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Abstract

Results of a numerical simulation for
selected spatial nap-of-the-earth manoeuvres of a
helicopter are presented. A method of inverse
dynamics has been used for this simulation. Results
of simulation are compared with courses of
parameters recorded during flights.

Introduction

The identification of helicopter flight
characteristics is one of the most significant
problems in the domain of flight dynamics.
Knowledge of them is very important from the
constructional (design phase) and operational points
of view. However, the flight characteristics (or so
called flight properties) of a helicopter are rarely
well known even for aircraft, which have been used
for years. This is mostly due to limitations put on
by flight regulations. The second reason is the lack
of objective criteria for estimation of the flight
characteristics of a helicopter. The very first
attempt of developing such criteria is the ADS
norm (Aeronautical Design Standard – Handling

Qualities Requirements for Military Rotorcraft)
introduced not so far ago /[1], [2]/.

The flight characteristics are especially
important for the nap-of-the-earth flight studies.
NoE flights are basic type of flights in secret
missions - for instance military or anti-terrorist - in
which a stealthy approach to the mission target,
with utilisation of a natural cover, plays a decisive
role. According to a different kind of studies from
the three factors: manoeuvrability, electronic

interference warfare usage and armouring, the most
important for a helicopter survival in a battlefield is
the first mentioned. NoE flights almost often are
performed on a helicopter manoeuvrability limits.

Because of that the knowledge of
helicopter flight characteristics is extremely
important, especially for newly designed aircraft -
the lack of precise and reliable data in that domain
may result in overestimation or underestimation of
the aircraft performance and, consecutively, in an
increased risk of tough missions.

Investigations of flight characteristics can
be performed by two means. The first is based on
data collected during test flights. In test flights there
are performed maneuvers of many kinds. The
dynamics of these maneuvers is gradually increased
up to a helicopter performance limits. In such
flights it is difficult to keep the safety limits. Many
of helicopter constructional elements are exposed to
extreme stresses. The method itself is expensive
and hazardous. It demands a lot of experience from
test pilots. The danger is connected with
unexpected and non-typical reaction of the aircraft
to control - a snatch up or a reversal-roll can occur.

Numerical simulation is the alternative
method to identify helicopter flight characteristics.
It consists in theoretical modelling of helicopter
flight during a stated manoeuvre. Results of such
investigations have a limited credibility only. They
would be better if the applied mathematical model
of a helicopter better reflects real physical
phenomena occurred during flight.

Practice shows that the best results of
flight properties investigations can be obtained by
simultaneous usage of both methods. Such
approach allows to improve the mathematical
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model of a helicopter when results of numerical
simulation are compared with data from the flight
recorder.

At the same time it is possible to anticipate
theoretically behaviour of a helicopter at not
precisely specified flight conditions. It makes easier
to plan and perform test flights, shows potential
hazards and gives indications about necessary
control. Beyond any doubts, simultaneous usage of
both methods gives the best results and is optimal.

1. Formulation of the problem

A nonlinear model of a helicopter is
applied for calculations where the fuselage of a
helicopter is treated as a rigid body. This model
allows to determine linear and angular
displacements of the fuselage. Dynamics of
movable parts of the helicopter is not included into
consideration. In this case only spatial motion of
rigid fuselage forced by aerodynamic forces is
considered. These forces are produced by the main
and the tail rotors. The main rotor is considered
separately. It is treated as a cone. Only global
parameters of this cone are determined. These
parameters show position of this cone in the fixed
coordinate system. At the same time the average
values of forces and moments are calculated. All
nonlinear inertial cross-couplings are included into
consideration. The only simplifications are
connected with modelling of blades aerodynamics.
They are determined by the used method of
calculation of forces produced by blades.

This mathematical model of the helicopter
is described in detail in [4].

1.1. Dynamics of the fuselage

Assuming, spatial motion of the helicopter
is described by:

- equations of translatory motion of the
helicopter;

- equations of equilibrium of moments about
the centre of mass of the fuselage;

- kinematic relations enabling to determine
spatial configuration of the helicopter and
its trajectory.

Finally the set of twelve nonlinear differential
equations is obtained. It can be presented in the
following form:

),,(**
*

SXtGX
dt

Xd == �        (1.1)

where: T
ggg zyxRQPWVUX ),,,,,,,,,,,(* ΨΦΘ=

is the vector of the helicopter motion parameters.
We have:
- linear velocities WVU ,,  and angular

velocities of the fuselage RQP ,, ;

- angles and coordinates describing spatial
orientation and position of the fuselage

ΨΦΘ ,, , ggg zyx ,, ;

T
trssS ),,,( 0 ϕηκθ=  is the vector of control

parameters:

-   0θ  - is the angle of collective pitch of the main

rotor;

-  sκ  - is the control angle in the longitudinal

motion;

-    sη  - is the control angle in the lateral motion;

-   trϕ  - is the angle of collective pitch of the tail

rotor.

1.2. Dynamics of the angular motion of the main
rotor and the model of regulation of
rotation

Dynamics of the angular motion of the
main rotor is also considered. The phenomena of
deceleration and acceleration of engines is included
into account.

For the purpose of taking into account the
dynamics of angular motion of the main rotor the
following equation is added:

psdmr NNI +=ω
�

         (1.2)

where:

mrI  - the inertia moment of the main rotor;

dN  - the drag moment of aerodynamics forces;

psN  - the moment of power system.

It is assumed that the angular velocity at

the time kt  is equal to the nominal angular velocity

0ω . If at the next moment ttt kk ∆+=+1  this

velocity is different and equal to

ωωω ∆+=+ 01 )t( k  and than the reaction of the

power transmission system is induced. The change

of the moment psN  is equal to:
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Two different values of the derivative

t

N ps

∂
∂

 are used  - for the acceleration and

deceleration cases. They have been obtained
experimentally.

In spite of its simplicity the model is
sufficient for the analysis of many different
manoeuvres.

Finally, a set of thirteen differential
equations is obtained:

),,( SXtGX
dt

Xd == �   (1.5)

where T
ggg zyxRQPWVUX ),,,,,,,,,,,,( ωΨΦΘ=

is the final vector of helicopter motion parameters.

1.3. Dynamics of the main rotor

Motions of blades are considered
separately, simultaneously with motions of a
fuselage - average values of forces and moments
produced by the main rotor and acting on the
fuselage are calculated. The position of the main
rotor cone is determined by resolving a set of
nonlinear algebraic equations:

),S,X(F),S,X(L̂ βββ =        (1.6)

where ( )110 ,, baa=β  is a vector determining

orientation of the cone in relation to a fuselage.

2. Inverse simulation algorithm

In this paper, a specific numerical method
of a solution of the inverse problem is applied. It is
based on linearization of the considered problem
around a current position of the object in the state
space. This method was sucesfully applied with
success to dynamic flight problems of aeroplanes
and helicopters [5]-[9]. Its description is presented
below.

The set (1.5) can be integrated using one of
the numerical methods (for instance the Runge-
Kutta method).

The output vector yn
Y ℜ∈  is uniquely

determined by the vector of  flight parameters X .
)( XDY =  (2.1)

In the present considerations both vectors are the
same:

XY = (2.2)
The set (1.5) is completed by the following initial
conditions:

00 )( XtX =  (2.3)

In the considered case, the fundamental
problem is to determine the control vector )(tS  for

the defined output vector )(tYz , which describes

constraints of the object motion.
Problem is made discrete for successive

time points Nkk tttt ..., ,... , 10 + . For each instant

1+kt , the vector )( 1+kz tY  is defined by constraints

of motion. The vector )( 1+ktX  is also calculated as

a result of integration of the set (1.5) in the time

interval from kt  to 1+kt . This interval is

determined in the way which preserves the stability
of final solution. Because the described procedure
requires the one constant time step and because of a
nonlinearity of the problem, this step is determined
by numerical experiments. This means that several
simulations should be performed with decreasing
time intervals up to the moment when two
convergent solutions are obtained. The method is in
agreement with the Runge-Kutta method with
different time interval. The time interval is
dependent upon every individual problem.

According to (1.5), because the derivative 
dt
Xd

depends on the control vector )( ktS ,  the

calculated value )( 1+ktX  also depends on this

control vector. The vector )( 1+ktY  determined on

the basis of relation (1.7) has to be equal to
specified value )( 1+kz tY . Difference between the

calculated value of the vector )( 1+ktY  and the

constrained vector )( 1+kz tY  is the basis for the

calculation of a corrected value of control vector
)( ktS .

This procedure has an iterative character. It

means that for each time point kt , a finite number

of iterations are performed till the assumed
compatibility between vectors  Y  and zY   is

obtained. In the i-th step of iteration the following
operations are performed:
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1. Qn the basis of a known )( ktX  and

)()(
k

m tS  making use of (1.5), the derivative is

calculated:

)](),(,[)( )()(
k

m
kkk

m tStXtGtX =�     (2.4)

2. The value of flight parameters and output

vector at the time point 1+kt  is determined by

numerical integration of relation (2.4):
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3. The difference between defined output
vector )( 1+kz tY  and the vector calculated from (2.6)

is determined:

)()()( 1
)(

11
)(

+++ −=∆ k
m

kzk
m tYtYtY  (2.7)

If this difference is smaller then the specified

accuracy Yε , calculations are continued at next

time point 2+kt  taking as initial data the vector of

flight parameters and the control vector determined

at time 1+kt . If this difference )( 1
)(

+∆ k
m tY  is

greater then Yε  the improved value of control

vector )()1(
k

m tS +  is calculated. For this purpose

Newton method is applied. According to this
method an expression for )()1(

k
m tS +  is as follows:
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where J  is the Jakobian. Its elements are

determined by formula:
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Because the considered problem is solved
numerically, then the following differential scheme
is applied:
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The expression (2.8) is a result of the
following procedure:

The output vector )( 1
)(

+k
m tY  is calculated at

the time point 1+kt  at m-th iteration. It depends on

the flight parameters vectors )( ktX and the control

vector )()(
k

m tS , which are determined at the

previous time point kt .

If the calculations are performed again for a
modified value of the control vector:

)()()( )()()1(
k

m
k

m
k

m tStStS ∆+=+ ,    (2.10)

one can obtain a new value of the output vector

)( 1
)1(

+
+

k
m tY  for the (m+1)-th iteration. Making use

of the Taylor series and taking into account only
linear part of the expansion in series, one can
assume that:

)()()( )(
1

)(
1

)1(
k

m
k

m
k

m tStYtY ∆+= ++
+ J  (2.11)

where Jacobian elements are determined by the
relation (2.9). Using relation (2.11), after
elementary transformations, one can obtain formula
(2.8), which allows to calculate the control vector at

time kt  for the (m+1)-th iteration )()1(
k

m tS + . It is

assumed that the calculated value of the output
vector )( 1

)1(
+

+
k

m tY  has to be equal to the

determined value )()( 11
)1(

++
+ = kzk

m tYtY . It is

taken into account in the relation (2.7).

3. Simulation of selected helicopter
spatial manoeuvres

Many numerical simulations for different
nap-of-the-earth manoeuvres were performed. They
were: bob up and bob down, bob up to hover,
acceleration and deceleration, slalom, sidestep and
turn in hover. Results of some of them for a Polish
helicopter Sokol are shown below. The presented
above method of inverse dynamics analysis was
used for this simulation. The time courses of
selected recorded flight parameters were taken as
the constraints. Selection of these parameters was
performed in order to the complete description of
certain aircraft manoeuvres. But for all cases, the
following role was obligated: among four selected
parameters, which were the constraints, two were
the longitudinal parameters (two from U, W, Q, Θ ),
and two other were connected with lateral motion
(two from V, P, R, Φ, Ψ).

3.1. The bob up and bob down manoeuvre

This manoeuvre is characterised by the
rapid changes of the hover altitude. At the
beginning this altitude increases. Next it is
stabilized for at least two seconds. Finally the
altitude decreases. The manoeuvre like this is
particularly important for the military missions – it
corresponds to the attack with fixed guns. As it was
shown in [1] attacks performed during the
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horizontal flight or during the hover are the most
effective methods of attack for military helicopters.
For this reason the ability of the helicopter to
perform a rapid jump from behind an utilised
protection and than hide again is very important.
The time when the helicopter is over the protection
should be minimised. It is limited by the time
necessary to detect and to recognise a target and
time of aiming.

It was assumed that the considered bob up
and bob down manoeuvre was performed on the
vertical plane without rolling and yawing.
According to these conditions the angular velocities
P and R were equal to zero:

0)(),( =tR   tP (3.1)

Additionally one assumed that the pitch
angle Θ  is constant. Under this condition it is

easier to localise the target and to destroy it. This
means that the pitching angular velocity is equal to
zero:

0)( =tQ  (3.2)

The last constraint (connected with the longitudinal
motion) describes changes of the vertical velocity
(3.3):
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where mt  corresponds to the beginning of increase

or decrease of the parameter. dT  is the period of the

change and iW  are amplitudes of successive

changes. The sum 321 WWW ++  should be equal

to zero. This guarantees that the manoeuvre is
finished at the hover.

All these parameters were determined on
the basis of data recorded during real flight. It was
assumed that: st Wm 01 = , sT Wd 21 = , st Wm 22 = ,

sT Wd 42 = , st Wm 63 = , sT Wd 23 = , smW /61 −= ,

smW /5.121 = , smW /5.63 −= .

Figures 2, 3, 5, 6, 8 show time courses of
selected flight parameters obtained from the
numerical simulation. They are compared with
courses recorded during the test flight /fig.1, 4, 7/.

Fig.1 Recorded altitude, collective pitch and course
Comparing courses of parameters obtained

from the simulation and from the flight one can
observe the good agreement between them.
Characters of changes are similar and the extreme
values are almost the same. Differences between
courses are the result of simplifications of the
applied model. The reconstruction of the flight
parameters, which were used as the constraints
/(3.1)÷(3.3)/, is also only approximate.
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Fig.2 Altitude of flight - simulation
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Fig.3 Collective pitch of the main rotor - simulation

Fig.4 Recorded moments of engines and angular
velocity of the main rotor
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Fig.5 Moment of the power system - simulation
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Fig.6 Angular velocity of the main rotor - simulation

Fig.7 Recorded flapping β ,  lagging ς  of the blade
end course of flight
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Fig.8 Flapping β  - simulation

The bob up and bob down manoeuvre is
performed by suitable changes of the collective
pitch 0θ  /fig.1, 3/. At the beginning this angle is

increased and the helicopter starts climbing /fig.1,
2/. Because the drag moment grows, the angular
velocity of the main rotor decreases /fig.4, 6/. The
power system reacts by increasing the moment
produced by this system /fig.4, 5/. Before the
maximum altitude is reached the pilot starts to
decrease 0θ . The minimum of this control angle is

obtained when the helicopter reaches the maximum

altitude. When the helicopter is falling the pilot
starts to increase 0θ  to brake the falling at a fixed

altitude. During this manoeuvre the rotation of the
main rotor and the moment of the power system
changes. Changes of the average value of the
flapping motion /fig.7, 8/ corresponds to changes of
the collective pitch 0θ .

3.2. The failure of the helicopter engine

The failure of the power system is one of
the most dangerous cases of a flight. After a decay
(total or partial) of the moment produced by the
power system many characteristic symptoms occur
which are very informative for a pilot. They are as
follows:
- Noise of the engines decreases.
- The angular velocity of the main rotor

decreases. In only one second it obtains the
minimal acceptable value;

- The course of the helicopter changes
immediately because of the change of the drag
moment forced by the main rotor. /For the
Sokol helicopter its fuselage turns right/.

- The helicopter is rolling right because of the
left sideslip.

- The pitching angle of the fuselage decreases
(nose down) because of a decrease of the thrust
of the main rotor. This causes that an angle of
attack of the stabiliser is changed.

- The altitude of flight decreases as the result of
a drop of the thrust.
Consequences of the failure of the power

system depend on the phase of flight, during which
the failure appears. The most hazardous is the case
when the failure occurs during the hover. The
failure appearing during the horizontal flight is less
dangerous. Failures appearing during other phases
of flight are considered separately. The velocity of
a flight has a very important influence on results of
the failure.

The most important task after the failure of the
power system is a safe landing. Rarely the
helicopter can continue its flight with one efficient
engine. The emergency landing could be performed
in different ways depending on the kind of failure
and on the phase of flight. But in all cases the zone,
where a landing field may be found, is significantly
limited. In the case of the low flight the natural
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obstracles may be an additional difficulty. They
may confine visibility. Because of it, in some cases
the instantaneous increase of flight altitude may be
desired – looking for any convenient landing
ground may be necessary.

Some numerical simulations of these types of
failures were performed. Their results were in
agreement with characteristic symptoms described
above. On the basis of these simulations the
scenario of the real flight was specified. Next, test
flights with the engines temporarily turned off were
realised. Selected recorded flight and control
parameters were used in numerical reconstruction
of these flights. Results of one of these simulations
are presented below. They are compared with the
time courses recorded during flight.

Three angular velocities )(tP , )(tQ ,

)(tR  and the linear velocity )(tW   were applied as

the constraints. The spline method was used to
define these constraints. Because the velocity )(tW

had not been recorded, therefore it was determined
on the basic of the time course of the normal
overload )(tN z :

ττ dNtW
t

o

z∫ −= ]1)([)(             (3.3)

During the experimental flight the power
of engines was rapidly decreased to the minimal
value. Pilot observed reactions of the helicopter. He
paid the peculiar attention to the angular velocity of
the main rotor, rolling and yawing of the helicopter.
All flight and control parameters were recorded.
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Fig.9 Recorded rolling velocity )(tP
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Fig.10 Rolling velocity )(tP  - simulation
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Fig.11 Recorded pitching velocity )(tQ
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Fig.12 Pitching velocity )(tQ  - simulation
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Fig.13 Recorded yawing velocity )(tR
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Fig.14 Yawing velocity )(tR  - simulation
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Fig.15 Recorded overload )(tN z
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Fig.16 Overload )(tN z  - simulation
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Fig.17 Recorded flight velocity )(tV
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Fig.18 Flight velocity )(tV  - simulation

�

� �

� �

	 �


 �

� �

� �

 �

� �

� �

� 	 � � � � � �

� ��

�
�
��
�

Fig.19 Recorded power of engines
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Fig.20 Power of engines - simulation
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Fig.21 Recorded rotation of the main rotor
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Fig.22 Rotation of the main rotor - simulation
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Fig.23 Recorded collective pitch
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Fig.24 collective pitch - simulation

3.3. The hurdle – hop manoeuvre

 The hurdle-hop is a terrain following
manoeuvre. It is applied to evade detection whilst
avoiding obstacles at low level in nap-of-the-earth
flight. This manoeuvre should be performed
symmetrically with sidestep constrained to be zero.

For the purpose of simulation it was
assumed that the manoeuvre was performed on the
vertical plane. It meant that the constraints (3.1)
were obligated. The two other constraints connected
with the longitudinal motion were defined as
follows:
- the altitude of flight:
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the pitching angular velocity:
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These formulas were defined on the basis
of the time courses recorded during the test flight.
They are shown in Figs.25, 28.
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Fig.25 Recorded altitude, flight velocity and normal
overload

V  [ m / s ]

1 5 .0 0

1 7 .0 0

1 9 .0 0

2 1 .0 0

2 3 .0 0

2 5 .0 0
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Fig.26 Flight velocity - simulation
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Fig.27 Altitude of flight - simulation

Fig. 28 Recorded pitching velocity and pitch angle
Θ  [deg]
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Fig. 29 Pitch angle - simulation

Fig.30 Moments of engines and angular velocity of
the main rotor

Mun [Nm]

0.000

    5000.

    10000.

    15000.

    20000.

    25000.

    30000.

    35000.

0.00 2.00 4.00 6.00 8.00 10.00 12.00

t [s]

Fig.31 Moments of engines - simulation

Fig. 32 Recorded collective pitch
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Fig. 33 Collective pitch - simulation
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Fig. 34 Recorded control angle in the longitudinal
motion
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Fig. 35 Control angle in the longitudinal motion -
simulation

Fig. 36 Recorded flapping angle of the blade
β  [deg]
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Fig. 37 Flapping angle of the blade - simulation

Conclusions

A relatively simple numerical methodology
was applied for determining the controls, which are
necessary to perform a constrained flight for

helicopter. On the basis of the performed
calculations the following conclusions can be
formulated:

1. During numerical calculations a very high
accuracy of determining the output vector
is required.

2. This accuracy is strictly limited by errors
of numerical rounding.

3. High gradients or discontinuities of
constraints are causes of the determined
controls broadening.

4. The method was not succeeded in
determining control signals on the basis of
trajectory of flight.
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