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Abstract 

Relatively little research has been done to 
determine the effects of blade flexibility on helicopter 
control response in the frequency range of 0.05 to 1.0 
per rev. Accurate predictions of the coupled rotor -
body dynamics in this frequency range is of 
importance as the response bandwidth of modern 
helicopters continues to increase. This paper 
describes a novel technique for the development of 
analytical (non-numerical) equations for the coupled 
dynamics of the fuselage and the flexible rotor blades. 
Simplified subsets of the full equations are used to 
elucidate the physical mechanisms by which blade 
flexibility influences the response of vertical 
acceleration, yaw rate, and roll rate to on-axis control 
inputs for articulated rotor helicopters in hover. The 
effects are generally shown to be small, but not 
inconsequential, especially those effects associated 
with a powerful lag damper. The use of nonphysical 
hinge springs and/or dampers, or other variations in 
physical parameters of a rigid blade model, is shown 
to be adequate to account for some, but not all, of the 
observed effects. 

Introduction 

Blade flexibility has been the subject of 
considerable research in the vertical flight community 
over the past 40 years or more. From the perspective 
of flight dynamics, a convenient way to organize and 
review previous research efforts is to group them 
according to the range of frequencies in which the 
analyses are intended w be applicable, as shown 
graphically in Figure 1, where frequencies have been 
normalized by rotor RPM. A brief review of the 
significant results of each of these groups will 
motivate the present work. 

The most basic characterization of the effects 
of blade flexibility on helicopter flight dynamics, 
valid at low frequencies (below about 0.1 per rev), 
may be derived using the classical quasi-static rotor 
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analysis. From this point of view, blade flexibility 
impacts the steady-state response of the rotor to 
control inputs and body motions and consequently 
.changes the forces and moments transmitted to the 
hub. Because such analyses are quasi-steady, they do 
not, by definition, include coupling of the rotor 
dynamics to the body motion. Therefore, the rotor 
calculations may be performed "off-line", effectively 
producing a map of the rotor forces and moments 
which may be compared to the map for a rotor with 
rigid blades. The differences between the two maps 
are indicative of "flexibility effects" and have 
implications for calculation of the trim condition and 
the low frequency modes of the body motion. An 
example is the effect of torsional deflections due to a 
chordwise offset of blade center of mass on the 
stability of the low frequency body modes, as reported 
by Blake and Alansky [I], and more recently by Celi 
[2). 

At high frequencies, roughly defined as those 
at or above the rotor speed, there is a substantial body 
of literature on modelling flexible blades (see the 
reviews by Chopra [3) and Friedmann [4)), with the 
finite element method being the most popular type of 
analysis in current use. In this frequency range, 
emphasis has been placed on the difficult problem of 
rotor stability, which has been shown to depend quite 
critically on the interaction of "small" aerodynamic 
and elastic coupling terms [5). Prediction of 
harmonic bending stresses and transmission of 
vibrational loads to the hub have also been 
investigated in some detail, although substantial 
difficulties remain, particularly with the prediction of 
chordwise stresses. Because of their focus on high
frequency effects, the great majority of these 
investigations have emphasized shaft-fixed 
calculations, which are not directly applicable to the 
prediction of control response. 

Accurate prediction of the vehicle dynamics 
at intermediate frequencies, in the range of 0.1 to 1.0 
per rev, is of increasing importance, as technological 
advances, in the form of hingeless rotors and digital 
flight control systems, make possible dramatic 
decreases in the control response time. Many studies 
[e.g. 6, 7) have considered the now well known 



implications of coupled rotor-body dynamics, which 
occur in this frequency range, for the design of 
automatic flight control systems. However, there is a 
near absence of research on the specific effects of 
blade flexibility in this important, intermediate 
frequency range. This lack of studies focused on blade 
elasticity is not the result of current models 
adequately predicting control response, as many 
investigators describe lingering problems, the 
physical origins of which are unknown or unproved, 
as discussed by Curtiss [8]. 

While the overwhelming majority of flight 
dynamics studies [e.g. 6, 7, 9 through 12] have relied 
on a rigid blade formulation of the rotor motion, with 
simple corrections to account for any suspected 
flexibility effects, some recent efforts have addressed 
directly the inclusion of more detailed elastic blade 
descriptions in flight dynamics models. Lewis [13] 
used the FLIGHTLAB program to simulate the 
control response of the UH-60 in hover and forward 
flight. Results were obtained using rigid and elastic 
blade models, in both the time and frequency domain. 
Although the results were somewhat inconclusive, 
the effects of flexibility overall seemed to be small, 
increasing slightly with forward speed. Tumour and 
Celi [ 14] combined a well documented aeroelastic 
rotor analysis code with the UM-GENHEL flight 
dynamics code to study the effects of blade flexibility 
on dynamic response. They examined the UH-60 in 
hover only. In this study, comparisons of rigid and 
elastic blade models were based on numerically 
linearized equations of motion, which necessarily 
restricted the conclusions to the particular helicopter 
and flight condition being investigated. Therefore, 
while [14] concludes that blade flexibility does not 
seem to be important for the Blackhawk in hover, 
extrapolation of this conclusion to other helicopters 
or flight conditions is not justified. Indeed, the 
claim, based on numerical results for the UH-60 
alone, that blade flexibility has a "very small effect" 
on the dynamics of (all) articulated rotor helicopters 
in hover is shown below to be false in certain well 
defined circumstances. 

Motivated by the above discussion, the 
present work has the following objectives: 

1.) Develop an analytical (non-numerical) flight 
dynamics modelling technique which includes blade 
elasticity and rotor-body coupling, but is.sufficiently 
simple to provide physical insight. 

2.) Apply the model to selected flight dynamics 
problems in which blade flexibility is suspected to 
play a role, but which are at present not well 
understood. Establish the fundamental mechanisms, 
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if any, by which blade flexibility influences the 
vehicle control response in these problems. 

3.) Evaluate the possibility of adapting rigid blade 
models, through the adjustment of blade root springs 
and dampers or other empirical model parameter 
adjustments, for the accurate prediction of the 
observed flexibility effects. 

The present work does not consider the representation 
of hingeless rotors using an equivalent hinge offset 
and hinge spring. The generation of hub moments 
due to flapping of hingeless rotors is well understood 
as a result of considerable research. Thus, although 
the methods described below are applicable to 
hingeless rotors, attention is focused on the potential 
shortcomings of rigid blade models for representing 
articulated rotors. Two specific problems will be 
examined in detail: (i) the effects of flapping 
flexibility on the vertical acceleration response to 
collective inputs in hover; and (ii) the direct impact of 
a powerful lag damper on the inplane elastic blade 
motion and the resulting effects on the lateral and 
directional control responses in hover. 

Description of ~lodel 

This section describes the development of 
the equations of motion for the coupled fuselage -
flexible rotor system. More details are available in 
[15]. 

Equations for Blade l'Yfotion Derivation of the 
analytical dynamic model begins with consideration 
of the partial differential equations which govern the 
motion of a flexible blade. The equations use the 
elastic terms given by Houbolt and Brooks [16], but 
the loadings have been rederived, as described below. 
While several simplifying assumptions have been 
made to facilitate interpretation of the resulting 
equations, none of these assumptions is necessary for 
the subsequently described solution scheme. The 
chordwise locations of the elastic, neutral and mass 
axes of the blade are assumed to be coincident at the 
quarter-chord. Torsional deflections and coupling of 
the flap and Jag motions due to blade twist have been 
neglected. The undeflected (straight) elastic axis is 
rotated about the hinge through trim flap and lag 
angles. The elastic deflections are relative to this 
initial position, which is determined as part of the 
trim calculations. Placing the undeflected elastic axis 
out of the nominal rotor plane allows the axial 
deflection equation to be discarded without loss of the 
Corio lis terms which couple flap and lag t. This is 

tAn alternative method for discarding the axial 
deflection equation while retaining important coupling 
terms is described by Ormiston and Hodges [5]. 



particularly important to the present study because the 
flexible blade model may be reduced to the case of 
rigid blades, as described below, and comparisons of 
the resulting equations with a previous analytical 
model based on rigid blades and Lagrangian dynamics 
[9) provide important verification of the new model. 

Explicit expressions for the inertial, 
gravitational, and aerodynamic loadings on the blade 
are derived by computer symbolic manipulation 
(Mathematica). The position and orientation of the 
blade element is defined by several relative position 
vectors and a sequence of rotation matrices. Most 
elements of these vectors and matrices are functions 
of time and thus become the model degrees of freedom 
(e.g. Euler angles for the fuselage attitude). 
Velocities and accelerations are derived by 
differentiation with respect to time in the appropriate 
axis system. The aerodynamic loading is derived 
using blade-element theory, with first harmonic 
inflow as described by Pitt and Peters [17). The usual 
simplifying assumptions have been employed in the 
aerodynamic model, namely neglect of: 
compressibility, blade stall, reversed flow, and large 
inflow angles. 

Reduction of the partial differential equations 
governing the motion of an individual blade into a 
system of ordinary differential equations for the rotor 
system is described in a later section. 

Equations for Body Motion The fuselage is 
assumed to be a rigid body undergoing arbitrary 
translation and rotation. The force of each blade, 
which acts on the fuselage at the hinge point, is 
calculated by integrating the blade loadings from the 
hinge to the blade tip. The resultant forces are 
resolved into fuselage (shaft-referenced) axes. Each 
blade also may exert root moments due to the 
presence of a hinge spring and/or a damper. 

Other forces acting on the fuselage are 
gravity, which acts through the e.g. of the fuselage, 
and the tail rotor force. The tail rotor does not add 
additional dynamic states to the model, as it is 
described by simple analytical expressions for thrust 
coefficient as a function of tail rotor collective and 
tail rotor hub velocity. No fuselage aerodynamic 
forces are included for the hovering case. 

Linearization of Equations Considerable 
research has examined the importance of retaining 
nonlinear terms due to "moderate blade deflections" 
for accurate stability calculations for hingeless rotors 
[4). However, because the focus of the present work 
is to identify the mechanisms of interaction between 
the fuselage and the flexible blades, and develop 
analytical relationships which illuminate these 
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mechanisms, linearization is a useful approximation. 
With this approximation come limitations in any 
qualitative conclusions about rotor stability and small 
errors in quantitative prediction of control response. 
The results will be most useful when applied to 
rotors which are aeromechanically well damped, as is 
the case for articulated rotors with significant 
mechanical lag dampers. 

Linearization of both the blade and fuselage 
equations of motion is effected by Mathematica. 
Partial derivatives of each equation with respect to all 
model degrees of freedom and all of their time 
derivatives are computed and evaluated symbolically 
for an arbitrary trim condition. As discussed above, 
elastic displacements are relative to an elastic axis 
which has undergone trim flap and lag deflections. 
Therefore, the trim elastic displacements are taken to 
be zero, and the blade trim calculation requires only 
the determination of the initial elastic axis orientation 
and is therefore equivalent to a rigid blade trim 
calculation. 

Extended Multiblade Transformation and 
Galerkin l\fethod At this stage of the derivation, 
the flexible displacements are expanded in a set of 
radial functions: 

M 

v(k)(x,t) = LqJk)(t)</Jj(X) (1) 

j=l 

This expression can be thought of as 
replacing the infinitely many degrees of freedom in 
the flexible beam with M new degrees of freedom. 
The </Jj(x) are any complete set of functions which 

satisfy the time-independent boundary conditions on 
the flexible beam, and therefore form a basis set for 
the allowable displacements. In the present case, 
successive ¢ j were chosen as the lowest order 

polynomials which satisfied the boundary conditions 
and were orthogonal, with the blade mass distribution 
as a weighting function, to the previously chosen ¢j· 

It should be noted that the ¢j do not represent the 

modes of the blade motion. Rather, linear 
combinations of the ¢ j represent approximations to 

the modes. This distinction will be of importance to 
the discussion surrounding the effects of the lag 
damper, and for this reason the ¢j will be referred to 

as the basis functions. 

The multiblade transformation converts the 
degrees of freedom from those describing each rotor 
blade to those describing the overall state of the rotor: 



q)k) (t) = t;oj + Slcj cos( 'l'(k)) 

+ Slsj sin( 'l'(k)) + S2cj cos(2 'l'(k)) (2) 

+ S2sj sin(2 'l'(k))+ ... 

An analogous expression is used for the flapping 
displacements. 

The body equations of motion are 
transformed by simply substituting equations(!) and 
(2) for the flexible displacements. The radial 
dependence of the blade deflections in these equations 
was previously removed when the blade loads were 
integrated to obtain resultant forces. These integrals 
are evaluated using the specified basis functions. 
Periodic coefficients appearing in the equations are 
converted into sums of nonperiodic terms and higher 
harmonics. The latter are discarded to obtain constant 
coefficient equations. 

The blade equations must be converted from 
partial differential equations into ordinary differential 
equations. This is accomplished using the Galerkin 
procedure [18]. After substituting equation (1), the 
blade equations are multiplied by t/J; and integrated 
from the hinge to the blade tip. Integration by parts 
allows the spring and damper boundary condi(ions to 
enter the equations. This operation is repeated fori= 
l,M resulting in a system of ordinary differential 
equations, to which the multiblade transformation is 
applied. The higher harmonics appearing in these 
equations are again discarded. 

In the case that M = I and tflt = x , the rigid 

blade description is recovered, with Sot, Stc!, and 

S'isl corresponding to the usual multiblade lag 
degrees of freedom retained in flight dynamics models. 
Thus, the rigid blade description is a subset of the 
present model. 

It should also be noted that the 
transformations described above are essentially 
identical in concept to those described in [\4]. 
However, in that work, the transformations, as well 
as the linearization, were executed numerically. 

Results and Discussion 

Model Validation 

Three aspects of the validation of the model 
will be presented here: (i) comparison with existing 
analytical models incorporating rigid blade dynamics; 
(ii) comparison of predicted control response with 
flight test data; and (iii) comparison of shaft-fixed 
invaccum flexible blade modal frequencies with 
previous, independent calculations. 
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As described above, comparison of the 
present model with the Princeton Hover Model [9] 
has been especially valuable because that model was 
derived from the Lagrangian point of view, so that 
favorable comparisons provide a truly independent 
confirmation that the assumptions described in the 
preceding sections have been properly coded. The 
form of the Princeton Hover Model used for these 
comparison is that due to Keller [19]. This 
comparison also has shed light on some subtle 
differences between the kinematics of a deflected beam 
described by a single basis function, and a rotating 
rigid beam. These differences led to the appearance of 
some additional small terms in the present model, 
which do not appear to significantly affect the 
predicted response. Otherwise, the agreement on a 
term-by-term basis was exact up to first order in the 
model small parameters (such as dimensionless hinge 
offset). 

Figure 2 shows the frequency response of 
roll rate to lateral cyclic for the Blackhawk, as 
measured from flight tests [20] and predicted by the 
present model and the Princeton Hover Model. The 
agreement is excellent up to about 1 per rev, where 
body modes and other unmodelled dynamics become 
influential and the coherence of the test data is low. 
The small disagreement between the predictions and 
the data around 0.2 per rev is associated with the 
coupled body-flap-inflow mode and may be due to a 
problem with the dynamic inflow. Further 
investigations into this problem are under way. 

Table 1 ·shows the frequencies of the fmt and 
second blade bending modes in both the flap and lag 
directions for the CH-53E, as calculated using the 
present analysis with the shaft fixed, and as reported 
previously [21]. The agreement is good, especially in 
predicting the first bending mode. Further validation 
of the flexible blade equations is an ongoing effort. 

Table 1 Normalized .natural frequencies of flexible 
bl d od 'th d . a em es WI out aero Jynamtcs. 

Blade Mode Present Model Previous Model 
first Jag 3.50 3.43 

second Jag 8.96 8.54 
first flao 2.67 2.66 

second flao 5.08 4.79 

Vertical Acceleration Response 

The first response problem to be considered 
is the effect of flapping flexibility on the vertical 
acceleration response to collective inputs in hover. 
Speculation about the role of blade elasticity in the 
prediction of this response can be traced to a 
conjecture by Carpenter and Fridovich [22] that blade 



flexibility was responsible for an overprediction in 
the thrust response of a rotor to a rapid change in 
collective pitch. Chen and Hindson [23] postulated 
that the rigid blade modelling assumption resulted in 
a non-physical undershoot in the vertical acceleration 
response. They suggested reducing the blade first 
mass moment of inertia, Sb,l• by 11 percent as a 

simple empirical means of correcting the predicted 
response. Houston [24] found better agreement with 
identified stability derivatives for the vertical response 
of a Puma in hover when, "on average," Sb,l was 

reduced by 30 percent. In none of these references is a 
detailed justification given for any genuine effect due 
to blade flexibility, nor is there a correlation of such 
an effect with a reduction in Sb,I· The fact that the 

suggested correction factor varies by a factor of 3 
without an explicit relation to specific blade 
properties signals a need for a more fundamental 
investigation. 

The present model was simplified to consider 
the vertical response of a hovering helicopter by 
retaining only the fuselage vertical velocity, the 
collective inflow, and the collective flapping degrees 
of freedom, as well as the collective control input. 
When only the first (rigid) collective flapping degree 
of freedom is retained, the equations are identical to 
those employed by Chen and Hindson [23], further 
verifying the present results. Because it does not 
contribute significantly to the changes brought about 
by flexibility, the inflow degree of freedom is not 
shown explicitly in the following equations, but is 
retained for all numerical calculations. 

The coupled vertical velocity - collective 
rigid flapping equations, neglecting small tenns in 
hinge offset, are 

(m1 +Nmb)w+NSb,tPo1 =-NI2A0w 

- NQA tf3ol + NI22 rotJo 
(3) 

(4) 

When the equations are written in this form, the 
physical nature of each terrn is more easily identified 
than when the equations are written in the first-order 
forrn 

i=[Alf+[B]u (5) 

In equations (3) and (4), each terrn may be identified 
as resulting uniquely from either aerodynamic or 
inertial loadings (e.g. terrns on the left hand side of 
the equations are entirely inertial). 
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The short tim~? step response of acceleration 
to collective pitch predicted by the model for the UH-
60 Blackhawk is shown in Figure 3 and is 
representative of the response observed for a variety of 
single rotor helicopters. The rigid blade model 

response at t = o+ shows an undershoot whose 
magnitude is about 10 percent of the maximum 
response. This undershoot is indicative of a non
minimum phase transfer function whose numerator is 
the same order as its denominator. Elimination of 
this initial undershoot was achieved by Chen and 
Hindson by their suggested adjustment of Sb.I· The 

physical reason for this undershoot can be seen by 
considering equations (3) and (4) at high frequencies. 
After taking the Laplace Transforms, and taking the 
limit of large s, we obtain 

(7) 

Using the second expression to eliminate the flapping 
acceleration from the first expression gives 

(8) 

The expression in brackets on the right hand side of 
this equation is the distance between the effective 
point of application of the aerodynamic force due to 
blade pitch and the center of percussion (c.p.) of the 
rigid blade. For a uniform blade, this quantity is 
positive, as the c.p. lies at 2R /3, while the 
aerodynamic force is at 3R/4. The question to be 
answered is whether or not a flexible blade should be 
expected to have an effective center of percussion at 
the point of action of the aerodynamic force on the 
blade. 

The additional (flexible) flapping degrees of 
freedom appear in the equations of motion in much 
the same way as the rigid flapping. In particular, 
there are terrns on the right hand sides of equations (3) 

and (4) proportional to /302 due to aerodynamics, and 
terms of the left hand sides of equation (3) 

proportional to jj02 , due to the acceleration of the 
blade center of mass. This acceleration terrn does not 
appear in the rigid flapping equation because of the 
selection of basis functions which are orthogonal 

with respect to the blade mass distribution. The Poz 



equation has exactly the same fonn as the rigid 
flapping equation. If we again consider the limit of 
high-frequency, we obtain the following three 
relations 

(m1 + Nmb )sw+ Ns
2

(sb,tf3ot +Sb,2f3o2) = 
? 

ND-roJJo 
(9) 

(10) 

(11) 

where sb,2 represents the blade c.m. displacement due 

to the second degree of freedom and r 2 is a result of 
the fact that the second flap basis function is not 
orthogonal to the aerodynamic loading distribution 
which results from collective pitch. The magnitude 
of r 2 is a measure of the extent to which the second 
degree of freedom is affected by the aerodynamic 
loading. As before, these equations may be combined 
to eliminate the flapping degrees of freedom: 

Comparison with equation (8) reveals that flexibility 
alters the effective location of the blade c.p. 
Depending on the signs of Sb,2 and Tz, this change 

may move the c.p. closer to or further from the point 
of application of the aerodynamic force. The value of 
r2 reflects the influence of aerodynamic loading on 
the second flap basis function, and will depend on the 
basis shape. but is generally small and positive. The 
value of sb,2 indicates the magnitude of displacement 
of the blade c.m. due to the second basis, and depends 
on the basis shape and also on the blade mass 
distribution. Note that the c.p. location would be 
further affected by inclusion of additional basis 
functions, but that these effects diminish quite 
rapidly, as the c.m. displacements and aerodynamic 
forcings of these higher functions are quite small. 

The general conclusion to be drawn from the 
preceding analysis is that, while flapping flexibility 
does in fact have an impact on the initial acceleration 
response, it is by no means certain that this effect 
will always reduce the predicted undershoot, and there 
is, in general, no reason to expect the undershoot to 
vanish because of blade flexibility. It is more likely 
that the lack of initial undershoot in the experimental 
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vertical acceleration response is due to a non-ideal 
step input (i.e. an initial ramp) in the test data, as 
shown in Figure 4, where the current model is 
compared to flight data for the UH-60 in hover. It is 
clear that when the model is forced by the actual 
collective input, there is no initial undershoot. The 
small difference between the data and the model is not 
corrected by inclusion of blade flexibility. Indeed, for 
the range of frequencies excited by the actual input, 
the rigid and flexible models predict nearly identical 
acceleration responses. 

The consequences of empirical adjustments 
to sb,l on the acceleration transfer function, when 

using a carefully derived model, are relatively minor, 
appearing only at frequencies near the rotor speed and 
higher. (That the low frequency residualized dynamics 
are independent of blade mass distribution was noted 
by Chen and Hindson.) However, two drawbacks of 
such modifications should be heeded. First, there is 
the risk of conveying to the control system designer 
an over-confidence in the valid bandwidth of the 
model. Second, such modifications encourage further 
extrapolations of the notion that flexibility results in 
"overprediction of blade inertial forces" on the hub. 
These ex;trapolations are unfounded and potentially 
create significant, but erroneous, changes in the 
predictions of the response of other degrees of 
freedom. 

Lag Dampers and FlexibilitY 

Hong and Curtiss [25] and Curtiss [8] have 
shown that the presence of a powerful lag damper, 
such as that used on the CH-53E, modifies the blade 
boundary condition in a way that causes the first lag 
mode to be poorly predicted by the traditional hinged, 
rigid blade approximation. The damper was shown to 
convert the lowest mode into a sort of "hybrid" 
between the hinged and cantilever mode shapes. For 
weak dampers, the mode is very nearly the same as 
the hinged mode, while for very powerful dampers. 
the mode becomes entirely cantilever. The changes in 
the eigenvalue of the lag mode, calculated for an 
isolated rotor, were shown to be consistent with 
discrepancies between the flight-test data and 
predictions of the roll rate response to lateral cyclic. 
In what follows, these prior results are expanded and 
clarified, and simplified equations which explicitly 
describe the coupled body- flexible rotor dynamics are 
presented. 

Before considering the body - rotor coupling, 
1t IS useful to examine the effects on the inplane 
motion of the damper induced flexibility. In the 
interest of simplicity, the following uncoupled 
equation for the inplane motion of a single blade will 
be used: 



( Elv"J" - (Tv')' + mii z p (13) 

where p represents the loading, which may be due to 
aerodynamics, Coriolis (flap coupling) forces, etc. 
The boundary conditions for this equation are 

v(O,t) = 0 
Elv"(O, t) z Dv'(O,t) 

Elv"(L,t)zO 

[Elv"((L,t)=O 

(14) 

The second boundary condition represents the effects 
of the root damper. Using the Galerkin procedure 
described above, equation (13) was converted to a 
system of ordinary differential equations, which 
describe the time-history of the chosen basis 
functions. Forcing terms appear in these differential 
equations as representations of the loading. 

In the absence of loading, p = 0, equation 
(13) with the boundary conditions (14) is an 
eigenvalue problem. The resulting eigenvalues may 
be compared to the rigid blade lag eigenvalues as a 
measure of the effects of blade flexibility. Figure 5 
shows a comparison of the variation of the 
eigenvalues of rigid and flexible rotating blades as the 
damper magnitude is increased (after Curtiss [8]). As 
the damper becomes very large,. the rigid blade 
analysis predicts two modes--one highly damped mode 
corresponding to a rapid decay of any initial velocity; 
and one lightly damped mode corresponding to a very 
slow return of the blade to the equilibrium condition, 
with the spring and damper forces playing the 
dominant roles. When flexibility is considered, we 
expect to fmd a limit on the faster mode. That is, for 
very large damping at the root, an initial velocity 
would not decay quickly, but would excite the flexible 
displacements. Thus, the faster rigid mode is not 
physically correct for sufficiently powerful dampers. 
On the other hand, the slower real mode persists even 
with flexible blades, because an initial displacement 
will in fact slowly be drawn back to the equilibrium 
position. This slower mode is seen in Figure 5 along 
the negative real axis. For blade parameters 
representative of the CH-53E, this "extra" mode is in 
the frequency domain of interest to flight dynamics. 

An approximate method to quantify the 
effects on different helicopters of inplane flexibility 
associated with the lag damper is to compute the 
percent difference, .1, between the rigid blade 
eigenvalue and the flexible blade first oscillatory 
eigenvalue. With uniform mass and stiffness 
distributions, three dimensionless parameters are 
important to the determination of this error: 
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A=j~ _D_ 
'lL' mQ/}' 

(15) 

The dependence of the error on the dimensionless 
damper and stiffness (hinge offset has a small effect 
on the percent error) is shown in Figure 6 as a 
contour plot. The values corresponding to the UH-60 
and the CH-53E are plotted in the figure. 

From Figure 6, we may conclude that the 
UH-60 should be relatively unaffected by lag damper 
induced flexibility. This is consistent with a more 
detailed study of the UH-60 in hover [14]. However, 
the change in the first lag mode eigenvalue of the 
CH-53E as a result of blade flexibility warrants a 
closer look, and all subsequent discussions will be 
directed toward this helicopter. 

For both of the control response problems 
considered below, it will be argued that the primary 
coupling of the lag to the body is through the lag 
inertial terms, as the aerodynamic terms resulting 
from lag motion are small. In the rotating frame, the 
inertial terms may be examined by considering the 
motion of the center of mass of a blade, which is 
given by a linear combination the degrees of freedom: 

M 
vcm(t) = I,sb,jqj(t) 

j=t 

( 16) 

Figure 7 shows the frequency response of 
vern to a linear distribution of loading, which is 
representative of Coriolis or aerodynamic forcing. 
Also shown in figure 7 is the response of the c.m. 
displacement due to the first basis function only 
(vern =Sb,1q1), computed using the same total 

number of basis functions. It is clear from the figure 
that the higher basis functions contribute only a very 
small amount to the total c.m. displacement 
response. This is because the shape of the first 
damper mode is almost identical to the first basis 
function, which is simply the rigid deflection. The 
primary effect of the damper-induced flexibility is a 
modification of the eigenvalue of the mode, with 
relatively minor changes to the eigenjllnction (mode 
shape). 

Based on this conclusion, one might think it 
possible to accurately represent the response of the 
c.m. of the blade using a rigid blade model with non
physical values of hinge spring and damper to match 
the flexible blade eigenvalue. The predicted response 
from such a model, with the spring and damper 
chosen to exactly match the oscillatory first lag 
mode, is also shown in Figure 7. There is 
considerable disagreement in the magnitude of the 



calculated responses at low frequency, due to the large 
root spring. The reason for the phase disagreement at 
frequencies near the lag mode is the presence of the 
"extra" lag mode described above. In the transfer 
function of c.m. displacement to applied loading, the 
"extra" mode creates a pole-zero pair which lies on the 
real axis. This pole-zero pair makes it impossible for 
a simple rigid blade model to match the flexible blade 
model, despite the ability to match the oscillatmg 
eigenvalue exactly. Note that when the multiblade 
transformation is applied to examine the effects of the 
lag motion on the cyclic variables (e.g. pitch rate), 
the extra mode will be oscillatory at I per rev, and 
thus will not have as important an impact as it will 
have on the collective degrees of freedom. 

Yaw Response to Pedal In this section, the yaw 
acceleration response to pedal inputs is considered in 
the frequency range of 0.1 to 1.0 per rev. In this 
frequency range, the coupling of the yaw response to 
the vertical velocity, collective inflow and flapping is 
weak, allowing only the yaw and the collective lag to 
be retained. The yaw equation which results from the 
derivation described above includes all of the forces 
and moments transmitted at the hinge. Combination 
of this equation with the collective lag equation yields 
the simpler equation which describes the total angular 
momentUm of the entire vehicle about the shaft axis: 

l,r + Nlb.t~Ot + e(Sb.t~OI + Sb.2¢02 + ... ) = ( 
17

) 

N,r+(lag aero terms)+N0/!p 

Terms on the left-hand side of this equation represent 
the rate of change of total angular momentum, while 
terms on the right represent external torques. Note 
that, with the equation in this form, the lag damper 
and spring terms do not appear. The yaw damping, 
Nrflz., is due to a combination of rotor 

aerodynamics and tail rotor force, and is small. 
Similarly, the lag aerodynamic terms are small in the 
frequency range of interest. The lag inertial terms 
express the change in angular momentum of the rigid 
mode plus the angular momentum due to the 
acceleration of the c.m. of the blade. In the frequency 
range of interest, the yaw equation states that yaw 
acceleration is forced by pedal inputs and acceleration 
of the lag degrees of freedom. 

The equation for the first lag basis function 
degree of freedom is 

-Clb.t +eSb.tlT+lb.tSOt = 

-e.i2
2

(Sb.tSot +Sb.2So2+ ... ) (18) 

- DC<rttot + <r2to2+ ... ) 

+(small aero terms) 
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where <Tj is the slope of the j-th basis function at the 

root and "small aero terms~' includes lag and yaw 
aerodynamics. The equations for the higher basis 
functions have the same form, with additional spring 
terms due to flexibility. Neglecting the small 
aerodynamic terms, these equations are just the modal 
expansions of the shaft-fixed lag equations considered 
previously, with the yaw acceleration as a uniform 
applied loading. 

The frequency response of the yaw 
acceleration to pedal input is shown in Figure 8. 
Also shown in this figure is the response calculated 
using the rigid blade model, with the actual damper 
value and with the eigenvalue-matching spring and 
damper. The error in the lag eigenvalue for the basic 
rigid blade model is apparent. For the rigid blade 
model with the "adjusted" root constraints, the 
differences between the two predictions are a result of 
the "extra" real lag mode, as described above. The 
flexible lag modes introduce three pole-zero pairs in 
the transfer function between 0.2 and 0.8 per rev, 
which cannot be duplicated by the rigid blade model. 

Although the yaw acceleration response has 
provided a simple and clear example of the impact of 
damper induced flexibility, it should be noted that 
these effects are relatively small in the present case 
because the fuselage inertia of the CH-53E is large 
compared to the inertia of the rotor. The effects could 
have some importance in the design of a high 
bandwidth flight control system to command yaw 
attitude. 

RoH Response to Lateral Cvclic The 
coupling of the rigid lag degrees of freedom to the roll 
rate was shown by McKillip and Curtiss (26] and 
Curtiss [27] to be due primarily to the inertial terms, 
as the aerodynamic terms due to lag motion are small. 
The approximate expression for the roll moment due 
to lag motion, given in terms of the present notation, 
is: 

The dominant lag terms in the roll rate equation in 
the case of flexible blades is found from the present 
analysis to take the following form: 

(20) 

Thus, the coupling in the flexible blade case is also 
described by the inplane acceleration of the blade 
center of mass. 



Figure 9 compares the frequency response of 
roll rate to lateral cyclic for the same three models 
used in figure 8. The first model shown in the figure 
is the present analysis which properly accounts for 
the effects of blade flexibility. The second model is 
the rigid blade model with the physically correct 
damper value and no spring. The changes introduced 
by flexibility are smaller than would be expected in 
light of the dramatic change in the lag eigenvalue. 
The reason for this is that the lag motion shows up 
in the transfer function as a pole-zero pair. For the 
CH-53E, the zero is closer to the imaginary axis, and 
thus dominates the frequency response curve. This 
zero seems to be relatively less affected by the 
flexibility than the lag pole. However, the change is 
in the direction indicated by the data [8]. The final 
curve in figure 9 is a rigid blade model with the 
eigenvalue-matching spring and damper constants. 
This model shows significant disagreement with both 
of the other models, and is therefore not an adequate 
representation. More appropriate methods of 
modifying a rigid blade model to obtain a reasonable 
approximation of flexibility effects are under 
investigation. 

Conclusions 

This paper described a novel technique for 
the development of analytical (non-numerical) 
equations for the coupled dynamics of the fuselage and 
the flexible rotor blades. A modal expansion in the 
radial direction and a multiblade transformation to 
eliminate the azimuthal harmonics were combined to 
produce a simplified model which was applied to three 
control response problems: 

1.) Flapping flexibility was shown to have a small 
impact on the initial response of vertical acceleration 
to collective inputs. This effect was explained by 
calculation of an effective center of percussion for the 
flexible blade. The sign of the effect depended on the 
distribution of mass in the blade, and one should not 
generally expect the effect to reduce the initial 
undershoot predicted by rigid blade models. 
Alteration of the blade first mass moment of inertia 
to account for this effect is possible, but not 
recommended, as it conveys a false sense of 
confidence in the useful bandwidth of the model. 

2.) Damper induced inplane flexibility was shown to 
modify the coupling of the yaw acceleration to the lag 
motion. In particular, the presence of an "extra" 
mode due to the flexible blade creates a pole-zero pair 
in the transfer function of yaw acceleration to pedal 
input. This effect cannot be approximated using an 
equivalent rigid blade model. 
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3.) The previously observed importance of in plane 
flexibility for the prediction of roll rate response to 
lateral cyclic was confirmed. The coupling was 
shown to be analogous to the rigid blade case in that 
it depends primarily on the lateral acceleration of the 
rotor center of mass. The effect of blade flexibility 
on the frequency response function is less dramatic 
than might be expected based on the changes in the 
first lag mode eigenvalue, because the frequency 
response depends also on the location of the lag·mode 
zero in the transfer function. The rigid blade model 
with nonphysical spring and damper values was not 
adequate for approximating the changes caused by lag 
flexibility. 

Future work will extend the present results 
to forward flight, where previous research has 
indicated that aerodynamics heighten the importance 
of the shape of the blade modes. The fundamental 
effects of torsion and flap-lag flexible coupling on 
control response are also problems for which the 
present methodology is well-suited. 
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Nomenclature 

generic system matrix, Eqn. 5 
blade lift curve slope 
generic control matrix, Eqn. 5 
blade chord 
lag damper strength 
blade bending stiffness 
hinge offset 
function describing difference between rigid 
and flexible blade eigenvalues 
blade second mass integral for j-th basis 

L 

function, lb,j = J m¢Jdx 
0 

total yaw inertia of fuselage and rotor 
blade length, R-e 
number of basis functions in expansion of 
flexible displacements 
blade mass per unit length 
blade mass 
fuselage mass 

number of blades 
yaw moment due to yaw rate 
yaw moment due to pedal input 

blade loading, Eqn. 13 



R 

s 
T 

y 

Ll 

A. 
p 

O"j 

amplitude of j-th basis function in solution 

of uncoupled inplane bending 
rotor radius 
fuselage yaw rate 
blade first mass integral for j-th basis 

L 

function, sb.j = J mif>jdx 
0 

Laplace transform variable 
axial blade tension, 

L 

T(x)=Q2 J m(~+e)d~ 
time 
generic control input, Eqn. 5 
inplane flexible displacement 
displacement of center of mass of flexible 
blade 
fuselage vertical velocity, positive up 
radial distance from hinge point 
generic state vector, Eqn. 5 

collective, j-th basis function flap degree of 

freedom 
second aerodynamic 

L 

rj =pacf(x+e)2if>jdx 

0 

Lock number, 
pacR4 

r=-
Ib.t 

integral, 

percent difference between the rigid and 
flexible eigenvalues of the rotating beam, 

L1 ;:::: [it flex- A rigid[ 

1"-,;g;dl 
tail-rotor pedal input 

collective, j-th basis function lag degree of 

freedom 
n-th cosine harmonic, j-th basis function lag 

degree of freedom 
n-th sine harmonic, j-th basis function lag 

degree of freedom 
collective pitch input 

first aerodynamic 

L 

A j = pac J (x+e)ifijdx 

0 
isolated rotor blade eigenvalue 
air density 

integral, 

slope of j-th basis function at the hinge, 

(J"j = 4>} (0) 
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Notes: 

j-th basis function 

blade azimuth angle 
rotor speed 

k -th blade 

· 1 d · · a spaua envauve, -ax 
. d . . a tune en vatJ ve, -at 

1.) r 0 and Ao are computed with 1/>o = 1. 
2.) For hinged blades, neglecting small terms in 

hinge offset, the following equivalencies 

apply: r0 = :; • rt = ~b • A 0 = ::.2 • 

At = rlb 
6R 
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