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Abstract

Results of a numerical simulation for
selected spatial nap-of-the-earth manoeuvres of a
helicopter are presented. A method of inverse
dynamics has been used for this simulation. Results
of simulation are compared with courses of
parameters recorded during flights.

I ntroduction

The identification of helicopter flight
characteristics is one of the most significant
problems in the domain of flight dynamics.
Knowledge of them is very important from the
congtructional (design phase) and operational points
of view. However, the flight characteristics (or so
called flight properties) of a helicopter are rarely
well known even for aircraft, which have been used
for years. This is mostly due to limitations put on
by flight regulations. The second reason is the lack
of objective criteria for estimation of the flight
characteristics of a helicopter. The very first
attempt of developing such criteria is the ADS
norm (Aeronautical Design Sandard — Handling
Qualities Requirements for Military Rotorcraft)
introduced not so far ago /[1], [2]/.

The flight characterigtics are especialy
important for the nap-of-the-earth flight studies.
NoE flights are basic type of flights in secret
missions - for instance military or anti-terrorist - in
which a stealthy approach to the mission target,
with utilisation of a natural cover, plays a decisive
role. According to a different kind of studies from
the three factors: manoeuvrability, electronic
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interference warfare usage and armouring, the most
important for a helicopter survival in a battlefield is
the first mentioned. NoE flights almost often are
performed on a helicopter manoeuvrability limits.

Because of that the knowledge of
helicopter  flight characteristics is extremely
important, especially for newly designed aircraft -
the lack of precise and reliable data in that domain
may result in overestimation or underestimation of
the aircraft performance and, consecutively, in an
increased risk of tough missions.

Investigations of flight characteristics can
be performed by two means. The first is based on
data collected during test flights. In test flights there
are performed maneuvers of many kinds. The
dynamics of these maneuversis gradually increased
up to a helicopter performance limits. In such
flights it is difficult to keep the safety limits. Many
of helicopter constructional elements are exposed to
extreme stresses. The method itself is expensive
and hazardous. It demands a lot of experience from
test pilots. The danger is connected with
unexpected and non-typical reaction of the aircraft
to control - a snatch up or areversal-roll can occur.

Numerical simulation is the alternative
method to identify helicopter flight characterigtics.
It consists in theoretical modelling of helicopter
flight during a stated manoeuvre. Results of such
investigations have a limited credibility only. They
would be better if the applied mathematical model
of a helicopter better reflects rea physica
phenomena occurred during flight.

Practice shows that the best results of
flight properties investigations can be obtained by
simultaneous usage of both methods. Such
approach alows to improve the mathematical



model of a helicopter when results of numerical
simulation are compared with data from the flight
recorder.

At the sametime it is possible to anticipate
theoretically behaviour of a helicopter a not
precisely specified flight conditions. It makes easier
to plan and perform test flights, shows potential
hazards and gives indications about necessary
control. Beyond any doubts, simultaneous usage of
both methods gives the best results and is optimal.

1. Formulation of the problem

A nonlinear model of a helicopter is
applied for calculations where the fuselage of a
helicopter is treated as a rigid body. This model
dlows to determine liner and angular
displacements of the fuselage. Dynamics of
movable parts of the helicopter is not included into
consideration. In this case only spatial motion of
rigid fuselage forced by aerodynamic forces is
considered. These forces are produced by the main
and the tail rotors. The main rotor is considered
separately. It is treated as a cone. Only global
parameters of this cone are determined. These
parameters show position of this cone in the fixed
coordinate system. At the same time the average
values of forces and moments are calculated. All
nonlinear inertial cross-couplings are included into
consideration. The only simplifications are
connected with modelling of blades aerodynamics.
They are determined by the used method of
calculation of forces produced by blades.

This mathematical model of the helicopter
is described in detail in [4].

1.1. Dynamicsof thefuselage

Assuming, spatial motion of the helicopter
is described by:

- equations of translatory motion of the
helicopter;

- eguations of equilibrium of moments about
the centre of mass of the fuselage;

- kinematic relations enabling to determine
spatial configuration of the helicopter and
its trgjectory.

Finaly the set of twelve nonlinear differential

equations is obtained. It can be presented in the
following form:
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ﬁz X =G (t,X,S)
dt
where: X" =(U,V,W,P,Q,R,0,®,¥,X,,Y,,Z,)"
is the vector of the helicopter motion parameters.
We have:
- linear velocities U,V,W and angular
velocities of the fuselage P,Q, R;

- angles and coordinates describing spatial
orientation and position of the fuselage
@,(D,LIJ’ Xgiyg,zg,

S=(8,,K<.Ns, P, )" is the vector of control
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parameters:
- 90 - is the angle of collective pitch of the main

rotor;

- K, - is the control angle in the longitudinal
motion;

- I, -isthecontrol anglein the lateral motion;

- ¢, -istheangle of collective pitch of the tail
rotor.

1.2. Dynamics of the angular motion of the main
rotor and the model of regulation of
rotation

Dynamics of the angular motion of the
main rotor is also considered. The phenomena of
deceleration and acceleration of engines is included
into account.

For the purpose of taking into account the
dynamics of angular motion of the main rotor the
following equation is added:

I, =N, +NpS 1.2
where:
|, - theinertiamoment of the main rotor;

N, - the drag moment of aerodynamics forces;
N ps - the moment of power system.

It is assumed that the angular velocity at
thetime t, isequal to the nominal angular velocity
w,. If a the next moment t,,, =t, +At this

velocity is  different and  equal to
w(t,,, ) = w, + Aw and than the reaction of the

power transmission system is induced. The change
of themoment N isequal to:



ON

AN =—"Aw (1.3)
® dw
The derivative ON s may be transformed

w
as follows:

ONy _ONp ot _ 0N At _ 0N (1.4)

o — b

0w ot dw Ot Aw At w(t,,)-w,
Two different values of the derivative
% ae used - for the acceleration and
ot

deceleration cases. They have been obtained
experimentally.

In spite of its simplicity the model is
sufficient for the anaysis of many different
manoeuvres.

Findly, a set of thirteen differential

equations is obtained:
dx
—=X=G(,X,S)
dt

where X =(U,V,W,P,Q,R0,®,W,x,,Y,,Z,,w)"

isthefina vector of helicopter motion parameters.

(1.5)

1.3. Dynamics of the main rotor

Motions of blades are considered
separately, simultaneously with motions of a
fuselage - average values of forces and moments
produced by the main rotor and acting on the
fuselage are calculated. The position of the main
rotor cone is determined by resolving a set of
nonlinear algebraic equations:

L(X,S,B)B=F(X,S,B) (16
where 3 = (ao,ai,bl) is a vector determining
orientation of the conein relation to afuselage.

2. Inver se simulation algorithm

In this paper, a specific numerical method
of asolution of the inverse problem is applied. It is
based on linearization of the considered problem
around a current position of the object in the state
space. This method was sucesfully applied with
success to dynamic flight problems of aeroplanes
and helicopters [5]-[9]. Its description is presented
below.

The set (1.5) can be integrated using one of
the numerical methods (for instance the Runge-
Kutta method).
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The output vector Y OO™ is uniquely
determined by the vector of flight parameters X .
Y =D(X) (2.1
In the present considerations both vectors are the
same;
Y=X (2.2
The set (1.5) is completed by the following initial
conditions:
X(ty) = X, (2.3
In the considered case, the fundamental
problem is to determine the control vector S(t) for
the defined output vector Y, (t), which describes

congtraints of the object motion.
Problem is made discrete for successive
time points t,...t;,t.,,...ty. For each instant

t,.,, the vector Y,(t,,,) is defined by constraints
of motion. The vector X(t,,,) isalso caculated as

a result of integration of the set (1.5) in the time
interval from t. to f.,. This interva is

determined in the way which preserves the stability
of final solution. Because the described procedure
requires the one constant time step and because of a
nonlinearity of the problem, this step is determined
by numerical experiments. This means that several
simulations should be performed with decreasing
time intervals up to the moment when two
convergent solutions are obtained. The method isin
agreement with the Runge-Kutta method with
different time interval. The time interval is

dependent upon every individua problem.
According to (1.5), because the derivative dX

dt
depends on the control vector S(t,), the

calculated value X(t,,,) aso depends on this
control vector. The vector Y (t,,,) determined on

the basis of relation (1.7) has to be equal to
specified value Y,(t,,). Difference between the

calculated value of the vector Y(t,,,) and the
constrained vector Y,(t,,,) is the basis for the
calculation of a corrected value of control vector
S(t) -

This procedure has an iterative character. It
means that for each time point t, , a finite number

of iterations are performed till the assumed
compatibility between vectors Y and Y, s
obtained. In the i-th step of iteration the following
operations are performed:



1 Qn the basis of a known X(t,) and
S™(t,) making use of (15), the derivative is
calculated:

X™ () =Glt, X(t), S™ ()] (249
2. The value of flight parameters and output
vector at the time point t,., is determined by
numerical integration of relation (2.4):

tk*rl

XM (tea) = X(t) + [XTt)dt 29

Y™ (t.1) = DIX™ (tn)] (2.6)
3. The difference between defined output
vector Y,(t,,,) and the vector calculated from (2.6)
is determined:

AY ™ (te) = Y(ten) =Y P (bn) @D
If this difference is smaller then the specified
accuracy &g, caculations are continued at next
time point t,,, taking as initial data the vector of

flight parameters and the control vector determined
a time t,,. If this difference AY™(t,,,) is

greater then &, the improved value of control
vector S™¥(t,) is caculated. For this purpose

Newton method is applied. According to this
method an expression for S™?(t,) isasfollows:
S (t) =S (1) +I7AY P (te) (28
where J is the Jakobian.
determined by formula:
_ AV ™ ()] _ Y™ (t.n)
‘]ii (t) = (m) - (m)
as™(t)  as™(,)
Because the considered problem is solved
numerically, then the following differential scheme
is applied:
‘]ij t)= Yl(m)[tk+1' Sﬁm) (t)+ 5S|(m)] _Y|(m)[tk+1r Sfm)(tk) _&fm)]
255"
The expression (2.8) is a result of the
following procedure:
The output vector Y™(t,,,) is calculated at

Its elements are

(2.9)

the time point t,,, at mrth iteration. It depends on
the flight parameters vectors X (t, ) and the control
vector S™(t,), which are determined at the
previous time point {, .

If the calculations are performed again for a

modified value of the control vector:
S™I(t, ) =S (t,)+AS™(t), (210
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one can obtain a new value of the output vector
Y ™(t,,,) for the (m+1)-th iteration. Making use

of the Taylor series and taking into account only
linear part of the expansion in series, one can
assume that:

Y (ten) =Y () +IAST (1) (212)
where Jacobian elements are determined by the
relation (2.9). Using relation (2.11), &fter
elementary transformations, one can obtain formula
(2.8), which allows to calculate the control vector at
time t, for the (m+1)-th iteration S™V(t,). Itis

assumed that the calculated value of the output
vector Y™V (t,,,) has to be equa to the

determined value Y™ (t..,)=Y,(t.,). It is

taken into account in therelation (2.7).

3. Simulation of selected helicopter
spatial manoeuvres

Many numerical simulations for different
nap-of-the-earth manoeuvres were performed. They
were: bob up and bob down, bob up to hover,
acceleration and deceleration, slalom, sidestep and
turn in hover. Results of some of them for a Polish
helicopter Sokol are shown below. The presented
above method of inverse dynamics analysis was
used for this simulation. The time courses of
selected recorded flight parameters were taken as
the congtraints. Selection of these parameters was
performed in order to the complete description of
certain aircraft manoeuvres. But for all cases, the
following role was obligated: among four selected
parameters, which were the constraints, two were
the longitudinal parameters (two from U, W, Q, ©),
and two other were connected with lateral motion
(two fromV, P, R, @, V).

3.1. Thebob up and bob down manoeuvre

This manoeuvre is characterised by the
rapid changes of the hover dtitude. At the
beginning this altitude increases. Next it is
stabilized for a least two seconds. Finally the
dtitude decreases. The manoeuvre like this is
particularly important for the military missions — it
corresponds to the attack with fixed guns. As it was
shown in [1] attacks performed during the



horizontal flight or during the hover are the most
effective methods of attack for military helicopters.
For this reason the ability of the helicopter to
perform a rapid jump from behind an utilised
protection and than hide again is very important.
The time when the helicopter is over the protection
should be minimised. It is limited by the time
necessary to detect and to recognise a target and
time of aiming.

It was assumed that the considered bob up
and bob down manoeuvre was performed on the
verticad plane without rolling and yawing.
According to these conditions the angular velocities
P and R were equd to zero:

P(t), R(t)=0 (3.1

Additionally one assumed that the pitch
angle © is constant. Under this condition it is
easier to localise the target and to destroy it. This
means that the pitching angular velocity is equal to
zero:

Q()=0 (32
The last constraint (connected with the longitudinal
motion) describes changes of the vertical velocity
(3.3):

E 0 for t<t, oraz t>t 5 + Ty
O ﬁ S&Hﬂ_gmnmﬂ+g for t St<t o +Tow
O 16 aw dw
E W, for tow + Tow St <ty
= W, t-t, t-t
W E V%*l—é%ns&rT'"A*QCOSZTmA*SE for oy St <ty + T
0 dzw dzw
o W, +W, for tow + Tyaw St<tigy
W, t-t, t-t
B,\/l+\,\/2 45 37 —mW _ googy—mW 4 g| for toaw St<tay + T
g 16 Taaw Taaw

where t,, corresponds to the beginning of increase
or decrease of the parameter. T, isthe period of the
change and W are amplitudes of successive
changes. The sum W, +W, +W, should be equal
to zero. This guarantees that the manoeuvre is
finished at the hover.

All these parameters were determined on
the basis of data recorded during real flight. It was
assumed that: t_,, =0s, Ty =2S, tow =2S,
Toow =4S, tigy =6S, Ty =25, W, =-6m/s,
W, =125m/s, W, =-6.5m/s.

Figures 2, 3, 5, 6, 8 show time courses of
selected flight parameters obtained from the
numerical simulation. They are compared with
courses recorded during the test flight /fig.1, 4, 7.
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Fig.1 Recorded altitude, collective pitch and course

Comparing courses of parameters obtained
from the simulation and from the flight one can
observe the good agreement between them.
Characters of changes are similar and the extreme
values are amost the same. Differences between
courses are the result of simplifications of the
applied model. The reconstruction of the flight
parameters, which were used as the constraints
/(3.1)+(3.3)/, is aso only approximate.
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The bob up and bob down manoeuvre is
performed by suitable changes of the collective
pitch 8, /fig.1, 3/. At the beginning this angle is
increased and the helicopter starts climbing /fig.1,
2/. Because the drag moment grows, the angular
velocity of the main rotor decreases /fig.4, 6/. The
power system reacts by increasing the moment
produced by this system /fig.4, 5/. Before the
maximum altitude is reached the pilot starts to
decrease @,. The minimum of this control angle is

obtained when the helicopter reaches the maximum
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dtitude. When the helicopter is faling the pilot
starts to increase 6, to brake the falling at a fixed

atitude. During this manoeuvre the rotation of the
main rotor and the moment of the power system
changes. Changes of the average value of the
flapping motion /fig.7, 8/ corresponds to changes of
the collective pitch 8,,.

3.2. Thefailure of the helicopter engine

The failure of the power system is one of
the most dangerous cases of aflight. After a decay
(total or partial) of the moment produced by the
power system many characteristic symptoms occur
which are very informative for a pilot. They are as
follows:

- Noise of the engines decreases.

- The angular velocity of the man rotor
decreases. In only one second it obtains the
minimal acceptable value;

- The course of the helicopter changes
immediately because of the change of the drag
moment forced by the main rotor. /For the
Sokol helicopter its fuselage turnsright/.

- The helicopter is rolling right because of the
left sidedlip.

- The pitching angle of the fuselage decreases
(nose down) because of a decrease of the thrust
of the main rotor. This causes that an angle of
attack of the stabiliser is changed.

- The altitude of flight decreases as the result of
adrop of the thrust.

Consequences of the failure of the power
system depend on the phase of flight, during which
the failure appears. The most hazardous is the case
when the failure occurs during the hover. The
failure appearing during the horizontal flight is less
dangerous. Failures appearing during other phases
of flight are considered separately. The velocity of
aflight has a very important influence on results of
thefailure.

The most important task after the failure of the
power system is a sdafe landing. Rarely the
helicopter can continue its flight with one efficient
engine. The emergency landing could be performed
in different ways depending on the kind of failure
and on the phase of flight. But in all cases the zone,
where alanding field may be found, is significantly
limited. In the case of the low flight the natural



obstracles may be an additional difficulty. They "

may confine visibility. Because of it, in some cases

the instantaneous increase of flight altitude may be ) !
desired — looking for any convenient landing £ ] \ 'y f"-\
ground may be necessary. ‘ u M LA AN Y

Some numerical simulations of these types of

failures were performed. Their results were in

agreement with characteristic symptoms described _ o _
above. On the basis of these simulations the Fig.11 Recorded pitching velocity Q(t)
scenario of the real flight was specified. Next, test

flights with the engines temporarily turned off were . A\

reslised. Selected recorded flight and control 5 4 [ NN

parameters were used in numerical reconstruction £, / \_,‘

of these flights. Results of one of these simulations 0 \\/ ;" AN -

are presented below. They are compared with the i
time courses recorded during flight. ! sl
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3.3. The hurdle —hop manoeuvre

The hurdle-hop is a terrain following
manoeuvre. It is applied to evade detection whilst
avoiding obstacles at low level in nap-of-the-earth
flight. This manoeuvre should be performed
symmetrically with sidestep constrained to be zero.

For the purpose of simulation it was
assumed that the manoeuvre was performed on the
vertical plane. It meant that the constraints (3.1)
were obligated. The two other constraints connected
with the longitudina motion were defined as
follows:

- theadltitude of flight:

0 0 da t<tg,

0 H t- t-
o - U g oy i g dla ty, St<t, +Tu.
H 16 T diH
H(t)=g H, dla ty, +T,, St<t,,
H, -H t- t-
g—|1+#§05&7%—900&7ﬁ+8% dla ty, St<t, +T,
d2H d2H
=] H, da t=t ,, +T,,
the pitching angular velocity:
O 0 dla t<tmQ, t>tmo +Tdw
|
e e
B ?;E;os’ﬁ-z_r —9cos:z_|_ +8E dla tmo <t <tmo + Taw
d1Q d1Q
B Q dia tmo +TaQ <t <tmeo
| FFx t=tmee e
O - —-9cost +8| dla tmo <t <tmQ + Te
O 16 Tax Tax
Q(t)—g e dia treo +Tazo < t <o
D Q;—_FQj =t =t
Qe+ 16 %03%13 —9cos-zT +8] datme <t <t +Tox
al Ee) (5]
O Q@ dla tme +Tox <t <tmo
|
e e
E QC—QTQ:OSBH —9cosr +8@ dlatme <t <tme +TaeQ

These formulas were defined on the basis
of the time courses recorded during the test flight.
They are shown in Figs.25, 28.
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Conclusions

was applied for determining the controls, which are

A relatively simple numerical methodology

necessary to perform a congrained flight for

26.10

helicopter. On the basis of the performed
calculations the following conclusions can be
formulated:

1. During numerical calculations a very high
accuracy of determining the output vector
is required.

This accuracy is strictly limited by errors
of numerical rounding.

High gradients or discontinuities of
congtraints are causes of the determined
controls broadening.

The method was not succeeded in
determining control signals on the basis of
trgectory of flight.
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