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In comparison with metallic materials, elastomers show incompressi­
bility or near-incompressibility, leading to analysis problems when using 
finite eleMents based on the conventional displacement method. This paper 
describes methods of overcoming these difficulties by using finite elements 
based on HERRMANN's principle for linear analysis and on MOONEY-RIVLIN's 
approach for the nonlinear case. The computer programme MARC offers various 
finite elements based on these variational principles. 
Results are presented for various elastomeric parts obtained by using MARC 
and are compared with respectively;exact solutions; results taken from 
literature; and test results. 

For a thick-walled cylinder subjected to internal pressure, the non­
linear approach approximated the exact nonlinear solution quite well, even 
with load increments of 10% of maximum load. 

For the plain strain state of a rubber layer, bonded between steel 
plates and subjected to compression load, the linear analysis for the 
vertical displacement corresponds well with the measurement found in 
literature up to a compression strain of 5%. With HERRMANN's constitutive 
equation the bulging fits the measurement well even for compression strains 
higher than 10%, whereas the results with MOONEY-RIVLIN's constitutive 
equation differ significantly from the test results. 

For a spherical/conical thrust bearing, the stiffness in various 
modes as well as the hoop shim and housing strains were calculated and 
compared with test results. A fairly good agreement was found. 

1. Introduction 

In modern helicopter design, engineers have constantly to attempt 
to improve reliability and maintainability whilst striving to reduce 
weigth and production as well as life cycle costs for all components. 

The main rotor head plays a fundamental role among the helicopter 
mechanical components. It supports the rotor blades at rest and in 
rotation, transmits the drive torque to the blades, as well as the control 
inputs in terms of blade pitch change, and transmits to the fuselage the 
blade lift loads and rotor moments generated by the rotating blades. 
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The fulfillment of these primary functions historically resulted 
in the well known rotor head configurations with flap, lag and feathering 
hinges and different dampers. 

To overcome the disadvantages of hinges viz. weight, manufacturing 
and maintenance costs, much progress has been made, from this beginning, 
by the use of flexible elements instead of hinges and/or by use, of 
elastomeric bearings, leading to the following rotor systems: 

- r~gid rotor with feathering hinge, where the flapping and lagging 
hinges are replaced by an elastic element in the rotor head or in 
the blade root. The feathering hinge uses conventional bearings 
(Fig. 1). 

Fig. 1: Rigid Rotor Head of BO 105 and BK 117 

- bearingless rotor, where the flapping, lagging and feathering hinges are 
replaced by a flexible, torsionally weak component (Fig. 2). 

Fig. 2: MBB Bearingless Tail Rotor 
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- rigid rotor with elastomeric bearing to form the feathering hinge, 
where the flapping and lagging hinges are replaced by an elastic 
element in the rotor head or in the blade root {Fig. 3). 

Fig. 3: MBB FEL Rotor 

- articulated rotor with elastomeric bearings to replace the flapping, 
lagging and feathering hinges (Fig. 4). 

Fig. 4: Sikorsky Spherical Elastomeric Bearing Concept 
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Due to their low polymerised chain molecules, elastomeric materials 
are able to undergo large but reversible deformations. This capability,in 
combination with the nearly incompressible material behaviour is used in 
designing elastomeric bearings. In the special case of a low stiffness 
requirement in the direction of a possible shear deformation, together with 
a high stiffness requirement normal to that axis, the elastomeric bearing 
is constructed from alternating rubber and metal layers (shims). This 
generates the neccessary augmentation in the bearing stiffness perpendicular 
to the lamifiates (i.e. in comparison to the compression stiffness of the 
elastomeric bearing without shims). The use of shims has only a secondary 
effect on the shear stiffness. 

The construction of the elastomer shim composite is mainly orientated 
by the load cases. The demands of stiffness and strength may be accomodated 
by the designer using shims in the forms of disks, cylindrical, conical or 
spherical shells. 

In designing elastomeric bearings, questions with regard to stiffness, 
static and fatigue strength as well as damping arise for different environ­
mental conditions. 

In engineering practicer elastomeric bearings are designed according 
to simple closed-form solutions with respect to stiffness and strength re­
quirements for relatively simple and regular part geometries. These solutions 
are based on the uniaxial linear constitutive equation of HOOKE with kine­
matic relations and shape factors [1]. The emphasis will continue to be on 
the reduced weight and size of elastomeric bearings for the aircraft industry 
without sacrificing performance while improving cost effectiveness. To mini­
mise development costs and risks 1 sophisticated analytical techniques have 
to be developed. 

Numerical methods to analyse elastomeric bearings have to consider 
the peculiarities of the elastomeric materials and must be able to give 
a real geometric approximation. Finite element techniques have proven 
their efficiency in analysing complex and irregular part geometries 
under multiaxial loading and may also be used for numerical analysis of 
elastomeric bearings. Due to the near or complete incompressibility of 
elastomeric materials, problems may arise with finite elements 1 based 
on the conventional displacement method. As most finite element programme 
systems use these types of elements, this paper describes _one possibility 
of overcoming these problems. To show the capacity of the proposed method, 
some examples have been analysed and are compared with the test results. 

2. Basics on the Description of Elastomeric Behaviour 

In comparison with metallic materials, elastomers show the following 
peculiarities which must be taken into consideration for finite elements: 

- near-incompressibility 

- viscoelastic behaviour 

- large deformations at low loads 

- nonlinear stress-strain characteristic 

- temperature dependent properties 

properties' change by ageing 
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To analyse laminated elastomeric bearings, both by the constitutive 
equations and by the variational principle used to formulate finite 
elements, the above mentioned material properties should be considered 
or at least it must be seen which simplifications have been introduced. 

2.1 Constitutive Equations 

Properties of rubber-like materials can be described by constitutive 
equations using either a linear or a nonlinear approximation. 

The 1 i n e a r approximation of a stress-strain relation is by a 
modified HOOKE 1 s law, known as HERRMANN 1 s approach [2]. Another degree of 
freedom, the mean pressure variable 

h = S/[2G(l + V)] (1) 

is introduced, leading to the following constitutive equation: 

s 2G(Q + Vh_l) (2) 

where 
s stress tensor 

sl first invariant of s 

D strain tensor 

1 unit tensor 

G shear modulus 

v POISSON • s ratio 

For n o n l i n e a r approximation of a stress-strain relation, 
the MOONEY-RIVLIN constitutive equation seems to be most suitable, with 
respect to computational expense and exactness, for the most interesting 
field of practical applications [3]. This equation reads: 

-") l (3) 

where 

T second FIOLA-KIRCHHOFF stress tensor 

C right CAUCHY-GREEN strain tensor 
-1 

c inverse of C 

c
1 

first invariant of c 

p arbitrary hydrostatic pressure function 

c
1

} = MOONEY-RIVLIN material constants 
c2 
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Using the GREEN strain tensor Qr as is the case in most existing 
finite elementp~ogramme systems, the MOONEY-RIVLIN constitutive equation 
reads: 

T 

where 

a; 2 (c
1 

+ 2c 2 l 

a
2 

4c
2 

-1 
~) + 4 det~ ~ 1 (4) 

A complete derivation of equations {3) and (4) as well as a proposition 
on how to establish the MOONEY-RIVLIN material constants c

1 
and c

2 
can be 

foun<'l in [4]. 
Influences of ageing, working temperature etc. on ma'terial behaviour 

may be considered both with HERRMANN's and MOONEY-RIVLIN's constitutive 
equation by using empirical derived changes of the material properties but 
without changing the constitutive equations themselves. 

Time dependent phenomena like creep, stress relaxation, and damping 
could be tackled satisfactorily by a viscoelastic theory, but this is not 
within the scope of this paper. 

2.2 Variational Principles 

To overcome analysis problems caused by the incompressibility of the 
elastomer, a mean pressure h or a hydrostatic pressure function p has 
been introduced in the constitutive equation as another unknown besides 
the displacements ~-
The unknown h or p is not a material constant, but depends on the boundary 
condition of the structure to be analysed. For this reason it must be in­
corporated in addition to the displacements in the variational equation. 

A convenient approach was produced by HERRMANN [2] for the linear case 
by introducing into the variational principle, valid for compressible materials, 
an incompressibility constraint as follows: 

D - ( 1 - 2V) • h = 0 
1 

(5) 

The variational principle for linear elastic incompressible or nearly 
incompressible materials then becomes 

f s 
(V) 

OD dV + f [D1 - (1 - 2V) 
(V) 

h] 6/. dV - f J; 
(A) 

6!J dA - f l2 
(V) 

0 (6) 

where the variation of the mean pressure h results from LAGRANGE multiplier 

81. = 2VG oh. (7) 
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The first term of equation (6) represents the strain energy, the 
second contains the incompressibility constraint, whereas term three and 
fourrepresent the energy from boundary and body forces respectively. The 
operators (_) (_) and (_) . (_) symbolise the double scalar product of 
two tensors and the scalar product of two vectors respectively. 

By introducing equation (2) into equation (6), the stress tensor can 
be deleted and under consideration of equation (7) one obtains 

f [2GD 
(V) 

oD + 2GVhoD
1 

+ 2GVD
1
oh - 2G(1-2V)Vhoh] dV 

- J :\; 
(A) 

og dA - J £ . a~ dv = o. 
(V) 

(8) 

Equation (8) is used to formulate finite elements to analyse rubber­
like products with linear elastic incompressible and nearly incompressible 
material behaviour. 

As the strain tensor Q represents the derivations of the displacement 
vector ~, equation (8) contains only the displacements B and the mean 
pressure h as unknowns. 

The formulation of a variational principle for the nonlinear case is 
somewhat different from the way shown before. Here must be exactly defined 
which stress and strain tensors have to be connected. For computer analysis 
it was found advantageous to use the second FIOLA-KIRCHHOFF stress tensor 
in combination with the GREEN strain tensor. 

The incompressibility constraint according to equation (5) cannot be 
used in the nonlinear case. Because of det C = 1 at incompressibility,the 
relation 

c - 1 = 0 
3 

is offered as incompressibility constraint. 

(9) 

The variational principle for nonlinear elastic incompressible materials 

then becomes 

J T 
(V) 

OG dV + J (C
3 

- 1) o). dV -

(V) 
J :\; 

(A) 

The LAGRANGE multiplier can be chosen to be 

OA oP/2. 

og dA- J Q 
(V) 

O!;l dV = 0 ( 10) 

(11) 

Based on equation (10), the nonlinear problem is reduced by an in­
cremental procedure to a stepwise solution of a finite number of linearized 
subproblems (step-by-step algorithm). This method means a superposition of 
finite quantities with infinitesimal ones, symbolised by 6 ( ) in the 
following equations. 
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An incremental form of the variational principle for nonlinear elastic 
incompressible ~ate~ials then becomes 

f (!_ + LIT) 
(V) 

f (_1; + Ll_i;) 
(A) 

oLIG dV + f (c
3 

+ Llc3 - 1) aLIA dV 
(V) 

ollu dA - f (£ + II£) 
(V) 

o. (12) 

By introducing equation (4) into equation (12), the second FIOLA­
KIRCHHOFF stress tensor can be deleted, one gets after some transpositions 
and under consideration that the strain tensor G can be divided into a linear 
portion Gl and a nonlinear one G n 

~ f {p£-l + 2 (c1l + c 2 (Cll- £l]} .. oLIQn dV 
(V) 

+ f 
(V) 

-1 c f Ll!; 
(A) 

Mu dA - f Lip 
(V) 

{ -1 1 
+ f p£ + 2 [c 1l + c 2 (C 1l- £l]} .• MQ dV 

(V) -:·:·:·:·:·:·:·:·:·:·:-:·:-:·:·:·:·:·:·:·:·:·:·:-:·:·:·:·:·:-:-:·:·:·:·:·:·:·:·:·:·:-:·:·:·:·:·:·:-:-:·:·:·:·:·:·:·:·:-:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·· 

f l? . MJol dV -
(V) :·:·:·:-:·:·:-:-:·:-:-:-:·:-:-:-:·:-: 

f 
(A) 

t . Mu dA + - -

(13) 

0. 

Equation (13) is used for finite element formulation of nonlinear elastic 
and incompressible material behaviour described by theMOONEY-RIVLIN consti­
tutive equation. 
The dashed terms in equation (13) represent the virtual work of the inequality 
of inner forces against outer ones and the last term characterizes the vio­
lation of the incompressibility averaged over the integral region. These 
terms are suitable as the correction terms in an iterative procedure. 

3. Finite Element Computer Programme 

The finite element method process is characterized by the handling of 
the integral region of the functionals in equation (8) and (13) as a summation 
of subregions, the finite elements. Due to the variational equations derived 
in the chapter before, it is necessary to use both displacements and mean 
pressure or hydrostatic pressure function as unknowns. 
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To analyse laminated elastomeric bearings, i.e. bodies consisting of 
several layers· made of several different materials, types of elements with 
and without incompressibility constraints have to be joined. This is possible 
only by introducing additional constraints on the boundaries of elements of 
a different kind and leading to the fact that each layer must be handled as 
a complete substructure built up of one element type. Compared to monolithic 
structures therefore the number of unknowns will be very high, causing high 
computer costs. 

T.he finite element computer programme MARC [ 5] has been used for the 
analyses presented in the next chapter. This programme offers on the basis 
of the theory described before various finite elements both with HERRMANN's 
and MOONEY-RIVLIN's approach. 

4. Applications 

In the following, results will be presented for various elastomeric 
parts obtained by using MARC and will be compared with exact solutions, 
results taken from literature, and test results respectively. 

4.1 Thick-walled Cylinder Subjected to Internal Pressure 

One of few examples/ of which an exact solution is known for geometrical 
and physical nonlinear behaviour, is the plain strain state of an infinitely 
long thick-walled cylinder subjected to internal pressure. 
Both the exact results and a finite element approach are presented in [6,7]. 
We have analysed the problem using axisymmetric 8-node elements, where the 
plain strain state was realized by suitable boundary conditions. 

~0 
v; 
~ 

~-

w 120 ~ 

" i!l 
w 
~ 
~ 

~ 
% 
~ 
w 

~ 

EXACT 

2 

FINITE ELEMENT SOLUTION 

o 10 INCREMENTS, AUTHORS 
RESULTS 

• 10 INCREMENTS,I71 

5 6 

INNER RADIUS RADIAL DISPLACEMENT U IN 

Fig. 5: Load versus Displacement 
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Fig. 6: Strain versus Displacement 

From Fig. 5 and Fig. 6 it can be seen that at or below incremental 
load steps of 10% of maximum load the exact nonlinear solution is approxi­
mated quite well. Better agreement can be found using smaller increments, 
but the exact nonlinear solution can be found only with increments smaller 
than 2% of maximum load. For strains larger than 10% there are significant 
differences between linear and nonlinear results justifying the additional 
work of a nonlinear approach. 

4. 2 Rubber Bonded between Steel Plates Subjected to Compression Load 
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For the plain strain state of a rubber layer, bonded between steel 
plates and subjected to compression load, no exact analytical solution is 
known. As this structure is also interesting as a practical application, 
some numerical solutions can be found in literature [7,8,9]. 
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We have conducted a numerical analysis based on HERRMANN's consti­
tutive equation for the nearly incompressible elastomeric material and 
HOOKE's law for the steel plates. 
Due to double symmetry of the structure only one quarter needed to be ana­
lysed, consequently the number of unknowns was reduced drastically. 
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,-- Ll 
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Fig. 8: Deformed Plot of a Rubber/Metal Element 

The deformed plot in Fig. 8 clearly shows the effect of nearly in­
compressible material behaviour, where the elastomeric material bulges in 
the unrestrained area. The higher the shape factors, i.e. load area divided 
by bulge area, the larger the bulging in compression. 
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Fig. 9: Load versus Compression Strain 

From Fig. 9 it can be seen that the vertical displacement from linear 
analysis corresponds well with the measurement from [9] only up to a com­
pression strain of 5%. For higher compression strains a better approximation 
can be found by nonlinear analysis. 
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Fig. 10: Bulging versus Compression Strain 

From Fig. 10 it can be seen that with HERRMANN's constitutive 
equation the bulging fits the measurement from [9) well even for compres­
sion strains higher than 10%, whereas the results with MOONEY-RIVLIN's 
constitutive equation differ significantly from the test results. 

Analyses with various numbers of elements within the elastomeric 
materialhave shown, that the vertical displacement and thus the compression 
stiffness of the rubber/metal element can be established with sufficient 
accuracy by only one 8-node isoparametric finite element. 

However, a more precise establishment of strains and stresses needs 
a finer mesh, as shown in Fig. 8. For the highest shear strain within the 
elastomeric material we have found differences of up to 150% relative to 
the result with one element. 
Point A (see Fig. 7) was found to be the high strain area. For a detailed 
stress analysis the mesh must be refined in the vicinity of point A to 
consider the high gradients in stress and strain. 

4.3 Spherical/Conical Thrust Bearing 

Fig. 11: Spherical/Conical Thrust Bearing 
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Thrust bearings of the type presented in Fig. 11 may be used in either 
rigid rotor or articulated rotor systems with elastomeric bearings as shown 
in chapter 1 of this paper. 

~COCKING 

Fig. 12: Loadings and Motions of a Thrust Bearing 

This thrust bearing has to support the following loadings: 

- axial compression, caused by centrifugal forces; 

- radial shear, caused by drag forces; 

- radial shear, caused by thrust forces; 

while accomodating the following motions: 

- torsional shear, due to pitch motion; 

- cocking shear, due to flap motion; 

- cocking shear, due to lag motion. 

These loads and motions are shown in Fig. 12 and are applied at various phases, 
relative to each other. 

Fig. 13: Cross Section of Thrust Bearing 
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As shown in Fig. 13, thrust bearings are generally built up of several 
conical and/or sphe~ical shells, consisting of alternating elastomeric and 
metallic layers and attached to inner and outer support members. 

Fig. 14: Computer Plot of a Thrust Bearing 

For numerical analysis of the thrust bearing a finite element model 
as shown in Fig. 14 was used, with major emphasis placed on a realistic 
representation of the elastomer layers and the shims. 

As the loads to be reacted result in a general threedimensional state 
of stresses and strains, threedimensional finite elements should be used. 
This, however, would lead to high computational costs, due to a high 
number of unknowns. 

For axisymmetric structures but not axisymmetric loading the com­
putational expense can be reduced drastically for linear analysis by a 
FOURIER development of the variables and the loads. This method has been 
used to analyse the thrust bearing. 

The finite element analysis was checked by establishing the stiff­
ness of the bearing in various modes and comparing it to the test results. 
A fairly good agreement was found as shown in Table· 1. 

~ AXIAL RADIAL TORSIONAL COCKING 
R 

CTEST"CFEM 
- 5.8% + 9.6 Ofo + 5.7% + 4.2'% 

CTEST 

Table 1: Stiffnesses- Analysis versus Test 

Strain gauges were installed in hoop direction at different positions 
on the outer end of conical and spherical shims as well as on the housing. 

The measured strains are compared to the numerical results for various 
loading conditions in Fig. 15. 
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Fig. 15: Boop Strains - Analysis versus Test 

The test results and the finite element results are found to be in 
good agreement. 

Deformed plots as shown in Fig. 16 are very helpful to find out the 
high strain areas, so that in a second run, with a refined mesh, high stress 
and strain gradients can be accomcdated satisfactorily. 

AXIAl. LOAO RADIAL LOAO COCK! NO 

Fig. 16: Deformed Plots of a Spherical/Conical Thrust Bearing 
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5. Conclusions 

In additiOn t6 composite materials, elastomeric bearings offer high 
potential benefits for modern rotor systems. That is mainly due to the very 
large bulk modulus in comparison to the shear modulus, resulting from the 
fact that the elastomeric material is incompressible or nearly incompressible 
Because of this incompressibility, analysis problems occur for complex and 
irregular part geometries for which closed form solutions are not known. The 
well known ~inite element programmes with elements based on the conventional 
displacement method cannot be used. 

This paper shows that there are finite element computer programmes 
available which can analyse rubber-like structures. These computer programmes 
use finite elements, based on HERRMANN's principle for linear analysis and 
on MOONEY-RIVLIN's approach for the nonlinear case. 
The important points concerning numerical analysis and their comparisons 
with respectively;exact solutions; results taken from literature; and test 
results can be summarized as follows: 

the nonlinear MOONEY-RIVLIN's approach is able to approximate the exact non­
linear solution; 

computertime is much greater for the nonlinear case in comparison with the 
linear HERRMANN's approach; 

- for strains higher than 10% there are significant differences between 
linear and nonlinear results,justifying the additional costs of a nonlinear 
approach; 

- the stiffnesses of laminated elastomeric bearings in various modes can be 
calculated satisfactorily; 

- stresses in the shims and in the rubber layers can be analysed with suffi­
cient accuracy; 

deformed plots are very helpful in resolving where the high strain areas 
occur. 

To fully develop the high potentials inherent in elastomeric bearings, 
future work should be directed into the fields of fatigue strength and 
viscoelastic behaviour. 
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