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SUMMARY

The eguations of motion including shear and rcotatory inertia are
developed for uncoupled lead-lag and flapping vibrations of beams rotating at
constant angular veloclty in a fixed plane. Separability assumptions lead to
an ordinary coupled differential equation in the space variable. In the
special case of zero-incidence beams the equations are uncoupled, and a
solution is obtained in terms of four independent functions, each a convergent
power series. These beam functions are similar to classic normal beam
functions, and application of the boundary conditions yields determinants whose
roots are the natural frequencies, A transfer matrix formulation is set up in
terms of the above beam functions to cope with nen-uniform and twisted beams
and the restriction of zero-incidence is lifted. The simplicity and speed of
this method is demonstrated by applicaticn to propeller and helicopter rotor
blades, and spoke diagrams and mass balancing are illustrated,

1. INTRODUCTION

A number of methods have been developed for determination of frequencies
and mode shapes of rotating beams including centrifugal force {1} (henceforth
CF), Coriolis terms and other effects. Of particular utility is the transfer
matrix method {2}, Both shear deformation and rotatory inertia effects have
been included, and this methed has proved successful in helicopter rotor blade
design {3}. The well known Holzer method with the Rayleigh-Southwell correc-
tion has been employed with some success to turbo-machinery blade design {4},
Because of the way many methods approximate internal and CF forces as well as
geometry, practical problems often require a large number of segments or divi-
sions, thus leading to large matrices or extensive computations.

In view of the similarity of rotating beams to classic continuous beam
dynamics, it appears that some advantage acecrues 1f beam functions are developed
which represent exactly CF and the Timoshenko corrections. In Section 2 the
equations of motion are reviewed, and in Section 3 assumptions are introduced
which lead to uncoupled lead-lag and flapping motion. The assumption of steady
harmonic response leads to ordinary differential equations, and in Section U4 the
Frobenius method is applied and recursion formulae are developed. Elementary,
albeit lengthy algebra reduces the general power series fo four explicit poly-
nomials multiplied by four constants determined from the boundary conditions.
These polynomials are treated like any known function, and for non-rotating
veams they reduce to trigonometric and hyperbolie sine and cosine.

These may be thought of as "beam functions" for rotating beams with shear
and rotatory inertia corrections, and they are sufficient for frequency and mode
shape analysis., A transfer matrix is defined in Section 5 which allows one to
readily formulate problems invelving discontinuous and twisted beams.
Application of the boundary conditions leads to a determinant (at most 4 x k)
whose roots are the frequencies, and examples in Section T include spoke
diagrams typical of current helicopters. Because of its simplicity and speed,
other parameter studies are feasible and some surprising effects of mass
balancing are demonstrated.

2. THE EQUATIONS OF MOTION

Attention is restricted to a uniform beam rotating at censtant angular
velocity about a stationary axis as shown in Fig, 1. The x-axis is the axis of
elastic centres (zero pre-cone), and the principal (n,r) axes of the cross-

14.1



section are located at incidence angle 8 measured from the plane of rotation
{x,y). The centres of shear and mass are assumed to colncide.
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FIG.1: Orientation and motion of a rotating uniform beam.

The usual assumptlions 2f Tuler beam theory are lnvoked. However, the first
order corrections (shear and rotatory inertia) to the Ingineers Theory of
3ending (henceforth ETB) are inciuded. Since most propellers and rotor blades
ars very stiff in lead-lag compared to flapping, the practical sienificance of
these corrections 1s probably restricted to the former., 7The sign convention
for moments and shears is shown in Fig. 2.
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FIG.2: Differentiai elements for figpping and lead -iag.

After deformation an element of volume dxdndz initizlly st position
{x,m,z) will be, to first order, at {x+U-nV'-cW', V+n, W+z), and the
acceleration components are:

U - nv ' gﬁb‘- QQ(QCOSB - @sinB) - 0Z(x+U - an'- gwb')

ax - b

L5 . " 5 . ' . - 2
a, = V¥ 2(U -V - cwbh Qcos8 = [ (V +njcosp - (W +r)singj Q%cosB
&, = W o E(U—Wb'- aw! tY0sing + [(V +nlcospg - (W +z;)sin8] 0%sing

By integrating over the element the usual expressions for strain and accelera-
tion, the complete linear coupled equations of motion become {5,6}

p1 = ml-2m0(Veoss - Wsing) - 22m{x + U) (1
Sq' = mV + ZmaUcoss - m02{Veos2R - WsinB cosg) (2a)
S ' = mW - 2mOUsind ~ m02(Wsin2g - Vsing cosg) {3

o
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where J is the rotatory inertia.
Generally, the lowest axial frequency is greater than ten times the
rotor speed, sc we shall ignore the axial motion and its derivatives., The CF
resultant P is assumed to be independent of time and 1s found by simple integra-

tion., These assumptions on the U-motion cause the Coriclis terms to be
eliminated,

As the axial stiffness EA is usually large, U << i
(1). Hence the resultant for axial force ls obtained by simp

Plx) = é—mﬂz(iz - x2) Ly

Since the total lateral displacement is the sum of shes
the moment-curvature and shear relations for z Tircs

Moo= EI V" ¥ oro= (5 - Py 1%a)
z L't ’ s Gkpd T Tn o

W

Substituting (5a), (3t} irte (2a) and ( ,
usual algebraic manipulations lead to the equ
derlections:

=

2b} and (3b) resvectively, the
ations of meotlon in terms of tohal

ET .
b [mV” ~ w0l (V'cos?s -

- i
EL V" m[V 07 (Veos?8 - Wsing cose)] - (pyy' -

n

. J ere . . !
@vw”l -7 -ty - il o (VS a2i —(MV—QW)) -
4 Gk A

- W'sing cosf)

- mn? [coszfs(;v" -0%Vv) - sing cosad&—g?'.f):]} = 0

EI
02 (Wsin?8 -~ VsinB coss)] DGR S—— E@r'- nA(W'sing -
Gk A

14

EL W+ mﬁi

J . . '
- V'sinB cosf) - (Pw')"'] - Jn(w-92W)” ~ G|”Al{m(w-92w) - (p(w-—ncw)’) -

4
m02 [sin?g (W - 2%W) ~sm@(mssd"sﬂvﬁ} = 0

The motion is assumed to te steady and harmonic, hence a set of ordinary
differential equations is obtained by introducing:

Vix,t)

Wix,t} wix,t)

vix,t) eiwt {

where ® 15 the natural frequency. It is alsc convenient to use the following
non-dimensional ccefficients:

i

a = ml*Q%/EI  (angular speed) , L= mfh2 /BT (frequency) (8)

oS
H

ET/CkAL2 | ¢ = J/ml? (shear deflection and rotatory inertia
coefficients)
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where subscripts n and ¢ will indicate that the appropriate cross-sectional
constants are used, The quantities § and ¢ are small for practical geometries.

Substitution of (7) and {(8) into (6) yields a pair of fourth order
variable coefficient ordinary differential equations for the mode shape. For
lead~lag motion,

{1 + Sap}v"" + 3adpv"t- {1 - e8(X +u)][(k+~ac0528)v + ap'v! - awcosR sinB]

+ le(r+a)(1 + sop) + §(x+ acos?p) - alp ~36p”)]v" - Saw"cos8 sinf = O
. . (9a)

where subscript n is implied on parameters o,%,8 and €. For filapping motion,

(1 + 8ap)w"" + 3aépw"' - [1 - e8{ X +u)}[(X-+asin28)w + op'w'= avcosk sinS}

" - adv'cosB singB = O

.. (91)

where subscript £ is implied, The primes denote differentiation with respect
to the non-dimensional coordinate £ = x/£ .

+ [g{x-+u)(1 + Sop) + &() +asin?g) - alp- 36p")]w'

Coupling between v and w motions is introduced through the non-
conservative CF terms and is represented by the terms underlined. The general
solution of (9) requires the solution of an eighth order equation. Under
certain assumptions, the two fourth-order equations decouple and independent
solutions for flapping and lead-lag are obtained.

3. UNTWISTED BEAMS AT ZERO INCIDENCE

For an untwisted beam at zero incidence (g8 = 0), axes {n,z) and {(x,y)
coincide and decouple, Hence for lead-lag

(1 + Sap)v™ + 360pv™ - [1 = es(h+a)][ap'v' + (A—+a)v]
+ [(s +8+edap)(A+a) - alp - 36p")]v“ = 0 (10}

where subscript n = y is implied for the physical parameters. The flapping
equation {with impliied subscript £ = z) becomes

(1 + Sap)w"" + 36apw' - [1 - e&(l%—a)](ap'w' + Aw)
+ [Gx + (e+eSap)(i+ a) - alp - 36p")1w" = 0 (11)

Care must be taken with the boundary conditions, for often only the berd-
ing component of slope can be specified at a boundary. Combining (2) zand (5)
the bending slopes can be obtained in terms of total displacements,

§(1 + adp)v™+ 2082p'v" + [1 + §2(h+at+ap")]v

Vb' = (12)
£{1 - es(r+a)]
§(1 + (Sa,p)wlf1+ 262up‘w" + [1 + GZ(P\'POLP")]W'
wb' = (13)
21 - es(r+a)]

Differentiating the second of (5) and using {2) and {3), the moments can be
obtained in terms of total displacements:
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ET
M o= el [(1 + adpiv' + adptv' + 5(‘a+a)v“ (14)
N -
Moo= L t(T + Sap)w' + Sop'w! o+ SAWi} (135)
y g2 n

Similarly, the shear force iz obtalned from (3):

_EIZ {(1+ Sap v+ 28ap'v' + [;(g+ S+esop){rra} - alp=- (Sp”)]v'}

163[1—65(;\"' 3.)] (16)

aEIy_{(1 + Sop)w'" + 23up'v” + Eﬁx + ‘e+ edap)(0+a) ~alp- Gp”)]w'}

A€3E1—€6(-1'+Ci):! (1,—()

lote that in the pairs (12) -(13), (14) - (19), and {16) -(17), the physical

ameters have the subscripts n and ¢ respectively, e.g. d s % An, AC, ete.

na
i
i

POWER SERIFS SCLUTIONS

Since equations {10 and {(11) are linear rezl ordinary differential
ejuations, the solution can be expressed in terms of real positive integer
nowers of the dependent variable., Thus the solution is assumed in the form

ey = Y oagt (18)

where the dependent variable may be v(&) or w{f). It is necessary to write the
axial force as

ple) = a + b + ol (19)
For discontinuous beams, or beams with concentrated masses, constants a,b and
¢ will also be discontinuous.

After substitution of (18) and {19) into {(10), coefficients of like
powers of £ are collected and the following recurrence formuta is obtained for
lead-lag motion,

uGb(n*-B)An+3

{1 + adalA = -
nt+4 n+4

An+2

- { (A +a) = aa + e(A+a)(l + ada) + (n+3)(n+ 2)a6c}
- (n+ 4)(n+ 3)

(n+1)%ab A + [A+—g1—n(n+ Dac]A
+ [1-—eacx +a)] ol n y =0 .
(n+4)(n+ 3)(n+ 2)(a+ 1) (20)

Substitution of {18} and (19) into {11) yields a similar equation for flapping
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vhich is obtained from (20) by deletion of the terms with bold underlines.

Inspection of (20) shows that only four coefficients can be chosen
arbitrarily and these are taken to be A through A_ . Hence four independent
. R 0 3
functions are defined as follows:

Fole) = v el b el e® el 8400
Fole) = g +al S+ Al el e Al ¥, )
Ple) = 2+ ad gt vl gb e al e
FlE) = g2+ AY g5 v as g7 wat e L

The coefficients are all obtained from (20) by using the following initial
values:

=0, k=0,1, 2,3 and

For F.(£) , set ) {22)

i i
Ai—1 = 1

For example, to generate F,, set Ag = A? = Ag = 0 and Ag = 1, Then {20) is
used to generate the remaining terms®.

The general solution of (10) or {11) can now be written as

vig) = crA{g)y+cCcF {g)+CcF {g)+CF(g), (23)

F F
171 272 373 4y

where constants Ci are determined from four boundary conditions at the ends.
In the degenerate case of no rotation and zero rotatory inertia and
shear deformation {(§ = ¢ = o = 0), the recurrence formula reduces to
A
n

= _ 4 h
st Genid)me ey (g0)" (2L)

and the usual Timoshenko beam functions (Ref. 8, v.338) are recovered.
5. PROGRAMMING CONSIDERATIONS

Beam functions ¥.(f) and their derivatives can be treated as known
functions by constructifig a FORTRAN function sub-program of (21) using (22) and
{20). TFor a simple cantilever, deflection and slope zre equated to zerc at the
clamp as are moment and shear at the free end, The result is four simultaneous
homegenscus equations, and for constants C; to be non-zero the determinant must
vanish. Hence a simple interval halving method is used to search a pre-defined
range for the discrete real values Aj which give a zero determinant. The
actual natural frequency w; ig then obtained from (8),

Actual rotor blades are seldom uniform, and often consist of a root seg-
ment followed by a relatively uniform blade having perhaps one or more balance
weights, In most cases this can be idealized as an assembly of n segments,
resutting in a bn x 4n determinant. When the determinant becomes large, the
value near a root also remains large, e.g. 10 exp 30 for one 12 x 12. Hence it
is convenient both numerically and formally to employ a transfer matrix method
(our notation is similar to that of Pestel & Leckie {2})., By placing

* The superscripts on A, were introduced to denote that the ccocefficlents for

each function are independently generated., Thus A& # AS , A% % A; , ete.
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deflection, bending slope, moment and shear in a column vector (usually termed
a state vector), they can be related to the undetermined constants Ci by a
b x b matrix B,

z o= v,vw' ,M,8) , 8= {c ,c, ,C ,C)

The individual terms in B are (21) and (10) through {17},
B ., = F, B, . = v'[v=r.(g)]
13J J(E) ! 2, b [ J &l (26)

B, = M v =r.(0)] , B, , = § [v Fj(g)]

The notation {v = Fj(g)l denotes that throughout the expression v(f) and its
derivatives are replaced by Fj(i).

Consider & beam composed of n segments as shown in Fig. 3.

My Mig M- M Mia Mn
43
Fig Eli.y £l Eljv Eln
My m; r Mt my
Fie1
- o

FIG. 3:Generalized rotating beam.

17 2.(0) and z.{(1) are the state vectors at the beginning and end of the i-th
~— ~
segment, then

2,(1) = B (1) E7NH0) rz(0) = Uiz (0) (27)

where 91 is the transfer matrix for the i-th segment. A concentrated mass may
be included st the interface between twe segments as shown in Fig. 3, and the
transfer matrix from segment 1 to segment i+1 for the lead-lag motion is

1 0 c 0
0 1 0 0
230100 = By 2,00 By o= . . 1 . (28)
] -M. (@3+w?) O 0 1 ]

For flapping moticn the underlined term is deleted., Hence the state vector at
any point can be expressed in terms of the root or initial vector zi(O); at
the tip,

n
(¢), D = m P VU (29)

The boundary conditions are now imposed and (29) is partiticned in displacement
and force parts. For a cantilevered blade,
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The second of {30) yields the frequency determinant [ D = 0 , and the mecde

shape is obtained from (30}, (29), (27) and (25) in the usual way.

Care must be taken that the CF is properly represented. For the i-th
segment,

p(€) = a, +bg+ee? , 0gEg1
1 n
a, = wT, 'Z_ mjﬂj (rj~ Ej/e) + Mjrj {31)
1 J=1
_ _ 1 ”
bi = (1 - rl/ﬂl) ) Ci =.'/2 N £1 = I‘i - ri—-l

Coefficients (8) may also vary from segment to segment, and overall convergence
was improved when segment length Ei =r, -1, wvas used in {8),

A variety of FORTRAN programs can be readily constructed using (26) to
build (29) and {30}, and results for test values and a typical helicopter rigid
rotor blade are illustrated.

6, TWISTED NON-UNIFORM BEAMS

There are g variety of rotating beams like propeller and turbine blades
which are difficult to model with the preceding straight beam formulae., The
previous techniques can be readily extended to non-uniform twisted beams by sub-
dividing the beam into piecewise uniform segments. Each segment may have an
arbitrary angle of incidence § as shown in Fig. k.

_ Li Ni MNie
Y \\\ Bi §“1 Biu
li, mi
l[o‘] mm X

(El )I , (Elg) ( }|¢1 (Eig)u?

FIG.4: Ideqalization of a itwisted non-uniform beam,

Rotatory inertia and shear deflections are not included here, since for
most propeller and turbine problems only 1st and 2nd mode frequencies are
required, for which the Timoshenkc corrections will be small, as shown in
Section 7. Thus, equations (9) reduce to:

1]
<

my - 2 + A _ ] ¥ + "
v (ancos B n)V an(Pv ) o, cosB singw 52

It
O

w'o_ (CLCSiHZB +>\C)w _ Q’.C(PW')! + CtCCOSB sinfv

Coupling between flapping and lead-lag is introduced through the non-
conservative CF terms and is represented by the last term in each of (32).
The general solution of (32) would require an infinite series solution for an
eighth order equation. However an approximate pair of fourth order equations
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were obtained by ignoring the coupling t=rm in (32). The significance of this
approximation will be discussed at the end of this section where its effect
will be apparent.

Equations {32) less the coupling terms were solved via the Frobenius
method as in Section 4. Using (19) to express the axial force, the recursion
formulae for lead-lag and flapping become

@ CcosZR + A A a bln+ 1)A .1
(n+3)(n+h)A I = —ﬂ-———-—m————r}-+a —-cn 1 + n o +aa_ﬂ.+ ,
¥ n+1 1 n+2 n+2 noont2
a_sinip +h A a nln+ 1)A
(n+3){n+L)A = o 5 4o -cn - ntl Lo oan o
n+ n+1 n+2 n+ 2 & 1
. {33)

Equaticns {21) through {23) for the mode shapes v and w apply here without
change.

The method of transfer matrices outline in Section 5 i1s also useful here.
To account for the goupling of lead-lsg and flapping in twisted blades, both
must be included in the state vector,

z(z) = 38{g)a /

{3k}
a = {C C, co, ¢

ey
B}
.
<
=

Mo, M., s5_, 8, 1} ,

n 3 x % matrit formed in & way similar to (26), The 8§ x 8 transfer
he i-th elerent is identical in form to (27). An eguation for
{balance weisghts) was not included here as these are rarely used

i 1s connected to segment i+ 1 by transforming zi(1) to the local
coordinates of segment 1 +1

z. = T. 7z, T, = R, R, R, R,
fl+1‘o) i 11(1)‘ » i 5o o B B J ’
cos ARy , sin A8, (35)
R, = > - AR, = B, - B .
~1 i 1 1+1 1

- 31in ABi s, COS ASi

Hence the state vector at the tip can be expressed in terms of the root vector
vy

= = v
:n(1) P

I3

n

1(o) , D o= .0 (T.-Ui) (36)
The boundary conditions reduce the & x 8 matrix to a fully populated 4 x b
frequency determinant, and the FORTRAN program VGBLADE for frequency analysis
of propeller blades is given in Ref. {9},

For a single segment blade with 22 >> w?, the deletion of the coupling
terms in (32) would cause a serious errcr of several per cent. However, the
subdivision of a blade into several segments (10 for a typical propeller)
mitigates this error. The term cosB(anw sinB) from the first of (32) is
partially recovered at each segment boundary as the rotation matrix T effect-
ively incliudes this in the second terms of (32). Thus, to first order, only
the variation of the coupling term over each segment has been ignored, Most
applications will require several segments to represent the variation of
incidence and section properties, and the decoupling approximation should not
intreduce errors more serious than the deletion of the Timoshenke corrections.
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T. RESULTS CF TESTS AND APPLICATIONS

The theory outlined in the previcus sections was used to analyse g
variety of representative problems of blade bending vibrations. The computer
programs LEADLAG, FLAP, and VGRLADE were developed for the above analysis and
are available with Ref. {9} from the authors.

7.1 Comparison with Tests

The effect of rotation speed was tested for uniform cantilevers fixed on
a rotating hub., Here the merits of the present method are highlighted since
the beam-function sclution to the exact differential equations allows the
rotating uniform beams to be tackled with only one segment. The results are
compared graphically with those obtained by Carnegie {10} which include tests
and an approximate anslysis. Fig, 5 shows the variation of the first 4 bending
frequencies with rotation speed; the improvement due to the present analysis
is gquite definite, especially for the higher modes and at the higher rotatioen
speeds.

Q . f
100k tb--}zzzm he 20} == Carnegie (10)
. ,...?.'...,.._WE__..; > A 0 g Experimental (10)
g 8 § 18k — Program VGBLADE } MODE 2
s § /
& 8o 16
P <
g i / % 14+
/
£ 6op € 12}
¥ &
% B // 'g 10+
L5
& 40t f sl
/ MODE 1 / MODE 3
L sl
¥/
20t % e -~ MODE 4
y/
= y/ 2l
-~
1 1 1 i e L i L P
) 000 3060 3000 4000 © 1000 2000 3000 4000
RPM RPM

FIG.5: variation of natural freguency with rotation speed.

7.2 A Helicopter Rigid Rotor

To test its general applicability the helicopter main rotor blade shown
in Fig. 6 was analysedy the values shown are similar to actual blades. The
fiyst test was to generate the classic spcke diagram, and two segments were used
to represent the blade without the 1 kg added mass, The results for uncoupled
lead-lag and flap are shown in Fig. T. For this blade and its fregquency-speed
range, the correction to ETB is almost entirely due to the classical term.

The addition of small balancing weights on a blade can shift freguencies
considerably. At the operating speed, Fig, 7 shows a potentially dangerous 5Q
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regonance of the second lead-lag mode, Hence two identical segments are used
for the aerodynamic portion, their interface being the location of the 1 kg

added mass. The position of the 1 kg mass was varied fromr = Tm to the tip,
and the resulting mass balancing diagram is shown in Fig. 8,

The first mede frequencies decrease as expected, but the influence of
the aaded mass on the higher modes is more complex. The increase of frequency
is due to the added stiffening effect of CF which depends on the relative ampli-
tude of the 1 kg mass. Thus the points of zero frequency change are not node
points of the eigenvector, but points where the decrease in wi due to added mass
iz matched by the added CF stiffening. TFig. 8 indicates two preferred positions,
peint A and the tip; the former would probably be selected for fatigue and other

reasons. By using two or more weights, it is possible to shift freguencies
nearly independently,

1
IElyy =15kN-m| Elyy=7KN-m GkyAz6MN |
|1, z00KN | Elyz = 1BOKNm? J2=002kg M |
9\ |m=7kgim | mz5kg/m Mz1kg i
3 o
N -
0350m 0-650m 1. 400m \L 2.600m
) | T

FIG.6: A small helicopter rigid rotor blade

[y I
W 215}
mo}fmn
500 205L
2.Leadlag i
200F" }
400 195t
g § 150l -
9 9 l
§ 300 § 120 |
g 2F
% T kot
g ’ g —\
« 200 ; i 110}
A : 4okLFmo
wor [/ / 44
s \Fiop, Wi oL tLeodlag i
1 30 I
= — _ -
% 1Leadiaqg Blade root
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FIG.7 Spoke diagram for ¢ helicopter blade.

Position of added mass (m)
FIG.8: Mass batancing diagrom.
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T.4 Spoke Diagram for Propeller Blade

High non-uniformity and significant pretwist are the salient features of
propeller blades; typical section properties for a medium-size propeller are
given in Table 1. Natural freguencies in the range(0-1500 rad/sec were deter-
mined for rotating speeds of 0-500 rad/sec.

Since different search procedures are preferred by various designers,
the program gives the option of finding the frequencies either at a number of
fixed rotation speeds, or alcng a number of Q-lines. The resulting spoke
diagram is presented in Fig. 9. Lead-lag and flap motions cannot be identified
as such due to pretwist coupiing of the two motions, This leads to features
specific to twisted blades, such as the inflection of the second-mode curve.

W ¢
1500

H

Radius | Area I . I Twist
(in} | (in2)y,.

1h,50 18 9.00 a5 35
21.75 16 5.00 95 27

29.00 | 13 | 2.5C 97 19 "
36.25 | 11 1.00 92 12 s
43,50 | 9 60 | 91 8 3
50,75 8 s 85 ! 2
58,00 T .30 Th 0 >
£65.25 6 .20 65 | -3 S
72.50 5 10 5k -6 g
79.75 | b 05 | 43 | -9 ke
87,00 | 2 01 13 | -12
Note:

1, E=10x 10% 1bf/in?, P

o =.1015 1b/in3, A mem Progrom in ref.4.
2. Blade angle B . =15°. l l l . k
' 0 100 200 300 400 BQC ?:
. Rotation speed (rud. /sec.)

Table 1. Properties of a typical FIG.9: Spoke diagram of typical propeller biade

propeller hblade

The same blade was also analysed using the computer program given in Ref.
{l}, which is based on the Rayleigh-Scuthwell coefficient. The results are
plotted on Fig. 9 for comparison. Though the twe methods agree fairly well at
low speeds, they diverge significantly at the operating speeds. Since the
Rayleigh-Southwell approximation is inherently limited to short, low speed blades,
and since it doesn't distinguish between predominantly flap and predominantly
lead-lag motions, the disagreement with our exact method is not surprising.
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9. CONCLUSIONS

The principal advantage of this semi-analytic method is the exact
representation of centrifugal forces, thus its accuracy is independent of the
speed of rotation. Although the algebra becomes lengthy, it isn't conceptually
difficult and it was relatively simple tc include shear deflection and rotatory
inertia. In practical applications this approach is attractive for its ease of
programming and reliable accuracy over a broad range of parameters. Complete
computer programs have been developed for propellers {twisted blades) and
helicopter rotor blades, and complete card copies (FORTRAN IV) accompanied with
a detailed description/Users manual are available from the authors.

The relative importance of the various corrections depends on several
quantities, but for § = 10e = 10~% (not untypical values), the shear deflection
§ accounts for 68% of the total correction, rotatory inertia Juw? amounts to 24%,
while the extra rotatory inertia term J0? contributes 8%. However, for
(= 50 radfsec, this total correction reduces the fourth frequency by only 3%,
hence for many practical applications it appears sufficient to include only the
shear deflection term.

For helicopter main rotors and other relatively slow blades where the
freguencies greatly exceed the rotational speed, the classical Timoshenko
corrections are quite accurate and the usual inclusicn ¢f them in rotor programs
l1s entirely Jjustifiable. However, for high speed blades such as some propellers
and turbine blades the extra shear deflection terms in rotating beams may
dominate the classical Timoshenko terms and yield different (even opposite)
corrections.

It was presumed that the beam parameters EI, GkA, and J are available
separately, In practice their exact computation is difficult, particularly
for 4RP and CRP materials, and specific finite element programs for these
computations have been developed {11} and reports and publications are in
Progress,

Although the physical beam considered here is an obvious simplification
of real rotor systems having pre-cone and coupled torsion-bending, this analysis
appears to be adequate for many practical problems., However, this analysis can
be extended to more complex systems, and there is no inherent difficulty with
problems such as coupled bending-torsion, or blades with swept tips. Under
certzin conditions a type of orthogonality of mode shapes can be developed, and
a full dynamic analysis is feasible,
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