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Abstract

The interaction between the helicopter vibrations and the pilot involuntary control input, filtered through
the biomechanical response of the pilot’s body, can lead to the emergence of adverse, possibly even
unstable, feedback loops, which in turn produce a degradation of the vehicle handling qualities. These
phenomena are called Pilot-Assisted Oscillations (PAO). One of the most important is the “Collective
Bounce”, caused by vertical vibrations of the cockpit inducing an unwanted collective control input.
On the rotorcraft side, the main rotor coning mode excitation has been shown to produce a phase
margin reduction in the collective pitch-heave loop transfer function. On the pilot’s side, biometrics
such as stature, weight, age and sex are known to play a major role, but relatively limited effort has
been placed in exploring the effects of their variability. especially exploiting predictive numerical tech-
niques in a virtual engineering framework. This work represents a first attempt at filling the gap. A
detailed multibody model of the pilot’s upper body , featuring the full musculoskeletal biomechanics of
the upper limbs and a simplified, Component Mode Synthesis representation of the torso, is coupled
with a simplified rotorcraft model. that reproduces the vertical dynamics of the vehicle, including the
coning mode response. A pseudo-random population of pilots, exhibiting different biometrics, is gen-
erated and the corresponding multibody biomechanical models are derived. The population is then
simulated in a feedback loop with the rotorcraft dynamics and allowed to evolve, through a genetic
(de-)optimization algorithm, towards the individuals most likely to be prone to instability. The result of
the (de-)optimization process is the identification of the worst possible pilot biometrics with regard to
collective bounce proneness on the modeled rotorcraft.

1 INTRODUCTION

The interaction of the pilot with the helicopter
dynamics is characterized not only by voluntary
activity, which is intended to produce the con-
trol inputs required to perform a specific task,
but also by involuntary actions. The latter is the
result of the unintentional application of controls
caused by vibrations of the cockpit. Such vi-
bratory motion is filter by the pilot’s biomechan-
ical characteristics and may produce involuntary
control inputs through the so called biodynamic
feedthrough (BDFT [1]). Pilot’s involuntary com-
mands may further excite the dynamics of the ve-
hicle, causing a degradation of the flight dynamics
qualities, difficulties in achieving the desired per-
formance and may ultimately produce an unsta-

ble closure of the control feedback loop [2;3;4]. This
problem, widely known as Pilot-Assisted Oscilla-
tion (PAO), may affect all kind of aircraft whose pi-
lot is accommodated within the vehicle and is thus
subjected to its motion. Usually, PAO-related con-
trol inputs are characterized by frequencies be-
tween 2 – 8 Hz [5]; thus, in PAO events the in-
teraction is with the aeroelastic modes of the ve-
hicle. For this range of frequencies the pilot is
no longer capable of intentionally producing com-
mands to compensate for the undesired motion,
while at higher frequencies the biomechanical re-
sponse of the human body is expected to filter out
any excitation originating from the motion of the
cockpit.

PAO phenomena have been extensively ana-
lyzed in fixed-wing aircraft, primarily only when
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they have been unexpectedly encountered in
flight. The situation is similar for rotary-wing air-
craft, although the number of reported events and
studies is, in comparison, rather limited: one no-
table exception is represented by the work of
Walden [6].

Walden [6] presented and extensive discussion
of aeromechanical instabilities that occurred on
several rotorcraft during their development and ac-
ceptance by the U.S. Navy, including the CH-46,
UH-60, SH-60, CH-53, V-22, and AH-1. Most of
those events involved the involuntary participation
of the pilot interacting with the automatic flight con-
trol system (AFCS).

Generally, any attempt to reduce the vehicle’s
PAO tendency was conducted on a case-by-case
basis, and it was usually addressed by procedural
mitigations. Planned structural interventions were
either deferred or canceled due to the lack of time
or resources.

One of the most important PAO phenomena
in helicopters is the so-called “Collective Bounce”,
caused by vertical vibrations of the cockpit. As
a consequence of the most common cockpit and
control inceptors layout, the vibrations induce a
collective control input as a result of the biody-
namics of the pilot’s left arm. This, in turn, ex-
cites the vertical vibrations by directly inducing a
change in rotor thrust along the vertical axis. In [7],
Gennaretti et al. discussed occurrences of this
phenomenon and investigated it numerically, iden-
tifying the influencing factors and the modeling re-
quirements for its simulation. A closed-loop aeroe-
lastic experiment involving the collective bounce
was presented and discussed by Masarati et al.
in [8]. In [9] Muscarello et al. pinpointed the phase
margin reduction introduced by the main rotor con-
ing mode in the collective pitch–heave loop trans-
fer function as the key factor in the manifestation
of collective bounce.

The investigation of PAO instabilities requires
the capability to model aeroservoelastic phenom-
ena as well as the dynamic behavior of the pi-
lot. A simplified helicopter model, able to capture
the collective bounce dynamics in hover, has been
proposed in [9]. It consists of the vertical motion
of the entire helicopter and the rotor coning mo-
tion. The pilot’s BDFT can be modeled as a set
of mechanical impedances between the motion of
the seat and the resulting actuation of the control
inceptors, since no voluntary action can be envis-
aged. Experimental results obtained so far have
shown how pilot’s arms response to vibrations is

characterized by an high level of variability [10;11].
As a consequence it should be considered as an
highly uncertain element in the dynamic modeling
of this kind of problems. The variability of the pi-
lot involuntary action, filtered through the dynam-
ical characteristics of the human body, is at the
root of the uncertainty. Thus, to answer the ques-
tion: ”which is the most collective-bounce prone
pilot?” it is necessary to move towards the an-
swer moving from first-principle basis: the multi-
body approach has proven to be very beneficial to
this end, allowing to generate a virtual model of
the pilot biomechanical response starting from its
anthropometric data [12;13].

In order to assess the effects of the variability
of the anthropometric data on the performance pa-
rameters with respect to PAO phenomena, a fully
numerical procedure has been developed. It con-
sists in several steps:

• a set of pseudo-random anthropometric pa-
rameters is generated;

• the corresponding multibody model is built;

• the multibody model is simulated in order to
identify the pilot’s BDFT between the seat
vertical acceleration and the collective lever
rotation;

• the resulting state space pilot model is sim-
ulated in a feedback loop with the simplified
helicopter model, in order to evaluate the fig-
ures of (de-)merit with respect to PAO re-
silience.

A genetic (de-)optimization algorithm has been
developed to identify the set of biometric parame-
ters that are associated with the most instability-
prone pilots: each pilot is treated as an individual
of a population, encoding his anthropometric char-
acteristics into a genome. Based on this set of
parameters, a complete upper body biomechani-
cal multibody model of the pilot is generated and
its interaction with the simplified helicopter model
evaluated to yield a figure of (de-)merit inversely
proportional to the stability margins of the pilot-
vehicle system (PVS). Individuals among the pop-
ulation are then assigned a fitness inversely pro-
portional to said margins, such as to allow the
worst pilots the best probability to breed. The al-
gorithm ultimately yields the worst possible com-
binations of anthropometric parameters for a par-
ticular rotorcraft.
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2 BDFT IDENTIFICATION

The human upper body dynamics has long
been recognized as a critical component involved
in PAO phenomena [2]. To account for varying pi-
lot body types, the multibody approach has been
adopted from the authors’ research group at Po-
litecnico di Milano since 2012 [14] and developed
ever since.

Several steps are needed to estimate the pi-
lot’s BDFT with respect to the heave axis of a he-
licopter. The general procedure will be outlined
briefly, since it is described in detail in several
previous publications [15;16]. The novel parts will
be evidenced and explained in a more exhaustive
way.

Generally, to identify the linearized biodynamic
behavior of the pilot it is necessary to

• define the reference mission task elements
that delineate the control context;

• generate a set of geometrical and inertial pa-
rameters from the pilot biometrics and the
corresponding multibody model of the upper
limbs (and torso);

• identify, through an inverse kinematics anal-
ysis, the reference configuration of the upper
body;

• calculate the reference muscle lengths and
activation patterns solving an inverse dy-
namics problem: since the system is over-
actuated, an optimization problem needs to
be solved;

• perform a direct dynamics analysis, yielding
the pilot control input as a function of the ve-
hicle’s vertical acceleration input;

• analyze the output of the direct analysis to
identify the transfer function between the
vertical acceleration and the collective in-
ceptor rotation.

The reference mission chosen for the analysis
is a Position Task (PT) [17], requiring the pilot to ap-
ply and maintain 50% of the collective input. It is
a kind of task that needs precise control, resulting
in a more stiff neuromuscular behavior.

2.1 The multibody model

Over the last several years, a detailed biome-
chanical multibody model of the pilot’s body has

been developed at the Department of Aerospace
Science and Technology (DAST) of Politecnico di
Milano: it is implemented in the general-purpose,
free software MBDyn1, also internally developed
at DAST. It features the full representation of the
pilot upper limbs, each one possessing 7 degrees
of freedom and actuated by a set of 25 Hill-type,
one dimensional muscle actuators [14;15;18]. The
upper limbs model has been coupled with a Com-
ponent Mode Synthesis (CMS) model of the hu-
man torso to complete the description of the pilot’s
upper body dynamics.

In the current form, the biomechanical multi-
body model of the pilot is cast into a modular ar-
chitecture: it can be used to predict the dynamics
of the complete upper body, i.e. both limbs com-
prising the shoulder girdles and the torso [13;12] or
be reduced to exclude portions that are not con-
sidered relevant in the analysis of interest. For the
present work, a simplified model comprising the
left an right upper limb, excluding the shoulder gir-
dles, has been used. The model was originally
developed following the work of Pennestr et al. [19].

The single limb (Cfr. Fig. 1) comprehends rigid
bodies representing the humerus, the radius, the
ulna and the hand. The latter is considered as a
single rigid body, since it is involved only in grasp-
ing tasks. The total number of degrees of freedom
of a single limb is thus 4 · 6 = 24. Ideal algebraic
constraints connect the rigid bodies representing
the bones and the corresponding muscle masses.
The humerus is connected to the torso through
a spherical joint, situated in the functional center
of the humerus proximal epicondyle. The radius
is connected to the humerus through a spherical
joint as well, situated in the functional center of
the humerus distal epicondyle. The ulna is con-
nected to the humerus by means of a revolute
hinge, whose axis of rotation lies close to perpen-
dicular to the mechanical longitudinal axis of the
ulna and passes through the center of the thro-
clea. The deviation from perfect perpendicularity
of the two axes is the so-called carrying angle, i.e.
the angle formed between the arm and the fore-
arm mechanical axes. In this work, a 8 carrying
angle for male subjects and a 10 carrying angle
for female subjects have been selected. The ulna
and the radius are connected by an in line joint,
that constraints a point offset medially from the
radius to move along the mechanical axis of the
ulna. The offset is such as the two bones lie par-
allel when the arm is extended anteriorly with the

1http://www.mbdyn.org
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(a) (b) (c)

Figure 1: The biomechanical multibody model of the upper limbs and torso.

palm facing upward. The hand is connected to
the radius by a Cardano joint, allowing only the
flexion-extension and the medial-lateral rotations.
The total number of degrees of freedom is thus
24 − 3 − 3 − 5 − 2 − 4 = 7, meaning that the sin-
gle limb is a kinematically underconstrained sys-
tem even when the 6 degrees of freedom of the
hand are prescribed.

2.2 Solution phases

To assess the variability of the bioservoelastic
interaction between the pilot and the vehicle with
respect to the pilot’s body characteristics, it is of
crucial importance to be able to represent, as re-
alistically as possible, a wide variety of pilots with
possibly very different anthropometric parameters.
To this end, the upper limbs model has been ex-
tended with a specific set of procedures to gener-
ate its geometrical, inertial and muscular proper-
ties [13] based on a set of standard anthropometric
data: stature, weight, age and sex. The model
is fully parametrized and can be adapted starting
from reference scaling parameters for the ribcage,
obtained from data published by Shi et al. [20]. In-
ertial parameters are scaled based on regression
models found in [21;22;23;24;25].

The model is assembled in the standard
anatomical position. To bring it to the reference
configuration for subsequent dynamical analysis,
an inverse kinematics analysis has to be per-
formed first. The single upper limb, as noted
above, is a kinematically underdetermined system
when all six degrees of freedom of the hand are
imposed, having a total of 7 degrees of freedom.
To work around the problem, a procedure involv-

ing the direct solution of the kinematics at the po-
sition level has been developed, based on a previ-
ous work by Masarati et al. [26;14;15]: an equivalent
static system, constrained by nonlinear elastic el-
ements representing ergonomic penalty functions
is solved at each timestep. The resulting config-
uration is transferred as the initial configuration of
the inverse and direct dynamic analyses.

To be able to estimate the muscular activation
patterns in a given reference configuration, is it
necessary to estimate the joint torques through
the solution of an inverse dynamics problem and
subsequently estimate the force that each muscle
bundle should introduce. 25 total muscle fascicula
are modeled in each limb, represented by mono-
dimensional viscoelastic elements that can be ac-
tuated. The force in the single muscle is a func-
tion of the current length and elongation velocity
of the muscle, as well as the current voluntary ac-
tivation state a through a relationship simplifying a
Hill-type muscle, originally proposed by Pennestr
et al. in [19]:

(1) fi(x, v, a) = F0 (f1(xi)f2(vi) · ai + f3(xi)) ,

where F0 is the reference peak isometric contrac-
tion force, x the nondimensional length of the mus-
cle with respect to the isometric length, x = l/l0,
v the reference contraction velocity v = l̇/l0 and a
the activation parameter, with 0 ≤ ai ≤ 1. The ref-
erence activation is computed minimizing the ac-
tivation of the muscles, minai

∑
i a

2
i , constrained

by the aforementioned bounds on ai. It is a func-
tion not only of the geometrical configuration of the
cockpit but also of the collective lever inertial prop-
erties.

The reference model configuration in terms of
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both kinematics and muscular activation is thus
reached and a direct dynamics analysis can now
be performed, perturbing the system around such
state. In this phase, to model the voluntary (al-
beit passive) contribution of the muscular activa-
tion to the reference value found in the inverse dy-
namics phase, a reflexive contribution is added,
through a quasi-steady approximation, as dis-
cussed in [15;18;16], based on previous work made
by Stroeve [27], namely:

(2) ai = ai,0 −Kp (xi − xi,0) −Kdvi.

The process here outlined yields a model of a vir-
tual pilot, ready to undergo a virtual test in order to
identify the transfer function between the collective
control input and the vertical acceleration of the
vehicle. In previous works, the identification pro-
cess has been carried out through (virtual) testing
of the model response to single-harmonic or band-
pass filtered random excitation in the range 1-10
Hz [12;16]. This kind of analyses are however, very
time consuming and thus do not allow for a wide
range statistical exploration of the dependence of
the collective bounce (and in general PAO) prone-
ness of the pilot-vehicle system (PVS). Therefore,
an alternative approach based on the eigenanal-
ysis of the multibody model about the reference
configuration has been developed.

2.3 Direct Eigenanalysis

MBDyn directly solves a DAE problem in the
form

Mẋ = p,(3)

ṗ + ΓT/xλ = f(ẋ,x, t),(4)

Γ(x) = 0,(5)

in which x is the vector of the nodes’ generalized
coordinates, p the vector of their momenta, Γ(x)
collects the joints’ algebraic relationships, λ the
Lagrange multipliers and f the external loads. By
collecting yT =

[
xT ,pT ,λT

]T
the problem can be

cast into the implicit form, with appropriate initial
conditions

g(ẏ,y, t) = 0,(6a)
y(t0) = y0.(6b)

The perturbation of the implicit DAEs system is

(7) g/yδy + g/ẏδẏ = −g.

MBDyn integrates in time the equations (6)
through multi-step, predictor-corrector methods.

In the prediction step, an estimate of the solution
at time step k is formed according to the solution
at l previous time steps

(8) yk =

l∑
i=1

aiyk−i + h

l∑
j=0

bjẏk−j

where h is the time step. Perturbing the last equa-
tion yields

(9) δyk = hb0δẏk

inserting the relationship (9) into equation (7)
yields a purely algebraic problem

(10)
(
g
/̇y + hb0g/y

)
δẏ = −g

In fact, MBDyn actually computes the Jacobian
Matrix of this Newton step as

(11) J(c) = g/ẏ + cg/y,

so that matrices gẏ and g/y are never explicitly
available. As discussed in [28], the eigenanalysis
of the model can be then posed on matrices J(c)
and J(−c), rewriting the problem as

(12) (ΛkJ(c) + J(−c)) YRk = 0,

where equilibrium is assumed, i.e. the right hand
term in eq. (7) is considered null.

This is required for the eigenanalysis to make
sense, but not strictly enforced in MBDyn, which
leaves the responsibility of selecting the appropri-
ate system configuration about which to linearize
to the user.

(13) Λk =
1 + cλk

1 − cλk

that can be inverted to yield the real eigenvalues
The real eigenvalues of the system are then

computed as

(14) λk =
1

c

Λk − 1

Λk + 1
.

Matrices gẏ and g/y can ultimately be recovered
through a simple manipulation

g/ẏ =
J(c) + J(−c)

2
, g/y =

J(c) − J(−c)
2c

.(15)
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2.4 State space model

Projecting matrices g/ẏ and g/y onto a sub-
space of the left and right eigenvector spaces, re-
spectively spanned by ỸL and ỸR, yields a state-
space representation of the linearized dynamics of
the original system

(16) ỸLg/ẏỸRδq̇ + ỸLg/yỸRδq = 0,

where the space of generalized coordinates per-
turbations is linearly mapped to the space of
modal coordinates perturbations, namely

(17) δy = ỸRδq.

Considering now the output w as a linear function
of the state variables perturbations

w = C̃δy,(18)

so that the complete state-space representation of
the system’s dynamics is written in descriptor form

Eδq̇ = Aδq,(19)
w = Cδq,(20)

having defined

E = ỸLg/ẏỸR, B = 0,(21)

A = −ỸLg/yỸR, C = C̃ỸR.(22)

In projecting the problem onto the subspace
spanned by the reduced modal coordinates q,
care has to be taken in selecting a subset of the
generalized eigenvectors as to avoid those related
to the static behavior of the system, constrained
kinematic variables, and Lagrange multipliers [29].
In practical terms, only eigenvectors whose asso-
ciated eigenvalues are not infinite or zero are re-
tained. This choice leads to an invertible E matrix.

2.5 Input due to imposed motion

In the present case, the system input is due
to the seat vertical motion. This means that vector
δy of equation can be split into two a free part δyF

and an imposed part δyI :

(23) δy =

{
δyF

δyI

}
,

the imposed part of δy is represented by gener-
alized coordinates expressing the vertical trans-
lation of the seat and the corresponding velocity.

Matrices g/ẏ and g/y can be partitioned accord-
ingly. E.g. for g/y:

(24) g/y =

gFF/y gFI/y

gIF/y gII/y

 .
The rightmost block column of the resulting sys-
tem can be brought to the right hand side of
eq. (7), as it pertains to the forcing terms due to
the imposed motion

(25) gFF/ẏ δẏ
F + gFF/y δy

F = −gFI/ẏ δẏ
I − gFI/y δy

I .

The descriptor form state space representation of
the system in now defined by the matrices

E = ỸFF
L gFF/ẏ ỸFF

R(26)

B = −ỸFF
L gFI/ẏ − ỸFF

L gFI/y = B1 + B2(27)

A = −ỸFF
L gFF/y ỸFF

R(28)

C = C̃ỸFF
R ,(29)

where C̃ is particularly simple in its structure,
since the system’s only output, the collective con-
trol rotation φ, is a single component of δy. The
transfer function between the vertical acceleration
of the seat and the collective control rotation can
now be computed directly by considering the sys-
tem’s behavior in the Laplace domain

(30)

(
sE − A

)
δYFF (s) =

(
sB1 + B2

)
δYI(s),

w(s) = CδYFF (s),

that yields
(31)

HBDFT (s) =
1

s2
· C
(
sE − A

)−1 (
sB1 + B2

)
,

where the double integrator 1/s2 has been added
to consider the relationship between the vertical
acceleration of the pilot’s seat z̈ and the collec-
tive inceptor rotation φ. However, it gives an
integrator-like low-frequency asymptotic behavior,
1/s, that is not physical (a pilot would always
be able to compensate the error corresponding
to a slow enough input) and overlaps with the
pilot’s voluntary behavior [9]. The low-frequency
asymptotic behavior can be corrected by adding a
second-order high-pass filter with cutoff frequency
ωh slightly above the crossover frequency ωc of the
voluntary pilot’s model.

This procedure leads to a considerable re-
duction of the time needed to estimate the pi-
lot’s BDFT: while the numerical experiment tech-
nique time requirement is in the order of min-
utes, both for the single harmonic excitation and
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the band-limited noise input, the time required by
the eigenanalysis-based procedure is in the order
of seconds, typically significantly less than 10”.
Thus, a broad exploration of the space of the pilots
biometrics is now a viable option, that has been
exploited by evaluating the stability of a combined
PVS model into a genetic algorithm searching for
the most undesirable pilot biometrics.

3 HELICOPTER MODEL

In hover, rotors respond to changes in the
blade collective pitch with collective flap motion.
This motion is called the rotor blade coning mo-
tion, and it is described by the collective flap an-
gle β0. The basics of rotor blade flapping coupled
with helicopter vertical motion in hover are briefly
reviewed in this section. The objective is to use
the equations of motion that characterize only the
helicopter dynamics that may be relevant for the
involuntary interaction with the pilot during the col-
lective bounce phenomenon.

3.1 Simplified analytical model

The simplified helicopter model used for pre-
liminary vertical bounce investigations consists of
the vertical motion of the entire helicopter and the
rotor coning mode [9], as shown in Fig. 2.

The helicopter model is drastically simplified,
since it neglects the details of the rotor hub geom-
etry and kinematics, the drive train dynamics and
many details of basic rotor aerodynamics like in-
flow, twist, tip loss, etc., that may be significant in
performance analysis but are considered inessen-
tial for the desired perturbative model, or require
not easily accessible information. Since the work
focuses on perturbation in hover along the vertical
axis, only the collective (i.e. uniform with respect
to azimuth) term of the kinematic parameters is
considered, yielding a set of linear time invariant
(LTI) equations:

(32a)

mz̈+nb
γ

4
Ω
Iβ
R2

ż+nbSβ β̈+nb
γ

6
Ω
Iβ
R
β̇ = nb

γ

6
Ω2 Iβ

R
ϑ,

(32b)

nbIβ β̈+nb
γ

8
ΩIβ β̇+nbIβν

2
βΩ2β+nbSβ z̈+nb

γ

6
Ω
Iβ
R
ż = nb

γ

8
Ω2Iβϑ,

where the symbols are defined in Table 1 with
the data of the IAR 330 Puma helicopter (see
Ref. [9]) here used as benchmark model.

Table 1: IAR 330 Puma: Simplified model data

IAR 330 Puma Symbol Value Units
Total mass m 7345.00 kg
Number of blades nb 4 n.d.
Rotor radius R 7.49 m
Rotation speed Ω 4.50 Hz
Lock number γ 8.70 n.d.
Flap static moment Sβ 276.48 kg m
Flap inertia moment Iβ 1339.19 kg m2

Flap frequency ratio νβ 1.03 n.d.

Eq. 32a describes the vertical displacement
of the helicopter and Eq. 32b describes the rotor
coning. Coupling occurs thanks to inertia forces,
by way of the static moment Sβ of the blades, and
to aerodynamics by way of the change in angle of
attack related to the vertical velocity of the aircraft,
ż, and to the blade flapping rate β̇. In the following,
the simplified helicopter model is essentially seen
as a Single Input/Single Output (SISO) system in
the Laplace domain in the form:

(33) z̈ (s) = Hz̈ϑ (s)ϑ (s) .

3.2 Collective control inceptor

The collective control inceptor, sketched in
Fig. 2(b), usually provides minimal force feedback;
thus no force other than that exerted by the pilot
contrasts the motion of the lever when the pilot
command it. However, to improve the quality of its
positioning and in the end the “touch and feel” of
the pilot, some force threshold needs to be over-
come in order to move the lever from the rest. In
helicopters controlled by direct mechanical trans-
mission of the command, this effect is produced
by some artificial friction that resists the motion of
the lever. The minimum amount of friction is usu-
ally prescribed by the manufacturer and the ac-
tual amount can be adjusted to best suit the pilot’s
needs.

In the present analysis, friction acting on the
collective lever rotation is not directly considered,
since it is hard to deal with in linear frequency do-
main models; the stick–slip effect associated with
transition from pure adhesion to sliding and vice
versa is omitted. All these simplifications are con-
sidered conservatives. The motion of the collec-
tive control inceptor prescribes the collective pitch
angle of the rotor blades. In augmented control
helicopters, the motion of the control is the collec-
tive pitch demand to actuators, either directly or
through a Flight Control System (FCS). In usual
arrangements, the full range ∆φ of the control
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Figure 2: Simplified helicopter model (a) and sketch of collective control inceptor (b).

lever rotation ranges from 35 to 45 degrees for a
lever length lφ of about 270 to 350 mm from the
hinge to the hand grip. An estimation of the gear
ratio between the control lever rotation and the col-
lective pitch rotation can be obtained as:

(34) ϑ =
∆ϑ

∆φ
· φ,

The collective pitch range, ∆ϑ, is of the order of
20 degrees. The parameters lφ and ∆φ depend
on the cockpit layout while the parameter ∆ϑ may
depend on the rotor design; in augmented con-
trol designs it may even vary in flight according to
some scheduling.

3.3 Loop closure on the vertical axis

The loop is closed by feeding the pilot-control
device BDFT to the simplified helicopter model
through the appropriate gear ratio between the
collective pitch rotation and the collective lever ro-
tation, equal to G0 = ∆ϑ/∆φ = 1.1 rad/m on the
proposed IAR 330 Puma model. The collective
lever might also consider an additional input φ′

(e.g. due to the voluntary pilot action) added to the
pilot’s BDFT contribution, which yields

(35) φ = HBDFT (s) z̈ + φ′,

fed into the helicopter TF of Eq. 33 through the
collective pitch gear ratio,
(36)

(1 −G0HBDFT (s)Hz̈ϑ (s)) z̈ = G0Hz̈ϑ (s)φ′.

The Loop Transfer Function (LTF) is thus the coef-
ficient of z̈ in Eq. (36) minus 1, namely:

(37) HLTF (s) = −G0HBDFT (s)Hz̈ϑ (s) .

With the proposed SISO analytical model it is pos-
sible to investigate the stability of the PVS. In-
stead of using the classical eigenvalues investi-
gation, it is possible to exploit the robust stabil-
ity analysis approach, obtaining information about

the grade of stability with respect to parameter
variations [30;31;32]. The Nyquist criterion is very ex-
plicative because it intuitively expresses the stabil-
ity degree of robustness as the distance of each
point of the LTF frequency response from the point
(−1 + j0) in the Argand diagram (see chapter 7
of Ref. [33]). Robust stability indices are phase
(PM ) and gain (GM ) margins. The phase mar-
gin is the phase difference between the cross-
ing of the LTF with the unit circle and -180 deg.,
namely 180−∠HLTF

(
jω|HLTF |=1

)
. The gain mar-

gin is 1/HLTF

(
jω(−180)

)
, i.e. the inverse of the

LTF magnitude at ω corresponding to -180 deg of
phase. Positive margins indicate a stable system,
while to obtain robust systems is usually neces-
sary to reach gain margins above 6 dB and phase
margins of 60 deg.

4 GENETIC (DE-)OPTIMIZATION ALGORITHM

As mentioned in the previous sections, the sig-
nificant reduction in simulation time needed to es-
timate the pilot’s BDFT, combined with the possi-
bility offered by the multibody approach to easily
generate a consistent model representing a broad
variety of pilot’s body types, make it possible to ex-
plore in a statistical meaningful sense the space
of the pilot biometrics. In order to do so, a ge-
netic algorithm has been set up to search for the
pilot’s biometrics that produce the minimum values
of PM and GM . The (de-)optimization problem is
actually an unconstrained, bounded minimization
problem on PM and GM that can be stated as fol-
lows:
(38)
min J = GM (xb) + PM (xb) s.t. xb,l ≤ xb ≤ xb,u

i.e. find the anthropometric parameters xb that
minimize the stability margins of the PVS, sub-
jected to upper and lower bounds on the param-
eters. Vector xb has three components that de-
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pend on the type of analysis: most commonly, age
a, weight w and stature h of the pilot. An alter-
native choice, that will be exploited in the follow-
ing sections, is the use of the Body Mass Index
BMI = w/h2, to limit the population of pilots to
more realistic body types.

Finally, xb contains the parameters of Mayo-
like feedthrough transfer functions capturing the
involuntary, linearized behavior of the pilot.

An initial population of N pilots is generated
as a pseudo-random Sobol set. Each individual
of the population is characterized by the vector
xb,i, that can be considered its genome. The ob-
jective function Ji is evaluated for each individual
and the population is sorted to assign to each in-
dividual a fitness inversely proportional to its rank-
ing as a non-dominated element of the set of all
the possible combinations of parameters values,
as suggested by Goldberg [34]. The individuals
with the greatest fitness are selected for crossover
(the generation of the new offspring) via a roulette
wheel strategy [35], i.e. by assigning to each indi-
vidual a range of values between 0 and 1, the am-
plitude of which is proportional to their fitness, and
then generating a random number, also among 0
and 1. The single individual is selected if the gen-
erated number falls in its interval.

The result of the crossover stage is an off-
spring of N individuals. Among the total of 2N
individuals, the most fit N are selected and re-
tained in the next iteration of the algorithm. The
cycle stops when at least 90% of the total individ-
uals have ranking 1, i.e. are on the Pareto Opti-
mal front, or the maximum number of allowed iter-
ations has been reached.

5 RESULTS

5.1 Parameter exploration of Mayo Transfer
Function

Mayo [36] identified a simple model for BDFT
of a human body to describe the involuntary ac-
tion of helicopter pilots on the collective control in-
ceptors when subjected to vertical vibration of the
cockpit. In particular, Mayo identified the TFs be-
tween the absolute vertical acceleration of the pilot
hand, z̈h.abs, as a function of the vertical acceler-
ation of the vehicle, z̈. As discussed in [9], these
TFs need to be written as the relative accelera-
tion of the hand, z̈hand, with respect to the vehicle
acceleration, and integrated two times to regain a
low-frequency correct behavior, resulting in

z̈hand = z̈h.abs − z̈ = −s s+ 1/τp
s2 + 2ξpωps+ ω2

p

z̈.(39)

Two set of pilots have been investigated by Mayo,
called ectomorphic (small and lean build) and
mesomorphic (large bone structure and muscle
build). The structural properties of the Mayo’s
ectomorphic and mesomorphic TFs are reported
in Ref. [36]. It should be remembered that the
TF of Eq. (39) must be integrated twice to yield
the relative displacement of the hand, zhand =
z̈hand/s

2. However, the double integration gives
an integrator-like low-frequency asymptotic be-
havior, 1/s, that is not physical (a pilot would al-
ways be able to compensate the error correspond-
ing to a slow enough input) and overlaps with the
pilot’s voluntary behavior [9]. The low-frequency
asymptotic behavior can be corrected by adding a
second-order high-pass filter with cutoff frequency
ωh slightly above the crossover frequency ωc of
the voluntary pilot’s model. Since ωc is less than
0.5 Hz, while the pilot’s biomechanical poles are
at about 3.5 Hz, the bands of interest of the pilot’s
voluntary and involuntary models should be ade-
quately separated. The combination of the double
integration and high-pass filtering yields

HBDFT (s) = − 1

lφ

s

(s+ ωh)2
s+ 1/τp

s2 + 2ξpωps+ ω2
p

,

(40)

where a numerical value of ωh = 3.10 rad/s has
been used in Eq. (40). The control lever length
has been also added in Eq.40 in order to convert
the vertical displacement of the lever, i.e. zhand, in
collective lever rotations φ.

Table 2: Structural properties of Mayo’s TFs.

Ectomorphic Pilot Symbol Value Units
Frequency ωp 3.380 Hz
Damping ratio ξp 32.000 %
Time constant τp 0.117 sec
Mesomorphic Pilot Symbol Value Units
Frequency ωp 3.750 Hz
Damping ratio ξp 28.000 %
Time constant τp 0.107 sec

A first application of the (de-)optimization al-
gorithm has been conducted on the LTF with
the Mayo’s identified BDFT in feedback loop with
the IAR 330 Puma simplified helicopter model.
The main parameters of the pilot’s TFs have
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been changed between the following lower/upper
boundaries: the time constant, τp, ranges from 60
to 120 ms, the damping ratio, ξp, ranges from 20
to 50 % and the pilot’s biomechanical frequency,
ωp, between 2.5 and 4.0 Hz.

Results are reported in Fig. 3. The final pop-
ulation, representing the worst case scenario (i.e.
the pilot’s BDFT returning the smallest gain and
phase margins), is characterized by the pilots with
the smallest damping ratios (as expected) and
the smallest natural biomechanical frequencies.
The natural frequency mainly impacts on the static
gain of the pilot’s BDFT. The lower is the natural
frequency, the higher will be the static gain of the
pilot’s BDFT, thus acting on the LTF robust stabil-
ity decreasing the gain margin. Also the time con-
stant may have an impact on the pilot’s static gain,
although the algorithm has founded an higher sen-
sitivity to the natural frequency, confirming that the
time constant mainly acts to restore the correct pi-
lot phase behavior to the higher frequencies.

Unfortunately, limiting the analysis to the infor-
mation contained in the Mayo’s TFs, it is not pos-
sible to recover the pilot’s anthropometric char-
acteristics related to the worst pilot body type.
These information can, however, be obtained by
the biomechanical multibody model of the pilot’s
body.

As described in section 2.1, the upper body
biomechanical multibody model can tailored on
a specific set of anthropometric parameters and
analyzed to yield the corresponding pilot BDFT
transfer function with respect to the collective
bounce. The genetic (de-)optimization algorithm
has been applied using the input parameters re-
ported, along with their bounds, in Table 3. The
population size is 100 individuals, and the prob-
ability of mutation 10%. The algorithm stopped
after 30 iterations, performed in approximately 8.5
hours.

Table 3: Parameters for pilot biometrics explo-
ration: in this case, the weight and the stature of
the pilot was let vary independently. LB and UB
stand for Lower Bound and Upper Bound.

Parameter Symbol LB UB Units
Age a 25 65 years
Weight w 60 110 kg
Stature h 1550 2000 mm

In Fig. 4, the results of the application of the
algorithm of section 4 with the parameters shown
in Table 3 are shown. The population seems to

evolve towards individuals with the largest Body
Mass Index (BMI). In fact, the average individual
in the final population has a stature around 1.6
m and a body mass close to 110 kg, resulting
in a BMI of about 42. This value corresponds to
severely obese individuals and it is thus very un-
likely to be found in real pilots. Thus, a second run
has been performed, this time using the BMI as an
input parameter instead of directly considering the
weight.

Table 4: Parameters for pilot biometrics explo-
ration: in this case, the weight and the stature of
the pilot was let vary independently.

Parameter Symbol LB UB Units
Age a 25 65 years
Body Mass Index BMI 18 30 kg m−2

Stature h 1550 2000 mm

In Fig. 5 the results of the aforementioned sec-
ond run, considering pilots with BMI limited to
more plausible values (Cfr. Table 4), are shown.
The lower and upper bounds for BMI, respec-
tively 18 and 30, have been chosen as to limit the
population to individuals in the normal and over-
weight range, excluding underweight and obese
body types. In this case the algorithm stopped
after 30 iterations, converging towards individuals
with greater BMI, height and age, as shown in Fig-
ure 5(b). Generally, body types with higher BMI
are associated with a lower biomechanical natural
frequency [36]. The natural frequency mainly im-
pacts on the static gain of the pilot’s BDFT. The
lower is the natural frequency, the higher will be
the static gain of the pilot’s BDFT, thus acting on
the LTF robust stability decreasing the gain mar-
gin.

A possible explanation for the different results
regarding the height of the most problematic body
types, with respect to the previous run, is that the
BMI has greater influence with respect to the other
parameters, and the global minimum of the objec-
tive function is located in a region of the param-
eter space that the algorithm could not explore in
the second run, as it was outside of the problem’s
bounds.

In order to try to identify the solution, Analysis
of Variance (ANOVA) techniques are being imple-
mented at the time of writing of this manuscript:
variations of the stability figures of merit will be
tested against variations of the parameters of both
the helicopter model and the pilot biomechanical
model in order to identify the most relevant actors
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Figure 3: Results of the Mayo’s pilot parameter exploration conducted with the genetic algorithm de-
scribed in section 4.
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Figure 4: Results of the pilot biometric exploration conducted with the genetic algorithm outlined at sec-
tion 4. In (a), the initial population is shown. The final population after 30 iterations, is shown in (b). In
(c) the identified Pareto front is shown.
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type.
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and the possible correlations amongst them. The
results of this latter analysis are postponed to fu-
ture publications.

6 CONCLUSIONS

This work presents a novel approach to identify
the pilot anthropometric characteristics that make
the closed-loop pilot-rotorcraft system specifically
prone to the collective bounce phenomenon. The
parameters for pilots biometrics exploration are
the age, weight, stature or alternatively the Body
Mass Index (BMI). A pseudo-random population
of pilots, exhibiting different biometrics, is gener-
ated and the corresponding multibody biomechan-
ical models are derived. The population is then
simulated in a feedback loop with the rotorcraft
dynamics and allowed to evolve, through a ge-
netic (de-)optimization algorithm, towards the in-
dividuals most likely to be prone to instability. Re-
sults shown that the population seems to evolve
towards individuals with heavy weight, around 110
kg, and short stature, i.e. 1.6 m, resulting in
huge, unrealistic, BMI values of about 42. Conse-
quently a second run has been performed using
the BMI as an input parameter instead of directly
considering the weight. The lower and upper BMI
bounds were set to 18–30. In this case the algo-
rithm converges towards individuals with greater
BMI, height and age, showing that the BMI has a
greater influence with respect to the other param-
eters. Future developments will consider Analysis
of Variance (ANOVA) techniques in order to iden-
tify the most relevant actors between the pilot bio-
metrics and the rotorcraft parameters and the pos-
sible correlations amongst them.
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