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Abstract 

The purpose of this paper is to present recent developments in the frame of Eurocopter Advanced Anomaly 
Detection (AAD). AAD development was initiated on Health and Usage Monitoring Systems (HUMS) to improve the 
monitoring capabilities of dynamic components using vibration data. The aim of helicopter health monitoring function in 
HUMS is to improve both safety and fleet availability, and is an opportunity for maintenance alleviation. During the 
development of AAD, the main concerns taken into account are to increase the detection versus false alarm ratio, while 
reducing the operator workload. In general, the AAD process can be decomposed in many functions and sub functions, 
using statistical approaches implying learning phases in the process.  

In this paper, the main AAD principles and the global process are described. A key pillar of AAD is a recently 
Eurocopter patented technique that automatically detects abrupt changes in vibration signals. This technique enables to 
strongly reduce the false alarm rate by detecting sudden behavior changes in vibration data. Such phenomena are often 
not caused by degradation, but by maintenance actions and thus often lead to false alarm if no appropriate treatment is 
used. A particular focus on the main concepts of this function is done and some results on real data are presented. Then, 
the whole AAD process has been applied on the tail transmission of many EC225 helicopters, during a minimum six 
months period, including both healthy and faulty conditions. This phase has enabled to fine tune the algorithm 
parameters on these components to optimize the algorithms performance. The results are presented and a synthesis of 
key performance indicators is provided, showing high gains compared to traditional health monitoring methodology. AAD 
has been implemented for an operational use and is now ready to be used for initial deployment by a set of major 
helicopter offshore operators, first using a Eurocopter web portal called WebHUMS.  

Considering further developments, it must be kept in mind that statistical approaches used in AAD require 
learning phases in the process during which the HUMS system must be capable of detecting major defects. 
Developments are currently in progress to improve detection capabilities during the learning phase. A methodology used 
to set automatically maximum thresholds during learning phases is introduced. This has become possible using vibration 
data of a large number of helicopters. In addition new processes to test the stability of indicators during the learning 
phase and to optimize its duration are also presented. In parallel, research is also in progress to detect some defects 
without using indicator„s history to strengthen the global HUMS system performance. In the future, these methods will be 
part of the whole AAD process, to be combined with the results of the statistical methods.  
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NOTATIONS 

AAD Advanced Anomaly Detection  
CSI Controlled Service Introduction  
HUMS Health and Usage Monitoring 

System 
 

CI Condition Indicator  
HI Health Indicator  
KPI Key Performance Indicator  
CDF Cumulative Density Function  
ANOVA Analysis of Variance  
H/C Helicopter  
   
 

DEFINITIONS 

M’ARMS Name of the last version of Super 
Puma and Dolphin HUMS system 

 

 



1.    INTRODUCTION 

Currently, more than 200 H/C are equipped with 
Eurocopter HUMS worldwide cumulated more than 
300.000 flight hours in total. Today, existing systems like 
M‟ARMS have proven continuous health monitoring 
capabilities and provide day-to-day benefit to the operator 
by preventing in-flight component failures and reducing 
unscheduled maintenance. This system corresponds to 
the first generation of Health and Usage Monitoring 
system fulfilling requirements from operators and 
regulations like the CAP753 (Ref. [1]).   

In order to overcome existing burdens in data handling 
and processing, Eurocopter invests maximum effort in 
improvement of these systems and evolving a second 
generation of health monitoring systems. The new 
generation shall increase detection efficiency by not only 
detecting known fault cases, but also identifying 
anomalies of the components and drive system in 
general. By those means, data of multiple sources are 
fused and maintenance feedback is used to define the 
most suitable configuration for anomaly detection. Benefit 
of these novel methodologies can be shown in a 
reduction of false alarms and therefore increased aircraft 
availability. In addition, improvement is transferred to 
threshold configuration by using automatic processes in 
order to ease updates on a regular basis in addition to the 
improved data quality and reliability.  

The advantage of these novel algorithms in terms of data 
configuration and analysis is presented within this paper 
as well as its application through novel web-based 
services via Eurocopter WebHUMS. In addition, 

proposals for future improvements are given in order to 
demonstrate to continuous improvement of Eurocopter 
HUMS programs and vibration analysis processes.    

 

2.    ANOMALY DETECTION 

2.1. AAD developments overview 

In reference [2] an overview of the AAD principle and the 
fusion algorithm of AAD implemented at Eurocopter were 
presented in the context of a research project named 
OPTIMAINT (Ref. [3]). In particular, an algorithm to fuse 
many condition indicators into one indicator is described, 
and an algorithm to detect step changes in condition 
indicators signals is mentioned. Since then, many 
developments were performed on AAD so that now the 
whole AAD program is ready to be used by the helicopter 
operators. This included the development of new 
algorithms to improve the global performance of the 
method and the implementation of the whole process in 
such a way that it can be used by an operator who 
downloads regularly (at least every 25FH according to 
CAA guidance material CAP753 [(Ref. [1]) new helicopter 
vibration data. The AAD methodology is now ready for 
use on Eurocopter web portal called WebHUMS. In 

parallel of this, further developments are currently in 
progress for future versions of AAD. 

 

2.2. AAD principle 

The principle of AAD is based on: 

- the learning of the healthy state of a component 
characterized by the behavior of conditions 
indicators 

- the detection of potential abnormal behavior 
compared to the learnt healthy state thanks to 
the fusion of the condition indicators 

This principle enables to improve detection robustness 
thanks to correlation of much information before raising 
an alarm. 

2.2.1. AAD global process 

The figure 1 shows the global process of AAD that was 
tested during the Controlled Service Introduction period 
on the EC225 tail drive shafts, and the figure 2 shows 
more details about anomaly detection. 
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Figure 1: AAD global process 

 

Each time new HUMS data are downloaded from the 
helicopter, the process is applied using both the data 
history of the previous flights and the new downloaded 
data. The first step of the process consists in detecting if 
maintenance actions impacting the vibration data are 
visible in condition indicators. If potential maintenance 
actions are detected, a confirmation is asked to the user, 
then, if they are confirmed, a learning phase of the new 
normal behavior is initiated and the anomaly detection 
algorithms are applied. If no maintenance actions were 
detected or potential maintenance actions were 
unconfirmed, the anomaly detection algorithms are 
directly applied. 



 
One of the most important phases in this diagram is the 
step changes detection algorithm, because after each 
maintenance action on a component, its vibration 
behavior is likely to change, leading to false alarm if no 
relearning is performed. Indeed, the anomaly detection 
method but also the EC225 current HUMS system (which 
has learnt thresholds) uses learning phases to monitor at 
best an abnormal behavior evolution. Today, more than 
50% of the alarms are due absence of relearning after 
maintenance actions. This is the reason why this main 
function which automatizes this relearning process 
contributes a lot to false alarm reduction. More details are 
provided on step change detection in the next subsection. 
For AAD deployment, it was chosen to ask the operator if 
a maintenance action was performed when a step 
change in condition indicators history is detected. Based 
on the return on experience on the current fleet, it is 
assumed that a step change in condition indicator history 
has a high probability to be caused by some maintenance 
actions. On the longer term, the operator confirmation 
could be removed after more return on experience on 
AAD. 

 
2.2.2. Anomaly detection 

The figure 2 shows anomaly detection process applied 
between maintenance actions. In this process, there are 
two main branches: one to describe the learning process 
which lasts until enough data have been collected to have 
a good representation of the normal behavior and one to 
describe how to compare the new data to the normal 
state and trigger an alarm if the behavior has evolved. 

The learning process can‟t be initiated while the number 
of measurements in the indicator history is lower than the 
number of condition indicators used to calculate the 
health indicator. After this very short period and while the 
learning phase is not finished, the covariance matrix and 
the mean of the condition indicators are calculated using 
the data acquired since the last maintenance action. 
Then, the fusion of the condition indicators is performed 
using the Mahalanobis distance, called the health 
indicator in this article. The distribution of the health 
indicator on the learning phase data is calculated which 
enables to determine a threshold to be applied on the 
health indicator trend, using a percentile of this 
distribution. When the learning phase is finished, the 
fusion of the condition indicators is directly performed by 
calculating the health indicator, using the last covariance 
matrix and mean vector calculated during the learning 
phase. The end of the process is identical whether the 
learning phase is finished or not. The health indicator 
trend is calculated and is compared to the threshold 
calculated during the learning phase. An alarm is 
triggered in case of threshold exceedance. 
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Figure 2: Anomaly detection process 

 

A tuning parameter on the detection sensitivity directly 
linked to the threshold was implemented into AAD to 
facilitate quick configuration of the algorithm on a new 
component. This parameter was tuned for each 
component during the CSI. 

Thanks to this methodology, as soon as the learning 
process starts, the monitoring of a potential abnormal 
vibration behavior starts too. When the number of 
measurements in the learning phase is increasing, the 
accuracy and the reliability of the monitoring is steadily 
improving too. 

In the AAD version used during the CSI, the size of the 
learning phase is fixed to a condition indicators history 
size. Some methods to optimize the learning phase size 
and to improve the monitoring performance during this 
period are presented later in the article. 

2.3. Step change detection 

Detecting maintenance actions automatically is a big 
challenge and algorithm development efforts have been 
pursued to improve significantly potential maintenance 
action detection using condition indicators. 

The first step to detect maintenance actions is to 
determine on which condition indicators it will generate a 
step change. Then a sliding window containing a fixed 
number of measurements is used on the condition 



indicators, and for each position of the sliding window a 
potential step change is sought. Then all the detected 
step changes are used on the global AAD process. 

To look for a potential step change in a sliding window, all 
the potential time positions of a detectable step change 
are tested. Considering that to be detectable in the sliding 
window, there must be at least α measurements before 
and after the step change, it means that if there are n 
measurements in the sliding window, there are n-2α+1 
potential time position of a step change to test. 

Then for each potential time position of a step change  

stept , the probability density of the condition indicators tS  

used to detect the step change is modeled after and 
before the potential step change using a parametric 

regression of the form given in equation 1, where kxx ,...,1  

are the condition indicators signal ( ix being in one or 

more dimensions), naa ,...,1  and mbb ,...,1  the parameters of 

the model before and after the potential step change. 
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The time position for which the model used best fit the 
signal (using a least mean square criterion) is selected. 
Then a distance between the density probability before 
and after the step change is defined as a function of 

naa ,...,1  and mbb ,...,1  giving an indication of the potential 

step change amplitude. If this value becomes higher than 
a threshold which depends on many parameters such as 

stept , the potential step change is a considered as real 

step change. Therefore, this method also provides the 
date of the step changes. 

This algorithm depends on many parameters that make it 
very difficult to tune by non-experts. A unique sensitivity 
parameter was implemented in AAD so that the step 
change algorithm can be quickly tuned on a new 
component without knowledge of the algorithm details. A 
relation between this sensitivity parameter and all the 
internal parameters of the algorithm was established to 
achieve this purpose. On the EC225 controlled service 
introduction, the global method has proven to be very 
efficient and easy to tune. 

Some step changes in condition indicators can be 
generated by some defects. However if the date of step 
change is between two flights, it can be assumed that it‟s 
due to a maintenance action, whereas if the step change 
occurs during the flight, it can be assumed that it‟s due to 
an abnormal behavior. This logic could be implemented in 
future versions of AAD. 

 

3.    CONTROLLED SERVICE 
INTRODUCTION OF AAD ON EC225 TAIL 
DRIVE SHAFT 

The Controlled Service Introduction (CSI) is divided in 
two steps: an internal CSI and an external CSI. For the 
moment, only the internal CSI was performed with two 
offshore operators, during which Eurocopter was treating 

the AAD alarms. For the external CSI, the customer will 
get the AAD alarms and will have to follow a process 
thanks to a specific work card. During this period, the 
current version of HUMS will still be considered as the 
reference. 

3.1. AAD and CSI implementation 

First, a tuning of the internal parameters of the entire 
AAD algorithm was performed in a laboratory 
environment for different zones of the helicopter. Then, 
the algorithm was transferred to a production 
environment to be able to work automatically on 
databases with customers‟ data and display automatically 
the results on WebHUMS, which is a recently developed 

web portal dedicated to helicopter health monitoring. The 
figure 3 shows 3 screenshots of AAD program on 
WebHUMS: the first one gives the number of alarms per 
helicopter, then by clicking on a specific helicopter the 
second one is displayed showing the tail transmission in 
red on the helicopter to indicate the alarm location. 
Additionally, after clicking on the faulty component the 
AAD indicators are displayed (bottom). 

Then, for each monitored zones during the CSI, a final 
configuration of AAD was performed using the two 
parameters mentioned previously: one for defect 
detection sensitivity and one for step change detection 
sensitivity. 



Figure 3: AAD on WebHUMS screenshots 

 

 

Figure 4: Screenshot of a bearing defect on AAD indicators on WebHUMS (trend visible in the circle)



3.2. Data analyzed during CSI 

During the CSI, the data of the tail drive shaft of 5 
aircrafts during 1.5 years were analyzed to perform the 
final configuration and to calculate the KPI. This included 
the analysis of all the defects and maintenance actions of 
all these aircrafts to be able to quantify the key 
performance indicators. 

3.3. Monitored zones during CSI 

The CSI was focused on 6 zones of the tail transmission 
of EC225, as shown of figure 5. On the EC225 HUMS 
system, each zone is equipped with an accelerometer.  

Figure 5: Tail transmission of EC225 (monitored zones 
during the CSI in the circles) 

 

Anomaly detection algorithm on the EC225 tail drive shaft 
is based on Condition Indicators (CI) tailored to detect 
specific defects of the tail drive shaft component. 

In general, degradation of the shafts, bearings and 
flexible couplings are monitored. Unbalance and 
misalignment of the shafts are indicated by the 
amplitudes of the first harmonics of the shaft rotational 
frequencies. Also misalignment or looseness of the 
coupling effects the rotational movement of the shafts. 
Therefore, low frequency vibration amplitudes contribute 
to the AAD detection means of the EC225 tail drive shaft. 
In addition to these indicators, high energy frequencies 
are filtered from the vibration signal. By those means 
signatures of bearing races, cages and balls can be 
isolated and indicate excessive wear.  

The combination and simultaneous processing of these 
CIs lead to the computation of two AAD Health Indicators 
(HI). Reliability and improvement of detection of this novel 
data treatment has been successfully demonstrated on 
customer data in the past (Ref. [2]).Two health indicators 
were calculated per zone, one to monitor the defects 
relative to the shafts and couplings (for example 
unbalance, misalignment,…) and one to monitor the 
defect relative to the bearings (for example flaking). This 
choice was done on the one hand to avoid condition 
indicator time resynchronization between bearings 
condition indicator and shafts conditions indicator on 
current EC225 HUMS system, and one the other hand to 
have a good compromise on the number and on the kind 
of condition indicators that are fused for each health 
indicator. 

 

 

3.4. AAD results during CSI 

In the laboratory environment, all the data of the 5 
helicopters were analyzed to capitalize on the behavior of 
the health indicator trend when a defect was detected. 
Having one health indicator related to the shaft condition 
indicators and one health indicator related to the bearing 
condition indicators proved to be relevant because some 
clear trends were visible on the health indicator for some 
defects and the performance of detection compared to 
classical condition indicators was much better. The figure 
4 shows a screenshot of the health indicator for shafts, 
the health indicator for bearings and the associated alarm 
for a bearing defect. The second Health Indicator has a 
clear rising trend associated with an alarm corresponding 
to the defect. 

To quantify the benefit of AAD compared to HUMS 
classical detection, the AAD false alarm rate and 
detection rate were compared to the false alarm rate and 
detection rate of M‟ARMS system during the same history 
on the tail drive shaft. The results are shown is table 1. 
Typical flexible coupling defects correspond to coupling 
shaft discs cracking, typical bearing defects correspond 
to fretting and flaking and typical shafts defects 
corresponds to unbalance or misalignment. 

 

H/C 

number

M’ARMS 

false 

alarms

AAD 

false 

alarms

M’ARMS 

detections

AAD 

detections

Real 

damages 

(detected 

on periodic 

inspection)

1 >26 7 0 1
2 flexible 

couplings

2 >8 4 0 0 2 bearings

3 >14 10 0 0

1 flexible 

coupling

1 shaft

4 >15 6 0 4

7 shafts

1 bearing

1 flexible 

coupling

5 >18 3 0 1
2 bearings

2 shafts

Total >81 30 0 6 18

Table 1: AAD vs M’ARMS performance 

 
In this table, successful anomaly detection was 
considered when apparent before any periodic 
inspection. 

This table shows that the AAD version tested during the 
CSI enabled to reduce significantly the false alarm rate 
while ensuring a high detection rate in comparison to the 
conventional algorithm. 

An application of the AAD algorithm was then performed 
on additional aircrafts to confirm that a reasonable rate of 
alarms was triggered. 

In summary, these results demonstrated the maturity of 
the AAD technology in order to start an external CSI. 

 



4. IMPROVEMENT OF DETECTION 
RELIABILITY 

4.1. Learning Phase Stability 

AAD detection reliability relies on the selection of suitable 
reference data in order to define the baseline reference of 
the healthy state. All the learning parameters described in 
2.2.2 need to be generated after each manual 
intervention in the system. Maintenance actions tend to 
alter the monitoring environment i.e. by modification of 
the mechanical component alignment or tightening 
torque. Since only limited maintenance feedback is 
available from the operators, maintenance actions are 
detected automatically using algorithms based on step 
change detection. 

After each step change, parameters are re-configured 
during a so-called learning phase, see Figure 6. During 
this period of time, fixed fleet-wide condition indicator 
thresholds are used to prevent undesired anomalies 
during learning phases i.e. caused by maintenance errors 
or sudden component failure. Each new acquisition is 
taken into account until the minimum amount of data is 
present fulfilling statistical relevance. Unfortunately, 
acquired datasets during the learning phase is also prone 
to unsteadiness caused by operational variance during 
acquisitions or data outliers. Thus, if all available data 
after maintenance is taken into account independent of its 
quality, derived AAD health indicators reliability is risky.  

 
Figure 6 – Learning phase detection 

 

The objective is to define a suitable learning phase after 
each detected step change in order to optimize the 
learning parameters. Learning phases are preferably 
identified as periods of time where the indicator data is 
found stable in terms of mean and standard deviation. 
Therefore, several groups are generated and statistically 
compared by means of hypothesis tests in order to find 
significant stability in mean values and standard 
deviations over all groups. 

In order to detect the optimal set of data in terms of 
quality and minimum number of necessary acquisitions 
for the computation of a healthy reference state, a 
multivariate stability detection algorithm is implemented.  

Three criterions are taken into account for successful 
learning phase detection: 

1. Minimum number of data points available to 
fulfill statistical relevance 

2. Stability of covariance 

3. Stability of mean value 

Therefore, the amount of new data after step change is 
divided into at least two sub-populations or more of 
multiple indicators. The stability criterion on the 
covariance is based on the multivariate Box‟s M Test 
([Ref. 7]): 

 = The covariance level is equal amongst all groups 

  = The covariance level is unequal amongst all groups 

First, the covariance matrices per sub-population are 
generated of all indicators. Then, a likelihood statistic of 
the null hypothesis is compared to the statistic of the 
alternative hypothesis. By using a  or F approximation 

(depending of the sample size), the p-value of the test is 
derived.  

On  rejection, the phase is considered as not stable in 

terms of covariance matrices and not be considered for 
threshold computation. If the null hypothesis is not 
rejected, the dataset is considered as covariance stability 
and the subsequent mean indicator level hypothesis test 
is based on a multivariate ANOVA for at least two sub-
populations or more of multiple indicators: 

  = The mean level is equal amongst all groups 

  = The mean level is unequal amongst all groups 

On rejection of the null hypothesis by p-value 
exceedance, the learning phase is not considered as 
stable in terms of before mentioned criteria. Additional 
acquisitions need to be gathered in order to re-start the 
stability detection process again. 

On acceptance of the two criteria, the learning phase is 
considered as stable in terms of mean value and 
covariance in order to derive a reference baseline of the 
healthy state for AAD health indicator calculation. 

As a result, AAD alert generation reliability is improved 
due to two reasons: 

1. Minimizing the necessary amount of time to 
collect sufficient data for establishing learnt 
parameters after maintenance 

2. Improving reliability of the reference data for 
learnt parameters computation due to rigorous 
data analysis based on the two stability criteria 

Thus, learning phase stability detection algorithms aims 
to find a compromise on the necessary amount of data 
after maintenance and the data quality for defining the 
healthy reference dataset during anomaly detection. 

 

4.2. Fleet-wide fixed thresholds computation 

After maintenance, it is necessary to derive modified 
learnt parameters in order to adapt the health indicator 
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calculation parameters and the limits for alert generation 
to the current mechanical vibration behavior. New learnt 
parameters are calculated using previous mentioned 
algorithms, but the learning phase itself lacks a watch-
dog to detect wrong maintenance actions. 

To overcome this uncertainty after maintenance and 
during parameter re-learning, maximum fixed fleet-wide 
thresholds are installed to prevent sudden failure and 
detect anomalies shortly after maintenance. 

The fleet-wide thresholds are automatically computed 
based on the gamma distribution derived from all 
available individual thresholds (so-called local thresholds) 
from Eurocopter EC225 helicopters equipped with HUMS. 
Therefore, available local thresholds are used to compute 
necessary parameters for approximating the cumulative 
density Gamma function. This process required a large 
amount of local thresholds in order to establish a reliable 
density function across the whole fleet. To ensure 
statistical reliability, fleet-wide HUMS data from the last 3 
years were recently used as reference database to 
establish maximum fleet-wide thresholds.  

By those means, the fleet-wide amber and red thresholds 
are derived from the 0.9925/0.9999-percentile of the 
Gamma CDF and thus serve as a maximum level of the 
condition indicators values during learning phase (see 
Figure 7). Fleet-wide thresholds exceedance required 
corrective actions for the operator and improves health 
monitoring, especially after maintenance. Levels should 
be updated automatically on a regular basis to improve 
reliability by considering additional collected data for fleet-
wide thresholds approximation. 

 
Figure 7 – Fleet-wide threshold based on Gamma 
distribution shown in a condition indicator series   

 
 
4.3. Outlier Detection Based On Data Density 
Function 

Raw vibration data and processed indicator data are 
always subjected to high variability if acquired under 
variable conditions. Data scattering which may be caused 
by loosed sensors, electrical interferences, lack of 

frequency accuracy during CI computation and different 
operational conditions during acquisitions. To minimize 
the risk of false alarm and improve health indicator 
computation, outlier detection algorithms usually filter the 
datasets. 

Usually, outliers are detected by means of distribution 
analysis e.g. by removing certain percentiles of the 
distribution. During data analysis this method did not 
prove to be successful for maximum threshold 
computation. In certain cases outliers were not detected 
at all since the data scattering was very high or even 
correct points were removed if no outlier was present. In 
general, if data is removed based on percentile quantity, 
there is a risk of excluding “golden data” from the dataset 
which is used to derive threshold limits. 

Thus, a new method, outlier filtering based on the data 
density, was introduced. Here, data densities are 
calculated in two dimensions and normalized to the 
maximum available density. Having this as reference, 
densities below a certain threshold (5% of the maximum 
density) are classified as outliers and thus removed. The 
theoretical background of density calculation and 
smoothing can be found in (Ref. [8]).  

Figure 8 demonstrates the outlier removal based on 
smoothed densities. Density distribution is shown on the 
left where red areas indicate high and blue low data 
density (note: the y-axis is shown upside-down). Data 
areas deceeding a predefined minimum density are 
flagged as outliers and thus, data points will be removed. 
For example, in Figure 8 data points in areas where 
density falls below the threshold are marked as white 
dots and will not be considered during data processing. 
  
The consideration of the two dimensions data densities 
has shown its benefit especially when applied on big 
datasets. Here, outlier removal based on data density 
proved to be more exact than on the commonly removal 
based on density functions. This is especially linked to 
the clustering of the data into two dimensions when 
applying the filtering procedure. 
 

 
Figure 8 – Outlier detection based on data density function 

 

5.    FURTHER DEVELOPMENTS 

5.1. Algorithms using only one measurement 
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All the anomaly detection algorithms presented above 
use indicators history. In the global health algorithm 
development strategy, it was chosen to complete the 
defect detection capabilities by algorithms able to detect 
with a high degree of confidence some specific defects 
only with one measurement. Combined with the AAD 
methodology, these methods will enable to have a 
significantly increased performance on future HUMS 
system both for the false alarm versus detection rate ratio 
but also for the capability to detect very sudden damage. 
The HUMS system on EC145 T2 and EC175 is capable 
of providing sufficient raw accelerometer data to 
implement these algorithms in the future. Today, these 
algorithms are still in test on real helicopter data. Three 
main categories of algorithms were developed: algorithms 
to detect gear defects, algorithms to detect bearing 
defects and algorithms to detect sensor defects. All these 
algorithms use raw accelerometer data. The algorithms to 
detect gear defects are based on spectral correlation of 
particular rotating frequency harmonics. More details are 
provided in [Ref. 4].  The algorithms to detect bearing 
defects are based on spectral correlation of particular 
bearing frequencies harmonics. More details are provided 
in [Ref. 3] and [Ref. 6].  The algorithms to detect sensor 
defects are based on specific temporal signature of such 
defects and on comparison of specific harmonics 
between many sensors. More details on these algorithms 
are presented in [Ref. 5]. 

During the 90‟s, the CAA (the UK Civil Aviation Authority) 
made funds available for a rig test program performed by 
Eurocopter to promote research on helicopter health 
monitoring. A notch was seeded into the web of the upper 
stage planet carrier of a Super Puma epicyclical gear, in 
order to initiate crack. Some pictures of the propagated 
cracks are shown on figure 9. 

Figure 9: Crack view on each side of the planet carrier 

 

At that time the best condition indicator found to detect 
the defect was the amplitude of vibration energy at the 
meshing frequency. The result of this indicator 
superposed with the crack length is shown on figure 10. 

 

 

Figure 10: Former condition indicator level vs crack length 

The results of the new indicator tested on these data for 
gear defects is shown on figure 11. This indicator shows 
a clear trend compared to the previous indicator on which 
the indicator curve is not increasing during all the 
propagation test. In addition, the new indicator is 
normalized between 0 and 1 which facilitates the 
threshold positioning compared to the previous method. 
Therefore this new method provides some high gains 
compared to the previous one. 

Figure 11: The first graph gives the crack length vs the 
number of stress cycles and the second graph shows the 

new indicator vs the number of stress cycles. 

 

6. SUMMARY AND CONCLUSION 

The AAD process developed by Eurocopter has proven to 
be very efficient during the internal CSI, compared to 
current M‟ARMS monitoring, and is now ready for an 
external CSI. These results were obtained in particular 
thanks to the condition indicators fusion method, but also 
thanks to a robust step change detection algorithm, 
enabling to distinguish between real defects and 
maintenance actions for which no relearning was 
performed.  

Since the results of developments efforts are fruitful, 
research is still going on at Eurocopter to continue to 
improve the AAD performance and more generally health 
algorithms performance. In particular, the method 
developed to generate maximum thresholds during the 
learning phase using fleet data was used to tune EC225 
maximum thresholds and has shown to be relevant. 
Another algorithm was developed to test the stability of 
condition indicators during the learning phase and is 
currently in test while being integrated in the whole AAD 
process. Finally some methods using raw data which 
could be implemented on EC175 and EC145 T2 HUMS 
system are also currently in progress and give some very 
promising results. 

In addition to all the work presented here, research is 
also going on at Eurocopter to develop prognosis to 
estimate remaining useful life after defect detection. 
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