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Abstract 
The paper is devoted to the numerical simulation of the flow near 
mode using the 
numerical method is based on the vertex
computations
numerically obtained 
of full-scale experiments
 
 
1. INTRODUCTION

The helicopter 
improvement of its flight performance
characteristics such 
coefficient, fuel efficiency, air speed, et
purpose, it is important to have the 
information about the flow generated around the 
vehicle and its influence on the design and 
behavior of the aircraft. In 
industry, in order to obtain the required data at the 
design stage, along with experiments in wind 
tunnels, the numerical simulations
performance computing systems are 
In particular, 
and analyze the aerodynamic characteristics of a 
helicopter in advance a
time and costs of developing the helicopter.
The simulation of flow a
presents a serious 
to consider 
accuracy of 
must be carefully 
comparing 
results obtained using 
software packages.
In the paper, in order to 
method of numerical s
helicopter rotor
rotor in the forward flight mode
results obtained using the in
NOISEtte [2] 
of TsAGI and the
package ANSYS CFX.
The main feature 
in the paper is the usage
accuracy vertex
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planform with a NACA0012 airfoil shape without 
twist. The total blade pitch angle is 8°. The blades 
have the chord of 0.15b = m. The radius of the 
blade root is 0 0.2r =  m with the total rotor radius 

equal to 0 1.2r = m. The hub is an ellipsoid having 

the horizontal and vertical radii of 1 0.04r =  and 

2 0.2r =  m respectively. 
The rotation velocity ω  is equal to 360 rpm 
corresponding to the blade tip speed 45.24tipV =
m/s. The flow near the helicopter rotor is 
simulated with three various free-stream velocities 

6.79,flowV = 11.31, 20.36  m/s with zero angle of 

attack. The free-stream parameters correspond to 
the standard conditions under which the 

temperature is 23�C, the pressure is 103025Pa, 
the density is 0 1.225ρ =  kg/m3, the dynamic 

viscosity is 5
0 1.827 10−µ = × Pa⋅s. These 

parameters determine the Reynolds number 

0 0Re /tipV b= ρ µ 54.55 10⋅= . 

 

3.  THE CHARACTERISTICS UNDER STUDY 

3.1. Rotor aerodynamic forces 

The main parameters characterizing the 
configuration under study are the aerodynamic 
forces represented by the thrust, longitudinal 
torque and normal force coefficients. 
The thrust and longitudinal torque coefficients are 
calculated through the projection of force acting on 
the rotor blades in the absolute fixed reference 
frame 

(1) 
( )

( )
( )

2
0

2
0

2
,

2
.

T z

S

x z x

S

N
c pn ds

A R

N
m p n y n z ds

RA R

=
ρ ω

= −
ρ ω

∫

∫
 

Here N  is the number of the blades, p  is the 
pressure distribution over the blade surface S, and 

xn , yn , and zn  are the projections of unit normal 

outward with respect to the surface S specified in 
the absolute fixed reference frame, 0ρ  is the 

undisturbed flow density, 2A R= π  is the blade 
disk area. 
The normal force coefficient is evaluated for the 
blade normal section defined by the curve L 

(2) 
( )2

0

2
n z

L

c pn dl
A R

′=
ρ ω ∫ , 

where cos sinz x yn n n′ = ϕ − ϕ  is the component of 

blade-surface unit normal in the blade axis 
system.  

3.2. Acoustic characteristics 

An important acoustical characteristic of a flow is 
the overall sound pressure level (OASPL) in the 
far field which is determined by the far-field 
pressure fluctuation spectrum ( ),P fx . The 

pressure fluctuation spectrum is given by the 
Fourier transform of the function ( ),p t′ x  

normalized by the quantity 5
0 2 10p −= ×  Pa 

( ) ( ) 2

0

,1
, .

2
i fp t

P f e dt
p

∞
− π

−∞

′
=

π ∫
x

x  

We determine the total energy of the spectrum as 
the integral of the spectral power 

( ) ( )2, ,S f P f=x x  

( ) ( ), ,E S f df= ∫x x  

where the integration is performed over all 
resolvable frequencies. Then the OASPL 
expressed in decibels is determined from the 
formula 

( )10OASPL 10log .E= x  

 

4. MATHEMATICAL MODEL 

4.1. Navier-Stokes equations in a non-inertial 
reference frame 

To simulate the external flow around the rotor with 
the rotational speed ω , the Reynolds-averaged 
Navier-Stokes (RANS) equations for compressible 
gas with the Spalart-Allmaras turbulence model 
are used. The equations system is considered in 
the non-inertial rotating reference frame. The 
reference frame rotates around the fixed rotor axis 
with the constant angular velocity equal to the 
rotational speed. This means that the blades 
streamlined by the gas flow are immovable, and 
the direction of external flow varies depending on 
the azimuth angle ( ) | |t tψ = − ω . 
The Navier-Stokes equations in the non-inertial 
reference frame are given in [1]. In the paper, we 
consider the RANS model with the Spalart-
Allmaras evolution equation 

.i

i

u
D G Y

t x ν ν ν
∂ρν∂ρν + = + −

∂ ∂
ɶɶ

 

The definition of terms Dν , Gν , Yν  describing, 
respectively, the diffusion, generation and 
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dissipation of turbulence can be found, for 
example, in [6]. 
The value νɶ  is used to calculate the turbulent 
viscosity coefficient Tµ  as 

3

3
,

357.911
T

χ ρνµ = ρν χ =
µχ +
ɶ

ɶ . 

4.2. Boundary conditions 

4.2.1. Solid wall boundary conditions based 
on wall functions 

In all the predictions, in order to reduce costs, we 
use rather coarse meshes in the near-wall region 
so that the noslip boundary conditions may result 
in an incorrect determination of velocity gradients 
on the solid wall. Instead of the noslip condition, 
we use the analytically predicted velocity 
distribution in the turbulent boundary layer. This 
approach determines the boundary-wall function 
simulating the flow in the unresolved part of 
boundary layer [7]. The implementation of wall 
functions depends on the discretization method 
we use for the Navier-Stokes equations. 
Let *u  is the friction velocity determined by the 

wall stress wτ  and the wall density wρ  

(3)  *

1
w

w

u = τ
ρ

 

and * nwy u h+ = ρ µ  is near-wall Reynolds number. 

Here nwh  is the characteristic size along the 
normal to the solid surface of near-wall cells. 
Determine the viscous component of momentum 
flux wl

wF  on the boundary surface through the wall 
stress. Taking into account the relation (3) it can 
be expressed as 
(4)  2

* ,wl e
w tu= ρF u  

where e
tu  is the unit vector of tangential velocity 

on the boundary surface equal to 
/ ,e

t nu= = −t t tu u u u u n  

and nu  is the normal speed on the boundary 
surface which is equal to the normal component of 

wall velocity ( )nV = × ⋅ω r n . 

Thus, to determine the viscous flux component, 
we need to know the friction velocity. It can be 
found by solving the following nonlinear equation 

(5) *
* 0,nw

t

u h
u f

ρ − = µ 
u  * nwu h

y+ ρ=
µ

 

where the boundary-wall function ( )f y +  

determining the velocity profile in the viscous, 
buffer, and logarithmic sublayers is given by the 
Reichardt law [8] 

( ) ( ) 311
1

ln 1 0.41 7.8 1 .
0.41 11

yy y
f y y e e

++ + −−+ +
 

= + + − − 
 
 

 

Equation (5) is solved by the Newton method. At 
each iteration of it, the values tu , µ , ρ  are taken 
at the nodes of boundary surface. The initial 
guess of friction velocity is chosen as 0 0 /f w tu = τ u  

where the wall stress is calculated through the 
normal derivative of the tangential velocity 
magnitude using the first difference 

.t
wτ = µ

δ
u

 

The value / 2whδ =  is determined as the distance 
to the solid wall where the noslip conditions are 
valid. The tangential velocity magnitude is taken 
on the boundary surface. 
The resulting expression for the momentum flux 
vector on the boundary surface represents the 
sum of the flux (4) and the convective flux 
component ( )n nu V p− +u n  taking into account 

the condition n nu V=  

.wl
w wp= +F n F  

4.2.2. Conditions on external boundaries 

Since the numerical simulation is performed in a 
bounded region, some artificial boundary 
conditions must be imposed on the boundary of 
computational domain.  
These boundary conditions are determined by 
splitting the fluxes relating the values of the 
gasdynamic parameters within the computation 
domain and their values in the distant flow in the 
directions of characteristic velocities. The latter 
values are determined by the characteristic 
relations for an isentropic gas [1]. 
 

5.  NUMERICAL METHOD 

5.1. Numerical method for simulating the 
near flow field 

The method for simulating the near flow field is 
based on the Navier-Stokes equations considered 
in the rotating non-inertial reference frame. The 
space approximation is built in the vertex-centered 
framework when the variables are defined in the 
hybrid mesh vertices. According to the finite-
volume approach, the conservation laws are 
formulated for the dual cells, i.e. the control 
volumes specially built around the vertices. The 
numerical flux through the dual cell faces is 
calculated by the Roe approximate Riemann 
solver. The higher accuracy of the numerical 
scheme is achieved thanks to the quasi-1D edge-
oriented reconstructions of variables involved in 
the flux calculation. The resulting EBR (Edge 
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Based Reconstruction) scheme is described in 
detail in [3-5]. 
On translationally invariant (TI) tetrahedral or 
hexahedral meshes, i.e. uniform grid-like meshes, 
the EBR scheme provides the high (up to the 5th-
6th) order of approximation accuracy of a smooth 
solution if the quasi-1D reconstruction is applied 
to the flux variables [4, 5]. Despite the fact that on 
arbitrary hybrid unstructured meshes this scheme 
has theoretically the second order, it provides a 
noticeably higher accuracy in terms of error 
values in comparison with the traditional 
Godunov-type finite-volume schemes of the 
second order [4]. 
To approximate the viscous terms of Navier-
Stokes equations, we use the Galerkin method 
with linear basic functions. 
The implicit three-layer second-order scheme with 
the Newton linearization is used for the time 
integration. At each Newton iteration, the resulting 
system of linear equations is solved by the 
stabilized bi-conjugate gradient (BiCGStab) 
method [9]. 
The mentioned numerical algorithms are 
implemented in the in-house code NOISEtte [2]. 
 

5.2. Computational domain and meshes 

In all the considered cases, the computational 
domain has a form of cylinder with the radius of 
10 rotor radii. The cylinder axis coincides with the 
helicopter rotation axis. The lower boundary of the 
computational domain is located at the distance of 
15 rotor radii from the plane of rotation, and the 
upper boundary is at the distance of 10 radii. 

 
(a) 

 
(b) 

 
(c) 

Fig.2. Computational mesh. 
 

The computational domain is filled with the hybrid 
unstructured mesh with refining in the regions 
where the detailed representation of flow structure 
is required. Thus, the finest tetrahedral mesh is 
built at the leading and trailing blade edges, at the 
blade tip and at the region of blade junction to the 

central body (Fig. 2b, c). The blade surface is 
framed by the prismatic mesh layers with the 
exponentially increasing height. When the initially 
anisotropic prisms become close to isotropic, the 
mesh goes to a quasi-uniform tetrahedral 
unstructured form with a smooth coarsening 
towards the outer boundaries of computational 
domain (Fig. 2a). 
The resulting mesh consists of 9.3M nodes and 
24.3M elements.  
The mesh was generated using ANSYS ICEM 
CFD [10]. 
 

5.3. Numerical method for calculating the far 
field acoustics 

The integral formulation "1A" of the Ffowcs 
Williams- Hawkings (FWH) method proposed by 
Farassat [11] is used for estimating the acoustic 
characteristics of the model helicopter rotor in 
forward flight. The "1A" formulation supposes the 
use of a control surface of an arbitrary shape so 
that the velocity in the control-surface points is 
assumed to be subsonic. Otherwise, when 
passing over the speed of sound, the integral 
formula contains a singularity that makes it difficult 
to apply the FWH for a rotating rotor. Some 
solutions of this problem are proposed in [12, 13]. 
However, their implementation is quite 
complicated and entails significant additional 
computational costs. A rather simple and efficient 
way to implement the modification of "1A" 
formulation for a helicopter rotor is proposed in 
[14]. The key idea of this modification is the 
parametrization of control surface in the absolute 
reference frame associated with the helicopter 
fuselage and not in the non-inertial rotating 
reference frame associated with the rotor. It is 
required that the control surface must be a 
surface of revolution about the axis of the rotor. 
This assumption keeps the surface non-deforming 
under the proposed parametrization. In addition, 
the use of a uniform surface mesh in spherical 
coordinates provides a simple procedure of the 
variables interpolation and the corresponding 
calculation of the angular derivatives at each point 
laying on the control surface. As a result, the 
problem reduces to calculating the surface 
integral with delay basing on the necessary data 
on the surface moving with respect to the 
background flow. 
 

6.  RESULTS 

In a forward flight, the shape of vortex wake 
behind the rotor is complex and non-uniform. The 
strongly disturbed flow also includes the tip 
vortices. Their shape depends on the curvilinear 
motion of blades characterized by the ratio 
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between the upstream and rotating velocities, and 
the number of blades. Without interactions, the 
shape of tip vortices would coincide with the 
trajectories of blade tips. 

 

 
Fig.3. Tip vortices trajectories (rotor gauge pressure 

field and Q-criterion isosurfaces) 
 

The flow around the rotor is characterized by the 
interaction of blades and turbulent structures. Due 
to the presence of upstream flow and rotational 
motion of the blades, the distribution of pressure 
on the surface of blade essentially depends on its 
azimuthal position. We evaluate the aerodynamic 
characteristics versus the azimuth angle and their 
distributions for some fixed azimuthal positions of 
the rotor. 
The overall flow pattern is determined by the tip 
vortices that break away from the blades, drift 
downstream and interact both with the incident 
blades and turbulent structures. The position of tip 
vortices cores follows the trajectories of motion of 
the blades’ tips taking into account the rotation 
and the drift by the upstream flow. This can be 
observed in Fig. 3 where the visualization of 
vortices by the multiply connected isosurface of 
Q-criterion [15] is given at the fixed times 
corresponding to the azimuthal angles and 
trajectories of blades’ tips in the absolute 
reference frame in the rotation plane. The 
trajectories of the blades’ tips are defined by the 
following law: 

cos( )
,  0, ,3

sin( )
k flow

k

R t tVx
k

R ty

ω + ψ −  
= =   ω + ψ   

…  

where ( )2k kψ = π  – are the initial azimuthal 

angles of corresponding blades. 
The aerodynamic characteristics of rotor are 
determined by the pressure distribution on the 
blade surface (see formulas (1), (2)). 

Fig.4. Pressure coefficient distributions 
 

The pressure coefficient distributions obtained 
using the code NOISEtte and software package 
ANSYS CFX (Fig. 4) are in good agreement with 
each other for all the cross sections and azimuth 
angles. The slight discrepancy in the values of 
pressure coefficient near the blade trailing edge is 
explained by the different resolution of the surface 
mesh in this area. 

Fig.5. Normal force coefficient distributions 
 

The distributions of normal force coefficient over 
the blade span obtained in computational 
experiments for different azimuthal positions of 
the blades shown in Fig.5 also agree well with 
each other. One can see the characteristic drop in 
the operational efficiency of retreating blade in the 
range of azimuth angles of 270o - 360o(0o) which 
is expectable at the forward flight mode. A slight 
difference in comparison with the experimental 
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