complicated, decentralized control scheme 
using distributed networking methods, via weighted 
rendezvous equations, allows for the mathematically-
provable assignment of agents to relative coordinates 
in space. This method requires only local, relative 
position information that could easily come from very 
small, inexpensive infrared (IR) or SONAR sensors. 
Agents look at each near neighbor with their own 
sensors and move based on relative locations as 
compared to a pre-programmed, desired position or 
set of positions. “Weighted rendezvous” refers to the 
modified consensus equation used for this method4  
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where	���  is the state vector of agent	�, �� is the near-
neighbor set of agent � at a given time, ��,
 	is the 

“weighting” to alter the exact desired position of 
agents, and � refers to each of the other agents21.  The 
parameters �
 and �� refer to the position of agent � 
and �, respectively. Weights are modified to prevent 
collision among the agents and also to place them in 
specific, desired locations. 
 
Using this method, individual UAVs could form 
patterns or move from one point to another without 
directly communicating with each other or carrying 
expensive, heavy, and often unreliable LIDAR, GPS 
and Wi-Fi equipment. Any agent could be lost without 
disturbing the group’s ability to perform the actions 
prescribed. However, this method requires some 
hard-coded instructions or another source of carefully-
designed AI to generate the “desired” locations and 
move the entire group towards a target. The agents 
may also take a long time to reach the desired final 
positions, and near-neighbor sensor information may 
be lost if the agents get separated for even a short 
duration of time. Without other levels of programming 
added to the code, there is no guarantee that all the 
agents will make it to a desired point in a changing 
environment with obstacles, and it may take a very 
long time for them to get there even in a controlled 
situation.   



 

Figure 8. Decentralized MAS Control Using a 

Weighted Rendezvous Method.  

Another option for decentralized control of the UAVs 
would be a partition-based approach: in this method, 
the search area is divided in one of many ways, and 
sectors are assigned to each agent or groups of 
UAVs. This assignment could be decided individually 
by each agent, by a human operator, or by consensus 
and communication among the agents in a MAS. A 
notional illustration of a sector search based on 
consensus assignment is shown in Figure 9. 
 

 

Figure 9. Partitioning and Consensus Method for MAS.  

Some common partitioning methods are based on 
comparisons of the Euclidian distance of the agent to 
the intended position or a velocity-based “distance,” 
which can help increase the overall efficiency of the 
group by choosing the agent that will reach the target 
first11. The main drawback of this method is that the 
area needs to be split up into sectors first, which 
requires sound knowledge about the contents of that 
area or good communication and sensing capabilities 
within the MAS. This method is most successful when 
the environment is well-understood and very stable 
over time.   
 
Finally, a decentralized consensus method without 
partitioning could also be considered. This requires 
voting between the agents to determine individual 
movement in a more general sense, and so this 
method relies heavily on advanced pre-programmed 
AI as well as good communication and location 
information. The “next” position for each agent or the 
group of agents takes additional time to determine 
compared to the leader-follower scheme, but it may be 
significantly faster than the weighted rendezvous 
decentralized method when communication is good 
and AI algorithms are well-tuned. In a realistic urban 
scenario, this method breaks down quickly: agents 
that cannot communicate with each other, get lost 
easily, and the group may not “agree” on a next 
position correctly if location information is faulty for 
even one of the agents. 
 

3.2.2. Path Planning Methods  
Several methods for individual agent and coordinated 
group path planning are available in the general body 
of research, but only a few are applicable for vehicles 
flying in a complex, changing 3-D world. An MAS used 
in an urban mission needs a method that can handle 
the complexity of the situation while also quickly and 
reliably moving the agents to the target location(s). 
Data processing constraints must also be considered, 
as these agents often are limited by their hardware. 
 
“Maximum Principle” methods attempt to minimize 
“cost” but were found to be difficult to implement, and 
they do not provide feedback. Decomposition-based 
methods discretize the search area, similar to the 
partition-based coordination technique discussed 
previously. Dynamics are ignored and desired 
movement is represented by waypoints, so this 
method cannot handle high dimensionality either and 
thus is not well-suited for VTOL-capable UAVs in 
urban scenarios.  
 
“Dynamic programming” uses partial differential 
equations and yields accurate and fast results, but 
these methods often cannot handle high 
dimensionality. One notable method that is a subset 
of the dynamic programming methods is the Gradient 
Descent control scheme. This method, based on a 
first-order optimization technique, generates a field of 
repulsion and attraction vectors throughout a known 
map. Agents are simply repelled from obstacles and 
other agents while being attracted to targets at 
differing, adjustable gains. This method requires prior 
knowledge of the search area and does not 
necessarily perform well with multiple targets, but it is 
often successful in simple robotics simulations.   

 

Figure 10. Gradient Descent Path Planning Method. 

“Sampling methods” can handle high dimensionality 
by calculating decompositions in real-time and 
generating a path by sampling points within sectors. 
These methods are relatively immature and are still 
being developed to increase robustness, optimality, 
and efficiency. However, if properly implemented, 
sampling methods could provide the reactive path 
planning that an MAS requires in complex, changing 
urban environments. 
 
Two notable sampling methods are A* and RRT*. A* 
is a very commonly-implemented method that 
generates an optimal path based on a comparison of 



available paths. This method performs well in 
situations where clear maps and obstacle information 
are available, but it is not as successful in dynamic 
environments like cities. Rapidly exploring random 
tree (RRT) methods build a path tree one branch/node 
at a time by sampling randomly within the search 
space for the next branch and node. This could be 
combined with sensor data to check for unobstructed 
paths in real-time, if enough processing capability is 
available. The RRT* variation follows the same 
approach but looks two nodes ahead on each branch 
to determine the local optimal path. RRT* can be 
modified to search a particular sector or region to 
guide the movement towards a known target location 
more efficiently, and it tends to generate space-filling 
trees that expand outward, which results in overall 
more success in reaching a goal in an environment 
filled with many obstacles.  
 
3.2.3. Swarm Formations and Search Patterns  
For some missions, specific formations and search 
patterns are useful to more efficiently locate and track 
a target. Formations such as a V-shape (similar to that 
of flocking birds) helps to reduce fuel burn for fixed-
wing aircraft traveling to search areas far from their 
launch base. Circles, stars, or pyramid shapes around 
a datum allow hover-capable UAVs to surround a 
target and return continuous video footage from 
multiple angles. Lines and offset variations allow the 
UAVs to move through tight spaces, to minimize 
visible agents in a hostile environment, or to maximize 
sensor coverage through a wide expanse of space.  
 
Search patterns used by the U.S. Coast Guard5 were 
also investigated for use in this project, and a subset 
are shown in Figure 2. The simplest method, flying a 
track line, follows the expected path of the target. 
Flying a parallel track allows for uniform coverage over 
a large search area, when an approximate starting 
target position is known. A creeping line method adds 
some complexity to the track line path for additional 
coverage of a narrow but long search area. Sector 
searches are most useful when the target location is 
known within a small area, and expanding squares are 
best when both the target location is known within a 
small area and a concentrated search is desired.   
 

 
Figure 2. U.S. Coast Guard Search Patterns5. 

 

 4. TECHNICAL APPROACH 
This project evaluated the effectiveness and 
robustness of various combinations of multi-agent 
control algorithms in a variety of mission scenarios. 
Using the parametric, 3rd person JAVA simulation 
environment called “UV-CoRE,” developed at Georgia 
Tech’s Aerospace Systems Design Lab (ASDL), 
numerous control schemes were modeled and 

analyzed with respect to desired mission outcomes. 
An example mission was chosen to test the limits of 
each control method, and the number of agents, 
number of targets, size of search areas as well as 
target behavior and other factors were varied to find 
the critical design points for each control scheme. 
Metrics results were calculated from each simulation 
and compared to gain a better understanding each 
control method’s capabilities.  
 
5. UV-CORE PARAMETRIC ENVIRONMENT 
The tool used for this project is a Java-based modeling 
and simulation environment called “UV-CoRE.” Figure 
11 shows the graphical interface when a simulation is 
started. A larger picture is included at the end of this 
paper, in Figure 20. Users can alter a variety of 
mission and vehicle properties by clicking on the 
buttons on the left hand side, and these parameters 
(as well as many others) can also be directly changed 
in the JAVA code. An example of customization 
options that are available is shown in Figure 12. 
Vehicle attributes set by the user are used to make 
rough estimates of drag, thrust required, and fuel burn 
at each time step of the simulation.  
 

 

Figure 11. UV-CoRE Urban Simulation. 

 
Figure 12. UV-CoRE User-Defined Properties. 

 
The NASA World Wind package serves as the basis 
for location visualizations and agent symbology22, 
allowing for realistic landscapes and customization of 
agent positions, icons, and paths. While UV-CoRE 
had previously been developed at ASDL and used in 
prior projects, it had to be modified quite heavily to 
allow for multi-agent simulation capabilities, 
customized path planning, and to include obstacles.  
 



5.1. UV-CoRE Simplifications & Assumptions 
Agents and targets are modeled as point masses and 
represented by standard military icons22. Starting 
location is set by the user by providing the desired 
latitude and longitude. Analyses for this research 
project will be limited to 2-D experiments, but the 
environment also has the capability to do 3-D 
simulations in the future, if desired. Figure 4 zooms in 
to show a detailed view of the target and multi-agent 
group in this particular urban mission scenario. Agents 
in the “swarm” were assumed to be electric-powered, 
rotary UAVs, while the targets were modeled as 
human-like suspects.   
 

 
Figure 13. Multi-Agent System Tracking a Target. 

 
To streamline the simulation and the coding process, 
and to isolate the effects of the MAS coordination 
schemes specifically, notable simplifications and 
assumptions were made in modeling other aspects 
such as communications, sensors, and vehicle 
performance. Simulation users can set both the 
“radar” and “radio” radiuses by entering numbers into 
the associated GUI fields. These correspond to an 
obstacle/agent detection radius and communication 
ranges, respectively. Initially, all messages from the 
sensors and radios were assumed to be 100% 
successful. Agents were also able to acquire perfect 
latitude and longitude information for themselves as 
well as all objects within their radar’s radius. In this 
way, the radar radius also sets the range of “near 
neighbors”. In addition to this, each agent’s electric 
power was assumed constant: it could not run out of 
battery and was capable of generating any thrust 
required. All of these assumptions were deemed valid 
given the relatively simple starting scenario and would 
need to be re-examined for different missions.  
 
The parametric UV-CoRE environment is user-
friendly, modular, and versatile enough to allow for the 
addition of more complex models for any of these 
parameters, if desired.  
 
5.2. Multi-Agent System Capability 
To allow for multi-agent system simulations, an 
additional group class called “swarm” was generated, 
and UAV agents adopt instances of that class as a 
group attribute. In some cases, such as in simulation 
with multiple targets, more than one swarm is 
generated during the simulation. Each “Swarm” class 
object stores a hashmap of all the agents within the 
group, and agents will register or de-register from 
each swarm hashmap as they enter or leave the 

group. Two attributes of the swarm include a reference 
to a “Leader” agent as well as the desired MAS 
coordination method. The first agent to be generated 
in each swarm will be designated as a leader, whether 
the coordination method requires one or not. This 
attribute is simply not used in the cases where it is not 
necessary. When the user starts the simulation, the 
program loops through all of the swarms to call the 
desired AI of the proper agents within each group.  
 
5.3. Simulated Example Mission  
The primary mission used for analysis in this project 
was an “urban infantry assault” scenario. More 
precisely, a coordinated group of electric quadcopters 
was sent through a notional city full of obstacles to 
track a fleeing human target (or multiple targets). This 
example mission seeks to replicate an infantry-style 
action with a known starting target location. The MAS 
starts out at an observation point, proceeds towards 
the known initial target position, seeks to acquire the 
target with near-field sensors on each agent, and then 
pursues and tracks the target as it flees. The major 
elements of this scenario are depicted in Figure 14. 
 

 

Figure 14. Primary Elements of Simulated Mission. 

 Quadcopters were chosen as agent models due to 
the relatively short mission duration, the high 
maneuverability needed to navigate through 
numerous obstacles (primarily buildings), and the 
portability of the aircraft.  
 
A map of the Georgia Tech campus was simplified, 
digitized, and imported into the UV-CoRE framework 
to generate a two-dimensional “urban” environment, 
as shown previously in Figure 11. This simplified map 
of campus buildings provides varying shapes, sizes, 
and density of obstacles. For visualization purposes, 
the buildings are given a set “height,” but agents may 
not fly over the tops of these buildings—they are 
treated as infinitely-tall structures due to the 2-D 
nature of the simulation. Targets may run through the 
buildings, while pursuing quadcopter agents cannot 
see through or travel through them.  
 
The target represents a person of interest in a crime. 
In this simulation, the crime is stealing the “T” off Tech 
Tower—unfortunately an infamous and common heist 
in Georgia Tech lore. Initially, only a single target with 
simple fleeing behavior was tested: this target initiates 
at the Tech Tower GPS location and begins fleeing at 
about 11.5mph once the quadcopter agents are within 
sight. The target then runs a prescribed, waypoint-
based route through East Campus until reaching the 
bridge to Tech Square. Later, additional targets were 



added to the simulation with more complex behavior 
to test the effectiveness of each control method when 
multiple and complex targets are present. A map of 
one set of target flee paths is shown in Figure 15. 
 

 

Figure 15. Example Set of Target Flee Paths. 

Complex target behaviors also included different initial 
movement: when the simulation is started, the target 
may loiter in the nearby area or start running along its 
waypoint path. A summary of the initial target 
behaviors tested is outlined in Table 1.  

Table 1. Example Target Initial Behaviors. 

Number Behavior Description 

1 Wait until seen by UAV agents. 

2 Loiter near initial point until seen by agents. 

3 Flee immediately along waypoint path. 

 
Pursuing quadcopter agents were modeled after 
existing commercially-available products. Maximum 
airspeed for these aircraft was set at 20kts to allow for 
quick maneuvering while also keeping up with the 
target. This value is really only important before the 
target is within sight, as the quadcopters are assumed 
to be generally faster than a human. Agent properties 
can be modified by the user as desired in UV-CoRE 
as shown in Figure 12, and additional custom agent 
objects can also be added into the simulation 
environment to test the sensitivity of the control 
methods to differing aircraft. 
 
A simple communications model as well as a sensor 
model allow for instructions and sensor information to 
pass between the units. Currently, the sensor model 
is set to mimic near-field (infrared or SONAR) sensing 
capabilities that most small, autonomous aircraft 
contain. Additionally, unless turned off for a specific 
test, each agent also knows its GPS location. More 
advanced sensors such as LIDAR are not modeled 
here, since they are significantly more costly and less 
common among the smaller UAVs. However, 
additional models for advanced sensors could easily 
be implemented in future projects. This project seeks 
to determine robust control architectures in contested 
environments, so each method uses the least amount 
of information necessary from the sensors and 
communication to conduct each task.  
 

Metrics tracking was also added to the simulation. For 
an urban mission, consistency of target tracking and 
time to reach the target are the two most important 
metrics, whereas cost is of a lesser concern. The time 
to reach the target is relatively straight-forward: this is 
calculated as the time for any of the agents to reach 
within a certain “sight” radius of the target. Once the 
agents reach the target, the amount of time that at 
least one agent has the target in sight is counted 
towards the “percentage of target tracking” metric. 
Robust combinations of control algorithms and agent 
formations for missions will be determined based on 
relative metrics results from the different simulation 
runs. Additional or different metrics could be included 
for other mission scenarios, as desired by simulation 
users.  
 
5.4. Simulated MAS Control Methods 
Given the time and resources available for this project, 
four primary MAS coordination method were 
compared, and one path planning/obstacle avoidance 
algorithm was implemented. Three of the coordination 
methods explored variations of the leader-follower 
scheme, while the fourth tested the boids method 
alone. The gradient descent method was used as the 
agents’ path planning and obstacle avoidance routine.  
 
In all the leader-follower schemes, a similar general 
method for target tracking is implemented. At each 
time step, the leader of the swarm checks its radar and 
notes any obstacles or targets within its radar range. 
It then assigns the first target it sees to its swarm’s 
“target tracking” attribute. The leader then moves in 
the direction of the target, avoiding obstacles. If the 
leader does not see its target during a time step, it 
guesses the target’s next location by using the last 
known position and the last known heading. Anytime 
the leader sees its target, it marks the target as being 
seen at that time step. In the current control design, 
each leader stays with one target and will not mark 
other targets as “seen” nor will it follow new targets, 
even if they are in range of its radar. The simulation 
was programmed this way to maintain continuous 
surveillance of each target—a desire specifically 
voiced by a project sponsor—but the program could 
be altered easily to chase new nearby targets instead.  
 
All the other agents that are not leaders are called 
“followers.” They check their radars for obstacles as 
well as leaders, other followers, and targets. If a target 
is seen within its radar radius, the follower also marks 
it as seen for that time-step, but this is not 
communicated back to the leader.  
 
Depending on the coordination method implemented, 
leaders and followers will have different additional 
interactions. The following sections describe these 
methods in more detail. Experiments in the simulation 
focused on changing the mission scenario around 
these methods, to gain further understanding about 
the capabilities and limitations of each.   
 
 



5.4.1 Leader/Follower with Boids 
A baseline MAS control architecture was created 
using a passive leader-follower coordination scheme. 
A single leader agent (the first agent generated, in this 
case) used the gradient descent method to move 
towards the target and avoid obstacles, while the 
followers (all other agents) used a boids method for 
coordination and collision avoidance. The boids 
method, as described previously, ensures separation 
between agents, maintains cohesion among the 
group, and establishes proper heading of the MAS, 
while not requiring communication or absolute 
position information such as GPS location. The 
follower group resembles a herd and cannot have any 
particular shape to it, but the offset amounts can be 
adjusted to tune the movement. This is the 
coordination method pictured previously in Figure 13. 
 
5.4.2 Leader/Follower with Explicit Instructions 
The second method for comparison was a leader-
follower relationship with explicit instructions. This 
represents a more traditional, centralized control 
scheme: a single leader gives the other agents 
instructions for their next (relative) positions. Specific 
formations are prescribed to increase the efficiency 
and reach of the group. The agents are placed into a 
flock at the observation point to quickly move towards 
the target, then they are moved into a circle around 
the target when they are near it to maximize sensor 
coverage and prepare to follow erratic target 
movements. The gradient descent method was used 
for path planning at the agent level to guide both the 
leaders and followers to the intended next position, but 
the leader provided those waypoint positions to each 
of the follower agents. Figure 16 shows this method in 
the simulation. 
 

 

Figure 16. Leader-Follower with Explicit Instructions. 

5.4.3 Decentralized – Boids  
Next, a fully-decentralized method based solely on 
boids was added for comparison. Upon reaching the 
target, agents will see it with their sensors and can 
pursue. Each agent simply aligns its heading with near 
neighbors while maintaining cohesion and separation 
based on specified ranges of acceptability. The group 
basically follows the target as a herd without requiring 
communication or any more than local sensing, as 
shown in Figure 17. This method gives the MAS an 
efficient passive movement capability, but it cannot 
assume complex formations or follow multiple targets.  

 

 

Figure 17. Decentralized – Boids MAS. 

5.4.4 Leader/Follower with Subgroups & Boids 
A fourth coordination scheme also started with a 
centralized, “leader-follower” style control and then 
separated the MAS into several subgroups to better 
handle multiple targets. When a leader sees new 
targets that it is not following, it first checks with any 
other swarms within communication range to see if 
they are following those targets. If not, the leader 
divides up its followers evenly (and randomly) into as 
many subgroup swarms as there are targets. Each 
new swarm is randomly assigned a leader, and they 
follow the same target tracking behavior described 
previously for leaders. 
 
This method divides nearby MAS agents into relatively 
equal-size sub-swarms as new targets are seen, to 
ensure better sensor coverage as the target moves in 
unpredictable ways through the mission map. In this 
first implementation, the subgroups follow the leader 
simply using the boids method; however, explicit 
instructions could also be passed to the followers. 
There is still a single large MAS that includes all the 
agents with a single leader, which could allow for 
global “return to base” type commands—though this 
was not included in the current project’s programming. 
This method also blends two different control 
schemes, as a first step towards a more hierarchical 
and reactive control system. 
 

 

Figure 18. Leader Subgroups with Boids. 

 

5.4.5 Mission Stages and Assumptions 
Some of these methods depend on conditional 
statements related to mission phases and conditions. 
As discussed in the mission description, the “stages” 
for this project are as follows:  

1) At the observation point 
2) Moving towards the target 
3) Searching for the target  
4) Tracking the target once it is found.  

 



For control simulation purposes, these stages 
characterize the changing mission needs and guide 
the implementation of different formations and agent 
behaviors. At the observation point, the agents are 
considered at a friendly “base” location with good GPS 
signals and good communication. These conditions 
are not assumed for any of the other stages. However, 
during all stages, it is assumed that if the target or 
another agent is within a certain “near-field sensing” 
distance, it is positively “seen” and can be correctly 
identified as a friendly or foe entity. Furthermore, if a 
target is seen, it can be tracked. Initial target position 
is also assumed to be known, though some test cases 
do give the target initial movement from that known 
position. Future simulation experiments can add 
further uncertainty into this system, but this was 
outside the realm of this project. 
 
6. URBAN MISSION TEST CASES 
Table 2 below outlines the basic design of 
experiments (DoE) that was run using the UV-CoRE 
simulation environment with the urban mission 
previously discussed. A batch mode capability was 
used to allow for rapid, sequential test case execution. 
Agent numbers from one single agent up to ten were 
tested, as well as up to ten targets. Initial target 
behavior was also varied: Table 1 describes the three 
different initial target behaviors tested in this 
simulation.  In all test cases, the targets were started 
at the Tech Tower GPS location, and the UAV agents 
were started at a specific North Avenue GPS location, 
as depicted in Figure 11.   
 
Due to the simplicity of the path planning and obstacle 
avoidance routine used in this simulation, agents often 
got “stuck” when trying to track the target. This is 
considered a possible limitation of the simulation more 
than a result of the coordination methods. Therefore, 
additional tests were run with targets fleeing only 
outside and around buildings. In addition to this, 
stochastic tests were also conducted by perturbing a 
single target’s path by small amounts, to compare the 
coordination methods with fewer variables at once.  

Table 2. UV-CoRE Urban Mission Test Cases. 

Coordination 
Scheme Agents 

Target 
# 

Target Initial 
Behavior 

Leader-Follower & 
Boids 

1, 2, 5, 
10 

1, 2, 5, 
10 

1, 2, 3 

Leader-Follower & 
Explicit 

1, 2, 5, 
10 

1, 2, 5, 
10 

1, 2, 3 

Decentralized - 
Boids 

1, 2, 5, 
10 

1, 2, 5, 
10 

1, 2, 3 

Leader-Follower & 
Subgroups 

1, 2, 5, 
10 

1, 2, 5, 
10 

1, 2, 3 

 
7. URBAN MISSION TEST RESULTS 
The various simulation runs show that the leader-
follower method with boids is very effective at 
following a single target throughout the map. Whether 
the MAS starts out near to the target or relatively far, 
as long as the target does not change location before 
the MAS is nearby, there is 100% target tracking 
success. Each agent stays nearby, and all have good 

eyes on the target. However, this is a rather wasteful 
use of many aircraft: the individual agents remain in 
the group and cannot follow a second target, even if 
one is seen. The follower agents also have no way to 
change their position relative to the target for more 
optimal views or better tracking. Furthermore, if the 
leader is compromised in any way, they would have 
no instructions. Even if logic is added such that the 
boids will follow the target(s) directly in this case, only 
one agent is really needed in most cases to 
adequately maintain continuous target tracking. This 
control scheme can be useful to quickly and simply 
move agents in Stage 2 of the mission, when there is 
a known target location relatively far away, but is not 
recommended for use where more complex 
movements or subgroups would be more effective.  
 
The classic centralized control technique—the leader-
follower with explicit instructions method—showed 
results that conformed to expectations but did not 
perform well overall in these test missions. Formations 
were possible both to get to the target as well as to 
track the target, and these would help to increase data 
gathering in the case of a fleeing person. However, in 
many test runs, some of the agents get left behind. 
They do not always have proper communication 
channels to find their way back to the leader, 
especially when a building is in the way and the rest 
of the MAS has moved far away. The follower agents 
heavily rely on the single leader for instructions, thus 
this method needs additional subroutines to handle 
situations where movement is constrained and 
communication is not guaranteed.  
 
The boids decentralized technique was effective 
whenever the agents were within sensing distance of 
the target and for the duration of the tracking period. 
This method on its own performed similarly to the 
leader-follower with boids test case (Method 1), 
showing that having a leader with such a passive 
method is unnecessary. The boids method was much 
more successful than the centralized methods at 
bringing agents around complex obstacle shapes and 
continuing to follow the target. A robust control 
scheme could benefit from having this method 
implemented during MAS movement phases within a 
mission, as agents may be lost along the way, and 
boids would continue to move the remainder of the 
group along without trouble.  
 
Finally, the subgroups “Method 4” mixed centralized 
and decentralized theory to form subgroups, if multiple 
targets were discovered during the mission. This 
method was the only one to successfully track multiple 
targets in any test case, albeit not very successfully in 
all cases. The simulations showed that agents are 
more likely to get left behind when they encounter 
complex obstacles; however, with more sophisticated 
path planning and obstacle avoidance routines, this 
should prove less of an issue. In general, this method 
requires more sophisticated AI schemes to correctly 
identify new targets, split the MAS into groups, assign 
new leaders, and then track a target while avoiding 



obstacles. It is also vulnerable to the loss of subgroup 
leaders without any other backup methods 
implemented, but it is less vulnerable than any group 
with only one leader.  
 
Comparing the methods in terms of the metrics proved 
challenging given the amount of agents that got 
“stuck” behind obstacles during the simulations runs. 
A sample of metrics output plots for each test case is 
shown in Table 3 on the following page. For all control 
methods, increasing the number of UAV agents has a 
clear benefit—especially with low numbers of targets. 
This adds strength to the argument that coordinated 
multi-agent systems are worth researching further. 
What is also readily apparent is that Method 4 does 
not perform as predictably well as the other methods 
as agents are added to the mission. This is likely due 
to the simplicity of the logic in this simulation, resulting 
in more agents getting stuck behind buildings. More 
complex path planning and obstacle avoidance AI 
could help groups of agents to more effectively move 
towards and track multiple targets. Overall, it can be 
said that the methods performed similarly from just 
looking at this data.  

 
Additional stochastic test cases sought to clarify any 
differences between the methods for just a single 
target case. On Page 13, Figure 19 shows that the 
centralized leader-follower method with explicit 
instructions clearly performs the best in terms of 
single-target tracking, while the boids method is a bit 
less capable and the leader-follower scheme with just 
passive followers is the least effective. This result 
confirms the observations seen during simulation 
runs: the decentralized boids method is a very 
effective method for moving the group along after a 
target through a complex mission environment, and it 
is almost as good as the leader-follower method 
requiring constant communication. The smaller error 
bars indicate less variability in some results as the 
target’s path is perturbed slightly. The explicit 
instructions method sees the lowest variability (and 
thus the highest reliability) regardless of the number 
of agents, and this falls in line with expectations from 
research. However, the boids method alone also 
shows low variability, especially as the number of 
agents is increased: again, this indicates that the 
boids method may be very effective in some realistic 
scenarios. The mixed method with boids and leader-
follower coordination performs poorly and unreliably 
overall, indicating that this combination is significantly 
less useful in robust control system design. In reality, 
this method likely just requires better AI and tuning to 
show its full potential.     
 

8. CONCLUSIONS 
The various multi-agent system control methods have 
shown distinct benefits and limitations as the mission 
complexity and size was varied. While the leader-
follower techniques with explicit instructions may be 
susceptible to communication dropouts and sensor 
loss, the centralized methods form a reliable and 
effective basis for initial MAS coordination. With 

adequate instructions pre-loaded into the leader, and 
with appropriate conditional statements to identify new 
stages of the mission, a leader-follower with explicit 
instructions MAS is the most effective target tracking 
technique.  
 
Given the vulnerability of a leader-follower system in 
contested environments, other methods would be very 
useful as fallback coordination schemes. The boids 
method is very effective when the agents are relatively 
close together, such as at the start of the mission. This 
method could also be used to continue tracking a 
nearby target right after a leader is eliminated, to 
ensure that the chain of custody is not broken despite 
complex maps and other interfering factors. However, 
the boids method is not the most efficient use of many 
agents, as they all simply follow in an uncoordinated 
group.  
 
For the cases where multiple and complicated targets 
exist, a leader-follower scheme with explicit 
instructions and subgroups formed as the targets are 
discovered has the potential to be very effective in 
continuously tracking of each of the targets—up to the 
number of agents available (minus one). More 
complex instructions and logic are necessary to 
optimize this method further, as the simple version 
used in this simulation did not perform well when the 
metrics were calculated. Depending on mission 
needs, these results can guide the creation of a 
hierarchical control architecture comprised of a blend 
of the aforementioned methods, which will be as 
reactive and robust as needed for real mission 
scenarios.   
 
Finally, results were generally in line with expectations 
for each method, showing that the UV-CoRE 
simulation environment is capable of modeling MAS 
coordination schemes for a complex urban 
environment.  
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Table 3. UV-CoRE Urban Mission Simulation Results from Full DoE. 

  
Method 1: Leader-Follower with Boids 

  
Method 2: Leader-Follower with Explicit Instructions 

  
Method 3: Decentralized - Boids 

  

Method 4: Leader-Follower with Subgroups Using Boids 



 

Figure 19. Results of Single-Target Stochastic Testing. 

 

 

Figure 20. UV-CoRE Simulation Environment: Larger View of Simulation GUI. 
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