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ABSTRACT

Helicopters like the EC 135 with its bearingless main rotor design feature large equivalent hinge offsets of about 10 %,
significantly higher than conventional rotor designs and leading to improved maneuverability and agility. For such a heli-
copter, the fuselage and rotor responses become fully coupled and the quasi-steady assumption using a 6-DoF rigid-body
model state space description and approximating the neglected rotor degrees of freedom by equivalent time delays is
not suitable. Depending on the intended use of the model, the accurate mathematical description of the vertical motion
for these configurations requires an extended model structure that includes inflow and coning dynamics. The paper first
presents different modeling approaches and their relationship. Next, identification results for the DLR EC 135 are presented
for a model that only describes the vertical motion excluding coupling to the other axes. Here, the differences between
the modeling approaches and the respective deficits are explained. Next, the modelling approach most widely used in the
rotorcraft identification literature is extended to account for hinge offset. In addition, some model parameters are estimated
instead of fixing them at their theoretical predictions which leads to a very good match with EC 135 flight test data. Results
for a complete model of the EC 135 including flapping, coning/inflow, and regressive lead-lag are shown as a final result.

NOMENCLATURE

az vertical acceleration, m/s2

Bi coning derivatives (i = ν, β0, β̇0, δcol)
c rotor blade chord, m
CLα blade lift curve slope, 1/rad
CT thrust coefficient, CT = T/[ρπR2(ΩR)2]
C0 inflow constant
e hinge offset, m
g acceleration due to gravity, m/s2

Iβ blade flapping moment of inertia, kg m2

Kβ flapping stiffness, Nm/Rad
Kθ0 control gain, rad/%
m aircraft mass, kg
p, q, r roll, pitch and yaw rates, rad/s
R rotor radius, m
s Laplace variable, 1/s
T rotor thrust, N
Ti thrust derivatives (i = ν, ν̇, β̇0)
u, v, w body-fixed velocity components, m/s
Vi inflow derivatives (i = ν, ν̇, β̇0)
Zi vertical force derivatives (i = u, v, w, p, q,

r, ν, β̇0, CT , δlon, δlat, δped, δcol)
β0 coning angle, rad
δlon, δlat longitudinal, lateral cyclic inputs, %
δped, δcol pedal and collective inputs, %
ε hinge offset ratio, ε = e/R
Φ,Θ roll and pitch angles, rad
γ Lock number, γ = ρCLαcR

4/Iβ
ν inflow, m/s
ν̄0 trim inflow ratio

ρ air density, kg/m3

σ solidity
τ time delay, s
Ω rotor rotation speed, rad/s

Subscripts
m measured value
0 trim value

Within the differential equations, all state variables (w, ν,
β0) as well as all control inputs (δlon, δlat, δped, δcol) denote
perturbations from trim.

1. INTRODUCTION

High-bandwidth flight control system development requires
linear models with good fidelity over a wide frequency
range. Such models can be derived by linearization of a
full flight envelope nonlinear simulation model or by sys-
tem identification. When appropriate flight test data are
available, system identification usually yields more accurate
models than linearization.

Helicopter system identification for flight control system de-
velopment often requires models with a high number of
states because of the high degree of inter-axis coupling and
the need to represent the main rotor degrees of freedom.
Especially when a model with a large frequency range of
validity is desired, an extended model structure is neces-
sary that explicitly includes the regressive flapping, coupled
inflow/coning, and regressive lead-lag states of the rotor.



Regarding the vertical axis, a quasi-static model is therefore
usually not sufficient. An implicit model formulation that in-
cludes dynamic inflow and accounts for coning through an
equivalent time delay was presented in[1] and successfully
applied to DLR EC 135 data in forward flight. This implicit
formulation is equivalent to the approach presented in[2] for
the identification of the AH-64, where the dynamic inflow is
approximated by a first order lead-lag filter in the collective
term in the vertical axis.

For modeling the coupling between the fuselage and the
inflow/coning dynamics, the approach most widely used is
the hybrid formulation developed by Tischler[3]. It is based
on the analytical model for the coupled inflow/coning/heave
dynamics from Chen/Hindson[4]. The hybrid model uses a
simplified version of the model from[4] that ignores heave
motion and the influence of hinge offset. The coning dy-
namics are expressed by a second-order differential equa-
tion that is coupled to the first order equation for inflow.
These inflow/coning dynamics are then coupled to the fuse-
lage through the perturbation thrust coefficient. The hybrid
model approach has been successfully applied for identifi-
cation of the vertical motion of the S-92[5], SH-2G[6], AH-
64D[7] and S-76C[8].

As blade motion (including coning), inflow, and thrust mea-
surements are usually not available, most parameters of
this hybrid model are normally fixed to theoretical values.
In[9] Fletcher identified some of the parameters of the hy-
brid model for the UH-60.

Figure 1: DLR’s research helicopter ACT/FHS

The DLR Institute of Flight Systems operates the ACT/FHS
(Active Control Technology/Flying Helicopter Simulator, see
figure 1), an EC 135 helicopter with a highly modified flight
control system[10]. To support the in-flight simulation ef-
forts, models for the EC 135 helicopter that cover the en-
velope from hover up to 120 kts forward flight have to be
identified. Dedicated flight tests for this purpose, consist-
ing of frequency sweeps and multistep inputs in all four
controls, have been performed at five reference speeds.
Within this modeling effort, different modeling variants are
currently under investigation[11]. Therefore, different ap-

proaches for modeling the vertical motion were investigated
using EC 135 flight test data.

2. MODELING OF THE VERTICAL AXIS

The vertical response to collective input at low frequencies
(below 1 rad/s) is dominated by the first-order helicopter
heave damping caracteristic. At mid to high frequencies
(about 1-12 rad/s), the vertical response is characterized by
the coupled inflow/coning dynamics. At higher frequencies,
the response is dominated by the second-order coning dy-
namics with a natural frequency of about 1/rev (the exact
frequency depends on hinge offset and flapping stiffness).
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Figure 2: Measured frequency responses for az/δ0 (EC 135
data)

The frequency responses for vertical acceleration due to
collective pilot control input as derived from EC 135 flight
test data are depicted in figure 2. For frequencies greater
that 30 rad/s the coherence drops drastically so that the
data is no longer reliable and thus not shown. It can be
seen, that neither the amplitude nor the phase curves are
flat, not even in forward flight where a simple quasi-static
model is often assumed to be sufficient.

2.1 Quasi-Static Model

The quasi-static formulation assumes that the inflow and
coning reach their steady state instantaneously upon a col-
lective control input. The vertical response is thus described



by the first-order equation

(1) ẇ = Zww + Zδcolδcol

The the two derivatives Zw and Zδcol are usually estimated
but theoretical predictions of

Zw =
ρCLασΩR

8m/(πR2)(1 + CLασ/(16ν̄0))

Zδcol = −4

3
ΩRZw

(2)

with ν̄0 =
√
T0/(ρπR2(ΩR)2) exist (see[4]).

Assuming az = ẇ, this yields a transfer function of

(3)
az
δcol

=
sZδ0
s− Zw
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Figure 3: Simulated frequency responses for az/δ0 using
different models (EC 135 in hover)

Parameter Value
c 0.29 m

CLα 5.6 1/rad
e 0.507 m
Iβ 204.16 kg m2

Kβ -4855 Nm/rad
Kθ0 0.00302 rad/%
m 2110 kg
R 5.1 m
T0 28000 N
γ 7.35
ρ 1.225 kg/m3

σ 0.0724
Ω 41.36 rad/s

Table 1: Values for the EC 135 configuration parameters

The first curve in figure 3 is a simulation of the transfer
function from equation (3) with the predictions from equa-
tion (2) and values from table 1. It can be seen that the
quasi-static formulation leads to flat amplitude and phase
curves at higher frequencies for vertical acceleration due to
collective control.

Comparing this frequency response to the experimental
data from figure 2 clearly shows that quasi-static modeling
of the vertical axis is not sufficient. Therefore, the influence
of inflow and coning must be taken into account if the iden-
tified models are to be accurate at higher frequencies.

2.2 Accounting for Inflow

An implicit model that includes the first order inflow equa-
tion and accounts for coning through an equivalent time de-
lay was derived in[1] as follows. The dynamic equations for
vertical velocity w and inflow ν for a rigid rotor (neglecting
coning) are

ẇ = Zww + Zνν + Zν̇ ν̇

ν̇ = Tww + Tνν + Tδcolδcol
(4)

The second equation from above, the inflow equation, is
derived from the principle of linear momentum. Inserting it
into the first equation eliminates ν̇ and leads to

ẇ = (Zw + Zν̇Tw)w + (Zν + Zν̇Tν)ν

+ Zν̇Tδcolδcol

= Z̄ww + Z̄νν + Z̄δcolδcol

(5)

Solving this equation for ν yields

(6) ν = (ẇ − Z̄ww − Z̄δcolδcol)/Z̄ν

Differentiating equation (5) with respect to time and insert-
ing the expressions for ν̇ from (4) and for ν from (6) gives

ẅ = (Z̄νTw − TνZ̄w)w + (Z̄w + Tν)ẇ

+ (Z̄νTδcol − TνZ̄δcol)δcol + Z̄δ̇col δ̇col

= Ẑww + Ẑẇẇ + Ẑδcolδcol + Ẑδ̇col δ̇col

(7)

This differential equation for ẅ has both the collective con-
trol input δcol and its derivative δ̇col as inputs. Alternatively,
δcol can be added to the model as a state variable, which
then leaves δ̇col as the only vertical control input.

Again assuming az = ẇ yields the transfer function

(8)
az
δcol

=
s(Ẑδ̇cols+ Ẑδcol)

s2 − Ẑẇs− Ẑw

The second curve in figure 3 is a simulation of the transfer
function from equation (8) with numerical values according
to equation (25). It shows that accounting only for inflow



and not for coning leads to a rising amplitude in the ver-
tical response at higher frequencies but yields no phase
reduction. The third curve in the figure illustrates that the
phase drop that is caused by the coning can approximately
be accounted for if the implicit model from equation (8) is
extended by an equivalent time delay.

In[2], Schroeder et. al. presented a modeling approach that
uses a first order lead-lag filter on the vertical control input
to account for inflow.

ẇ = Zww + ZδcolδcolLL

with δcolLL =
s+ a

s+ b
e−τcolsδcol

(9)

The zero a and pole b of the lead-lag filter as well as the time
delay τcol and the derivatives Zw and Zδcol were estimated
from flight test data.

Deriving the transfer function from collective input to vertical
velocity for this model

(10)
w

δcol
=

Zδcols+ Zδcola

s2 − (Zw − b)s− Zwb
e−τcols

illustrates that this approach is equivalent to the implicit for-
mulation from equation (8) with

Ẑẇ = Zw − b, Ẑw = Zwb,

Ẑδ̇col = Zδcol , Ẑδcol = Zδcola
(11)
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Figure 4: Match in az/δ0 for the implicit model in hover (left)
and at 60 kts forward flight (right) (EC 135 data)

The implicit formulation from equation (7) was included in
an 11-DoF model and applied to EC 135 data[1]. Figure 4
shows that this model that accounts only for inflow and not
explicitely for coning is sufficient for forward flight but is not
able to match the hover flight test data.

2.3 Coupled Inflow/Coning Equations

Tischler[3] developed a hybrid model that couples the in-
flow/coning dynamics with the fuselage. It is based on
the work by Chen and Hindson[4] who developed analyti-
cal models for the coupled inflow/coning/heave dynamics.
By ignoring the aircraft heave motion, a very simple physi-
cal model of the coupled inflow/coning response is obtained
that is quite accurate at mid and high frequencies (above
1 rad/s).

The first-order inflow dynamics equation are written as

ν̇ =
−75πΩ

32

(
ν̄0 +

CLασ

16

)
C0ν + Vβ̇0

β̇0

+
25πΩ2R

32

(
CLασ

8

)
C0Kθ0δcol

=Vνν + Vβ̇0
β̇0 + Vδcolδcol

(12)

where the trim inflow ratio ν̄0 and thrust coefficient CT0
are

defined as (T0 = mg)

(13) ν̄0 =

√
CT0

2
, CT0

=
T0

ρπR2(ΩR)2

The control gain Kθ0 transforms collective input to effective
blade root pitch angle (θ0). For hovering flight, an analytical
expression is available for Vβ̇0

(14) Vβ̇0
=

−25πΩR

32

(
ν̄0 +

CLασ

8

)

The rigid-blade coning dynamics, ignoring the influence
of hinge offset and flapping spring, are expressed as a
second-order differential equation

β̈0 = −Ωγ

8
β̇0 − Ω2β0 −

Ωγ

6R
ν +

Ω2γ

8
Kθ0δcol

= Bβ̇0
β̇0 +Bβ0β0 +Bνν +Bδcolδcol

(15)

resulting in two states, coning angle β0 and coning rate β̇0.

Finally, the coning/inflow dynamics are coupled to the fuse-
lage through the thrust coefficient CT , to achieve the hybrid
model structure for the vertical dynamics

ẇ =Zuu+ Zvv + Zww + (Zp − v0)p

+ (Zq + u0)q + Zrr − g cos Φ0 sin Θ0Θ

− ρπR2(ΩR)2

m
CT + Zδlonδlon + Zδlatδlat

+ Zδpedδped

(16)

where the perturbation thrust coefficient CT is given by

CT =
0.543

Ω2R

1

C0
ν̇ +

4ν̄0
ΩR

ν +
4ν̄0
3Ω

β̇0

= Tν̇ ν̇ + Tνν + Tβ̇0
β̇0

(17)



Note that the quasi-steady collective control force deriva-
tive Zδcol is absent from equation (16) for the vertical ac-
celeration because the control path is now extended. Col-
lective control inputs cause an increase in blade angle of
attack that increases inflow and coning (see equations (12)
and (15)). The corresponding dynamic variations in thrust
from equation (17) are transmitted to the fuselage via equa-
tion (16) resulting in a change of vertical acceleration.

The fourth curve in figure 3 is the simulated vertical acceler-
ation responses that is obtained with equations (12) – (15)
using a value of C0 = 1 and a simplified version of equa-
tion (16) that omits all coupling with the off-axis states (u,
v, p, q, r) and the secondary inputs (δlon, δlat, δped). It can
be seen that the hybrid model with inflow and coning leads
to a transfer function zero at the rotor frequency.

As introduced by Chen[4], the inflow constant C0 in equa-
tions (12) and (17) allows for the selection of either the
Carpenter-Fridovich theory inflow time constant (C0 =
0.639) or the Pitt-Peters time constant (C0 = 1).

Carpenter[12] extended the simple momentum theory for
steady-state inflow to include the transient inflow buildup by
introducing the apparent additional mass of air ma partici-
pating in the acceleration. By analogy with an impervious
disk, Carpenter defined the apparent additional mass to be
63.7% of the air mass of the sphere circumscribed by the
rotor (ma = 0.637ρ 4

3πR
3). Taking the equation for the in-

stantaneous thrust

(18) T = maν̇ + 2πR2ρν

(
ν − w +

2

3
β̇0R

)
and taking into account that CT = T/(ρπR2(ΩR)2) the
first term in equation (17) becomes

(19)
ma

ρπR2(ΩR)2
ν̇ ≈ 0.849

ν̇

Ω2R

The Pitt-Peters dynamic inflow model from[13] was devel-
oped based on unsteady actuator disk theory. Closed-form
formulae were obtained that relate transient rotor thrust and
pitch and roll moments to the transient response of the
rotor-induced flow field. The corresponding equation for the
first term in equation (17) for this model is

(20)
128

75πΩ

ν̇

ΩR
≈ 0.543

ν̇

Ω2R

This means that the Pitt-Peters model has a smaller ap-
parent additional air mass (about 64 % of the value for the
Carpenter-Fridovich model) resulting in a smaller time con-
stant of the inflow mode.

Figure 5 shows the difference between the vertical acceler-
ation responses for both inflow models. It can be seen that
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Figure 5: Simulated response of az/δ0: Comparison be-
tween Carpenter-Fridovich and Pitt-Peters inflow model

for the Carpenter-Fridovich model the amplitude raise starts
at lower frequencies compared to the Pitt-Peters theory and
that the maximum amplitude is higher.

Most system identification performed using the hybrid for-
mulation uses the Carpenter-Fridovich model[6]. Due to the
lack of blade motion, inflow and thrust measurements, all
derivatives of the inflow and coning equations are usually
fixed at their theoretical predictions and only Zw is esti-
mated.

2.4 Relationship between the Formulations

Tischler[3] implements equation (17) by introducing a ficti-
tious state derivative and formulating the system dynamics
using a mass matrix. Alternatively, all equations of the ver-
tical axis can be solved for the state derivatives and written
in standard matrix notation. Writing equations (12) and (15)
in matrix notation yields
(21) ν̇

β̇0
β̈0

 =

Vν 0 Vβ̇0

0 0 1
Bν Bβ0 Bβ̇0

 ν
β0
β̇0

+

Vδcol0
Bδcol

 δcol
To be able to write equation (16) also in matrix notation,
equation (17) must be used for the perturbation thrust coef-
ficient and ν̇ from equation (12) inserted. This finally yields

ẇ =Zuu+ Zvv + Zww + (Zp − v0)p

+ (Zq + u0)q + Zrr − g cos Φ0 sin Θ0Θ

+ Zνν + Zβ̇0
β̇0 + Zδcolδcol

+ Zδlonδlon + Zδlatδlat + Zδpedδped

(22)



with

Zν = ZCT (Tν̇Vν + Tν),

Zβ̇0
= ZCT (Tν̇Vβ̇0

+ Tβ̇0
),

Zδcol = ZCT Tν̇Vδcol ,

ZCT = −ρπR
2(ΩR)2

m

(23)

To be able to compare the hybrid model with the implicit for-
mulation, the preceding equations are reduced to the case
of inflow only by setting β̇0 = β0 = 0 in equations (21) and
(22) and omitting all coupling terms in equation (22). This
yields

ν̇ = Vνν + Vδcolδcol

ẇ = Zww + Zνν + Zδcolδcol
(24)

Differentiating the second equation from above with respect
to time and inserting ν̇ from the first and ν from the second
equation yields the implicit formulation from equation (7)
with

Ẑw = −ZwVν
Ẑẇ = Zw + Vν

Ẑδ̇col = ZνVδcol − VνZδcol

Ẑδcol = Zδcol

(25)

Inserting the analytical values for Vν and Vδcol from equa-
tion (12) as well as the expressions for Zν and Zδcol from
equation (23) leads to

Ẑδ̇col
Ẑδcol

=
Tν̇
Tν

=
1

C0

0.543

4Ων̄0

Ẑẇ = Zw +
−75πΩ

32

(
ν̄0 +

CLασ

16

)
C0

Ẑw =
75πΩ

32

(
ν̄0 +

CLασ

16

)
C0Zw

(26)

The first equation shows that the two control derivatives
Ẑδcol and Ẑδ̇col from the implicit model are proportional to
each other with a factor that depends on the inflow constant
C0. Furthermore, the parameters Ẑw and Ẑẇ are also not
independent but are coupled via Vν and are both a function
of Zw, that is usually estimated.

For the EC 135, inserting the values from table 1 into equa-
tion (26) and using the Carpenter-Fridovich value for C0

results in a proportionality between the two control deriva-
tives of Ẑδ̇col = 0.0916Ẑδcol . This restriction was utilized
throughout the identification with the implicit model. The de-
pendency between Ẑw and Ẑẇ was ignored at first which
led to correlation problems in the identification, especially
in the hover and low speed regime. Therefore, these two
derivatives were coupled (via Vν , see equation (25)) for the
final identification.

2.5 Application to EC 135 Data

To investigate whether the hybrid model from section 2.3
would yield an improvement over the implicit formulation,
the following reduced model, that covers only the vertical
axis, was used. This approach is appropriate for the hover
flight condition where the vertial axis dynamics should be
relatively decoupled from the rest of the model.
(27)
ẇ
ν̇

β̇0
β̈0

 =


Zw Zν 0 Zβ̇0

0 Vν 0 Vβ̇0

0 0 0 1
0 Bν Bβ0

Bβ̇0



w
ν
β0
β̇0

+


Zδcol
Vδcol

0
Bδcol

 δcol

In this model, all parameters of the coning equation are
known. In the inflow equation, Vβ̇0

is known from equa-
tion (14) and Vν and Vδcol are determined according to
equation (12). A value of 0.639 was chosen for the inflow
constant C0 which corresponds to the Carpenter-Fridovich
theory. In the heave equation, Zw is a free parameter
whereas Zν , Zβ̇0

and Zδ0 are determined according to
equation (23).

The unknown parameters of this reduced model, that have
to be estimated, are thus Zw and a time delay τδcol that is
necessary to account for internal dynamics of the control
system.
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Figure 6: Match in az/δ0 for the standard hybrid model
(EC 135 in hover)

Figure 6 illustrates that accounting for coning with the stan-
dard hybrid formulation yields an improvement over the im-
plicit model but still is not able to match the vertical re-
sponse at hover with sufficient accuracy. The rise in am-
plitude is not large enough and the amplitude drop occurs
at a lower frequency than in the flight test data.



3. EXTENDING THE HYBRID MODEL

3.1 Accounting for Hinge Offset

Because of the deficits in matching the flight test data for
the vertical axis in hover, it was tried to improve the hybrid
identification model. As the EC 135 with its bearingless ro-
tor has a relatively high equivalent hinge offset of 10%, the
influence of hinge offset was investigated first.
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Figure 7: Influence hinge offset on the simulated frequency
response for az/δ0 (EC 135 in hover)

Figure 7 shows the difference in the frequency response of
vertical acceleration due to collective input with a hinge off-
set of 10% versus zero hinge offset. It can be seen that
the hinge offset moves the amplitude drop to higher fre-
quencies and slightly modifies the phase curve. The influ-
ence of hinge offset on the amplitude drop led to the idea
that the deficits of the standard hybrid model might partially
be caused by ignoring hinge offset. Therefore, the hybrid
model was extended accordingly.

According to[4], the coning equation including the influence
of hinge offset are:

β̈0 = − Ωγ

8

(
1 − 8

3
ε+ ε2

)
β̇0

− Ω2

(
1 +

3ε

1(1 − ε)
+

Kβ

IβΩ2

)
β0

− Ωγ

6R

(
1 − 2

3
ε

)
ν

+
Ω2γ

8

(
1 − 4

3
ε

)
Kθ0δcol

(28)

This means that the parameters of the coning equation in
(27) have to be changed accordingly. Table 2 illustrates how
the numerical values of the derivatives of the coning equa-
tion for the EC 135 change when accounting for the 10%

hinge offset. The differences between the values with and
without hinge offset are on the order of 15-20%.

Derivative ε = 0 ε = 10%
Bβ0

-1710 -1970
Bβ̇0

-34.1 -29.2
Bν -8.91 -7.08
Bδcol 4.26 3.39

Table 2: Influence of hinge offset on coning derivatives
(EC 135 values)
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Figure 8: Match in az/δ0 for the hybrid model without and
with hinge offset (EC 135 in hover)

Figure 8 shows the improvement when applying the hybrid
model that accounts for hinge offset to EC 135 flight test
data. It can be seen that the amplitude drop for the vertical
acceleration moves to higher frequencies as intended, but
the deficit in amplitude raise still remains.

3.2 Freeing Parameters

As the match in vertical acceleration at hover still was not
sufficient, additional investigations were performed. In[9]

Fletcher applied the hybrid model to UH-60 flight test data
and could only achieve an acceptable match by freeing
some of the parameters of the hybrid model from their ana-
lytical predictions, namely ZCT , Tν , Vβ̇0

and Vν .

Thus, a similar approach was tried for the EC 135. As the
identification model from equation (27) does not contain the
parameters ZCT , Tν , Vβ̇0

and Vν directly as parameters to
be identified, scale factors for these parameters were intro-
duced in the model and estimated.



Derivative Identified CR bound
Value (%)

Zw -0.134 3.6
τδcol 0.0234 2.3
f_Vν 0.920 2.7
f_Tν 0.717 2.6

Table 3: Identified values of extended hybrid model with
Cramer-Rao bounds
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Figure 9: Match of extended hybrid model in hover

Estimating a scale factor for ZCT was not possible because
of identifiability problems. Estimating a factor for Tν gave
some improvement and estimating factors for both Tν and
Vν led to the match shown in figure 9 that is almost per-
fect. Table 3 gives the corresponding identified values for
the parameters of the vertical model together with their un-
certainty levels (Cramer-Rao bounds). All model parame-
ters could be determined with high accuracy.

The deviation from the theoretical values is a factor of 0.920
for Vν . This could be caused by uncertainties in the as-
sumed value of the blade lift coefficient. For Tν , the devi-
ation is much higher with a factor of 0.717. One possible
reason for this deviation is that omitting all coupling to the
other axes in the derivation of the hybrid models causes
an oversimplification. Incidently, the estimated factors cor-
respond very well to the deviations that were identified by
Fletcher for the UH-60 (see[9]).

Table 4 compares the resulting parameters of the verti-
cal model with their theoretical predictions. Note that Zν
changes from its theoretical values due to the changes in
Vν and Tν (see equation (23)). The numerical values for
the parameters of the coning equation are already listed in
table 2.

Derivative Identified Theoretical
Value Value

Vν -15.1 -16.0
Vβ̇0

-35.9 -35.9
Vδcol 2.17 2.17
Tν̇ 9.74e-5 9.74e-5
Tν 7.65e-4 0.0011
Tβ̇0

0.0018 0.0018
ZCT -1.590 -1.590
Zw -0.137 —
Zν 0.791 1.12
Zβ̇0

2.69 2.69
Zδ0 -0.336 -0.336

Table 4: Comparison of identified values and theoretical
predictions of the vertical model

After this good match for the hover data had been achieved,
the extended vertical model was also applied to the data for
the forward flight conditions. The simplified coning equation
that is used in the hybrid model is theoretically only appli-
cable to hover data because in forward flight, rotor coning
and flapping are coupled via the advance ratio (see[14]). But
the coning motion has only a small influence on the overall
vertical response in forward flight so that this coupling can
be ignored. This could already be seen in figure 4 where
the implicit model that neglects coning provides a sufficient
match in forward flight.

Therefore, the extended hybrid model was applied without
any modification also to the forward flight conditions. No
scaling factors for the parameters Tν and Vν were neces-
sary for these cases and a good match could be achieved.

4. INCLUSION IN OVERALL MODEL

After the modified hybrid formulation for the vertical axis
provided such a good match in the reduced model, it was
also implemented in the overall system identification model
for the EC 135. This overall model covers the 6-DoF rigid
body dynamics and includes an implicit formulation for the
regressive flapping that has been shown in[11] to be equiv-
alent to the more common explicit formulation. The regres-
sive lead-lag is modeled by a second-order dipole on the
longitudinal and lateral cyclic inputs as described in[1]. To-
gether with the extended vertical model from the preceding
section, this leads to a 12-DoF model with 17 states (u, v,
w, p, q, r, Θ, Φ for the rigid-body motion, ṗ, q̇ for the implicit
flapping formulation, ν, β0, β̇0 for inflow/coning and x1, x2,
y1, y2 for the regressive lag motion).

Engine dynamics have not yet been included in the overall
model as the EC 135 engines are controlled by a FADEC
(full authority digital engine control) system that keeps en-
gine speed almost constant.
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Figure 10: Match in vertical acceleration for the overall model in hover

For the identification with the overall model, the on-axis pa-
rameters of the vertical axis were fixed at the values iden-
tified with the reduced model because they could not be
estimated together with all other unknown derivatives.

By using the extended vertical model also in forward flight,
the same model structure could be used for all velocities.
Having a single model structure facilitates the interpolation
of the identification parameters with airspeed, which is use-
ful for flight-control design at intermediate conditions and for
implementation in a continuous full flight envelope simula-
tion[15].

Figure 10 shows the match in vertical acceleration due to
all four control inputs for the hover case. It can be seen that
the overall model tracks the flight test data very well also

for the off-axis responses. The corresponding match for the
60 kts forward flight condition is shown in figure 11.

5. SUMMARY

When modeling the vertical axis of the EC 135, a simple
quasi-static model is not sufficient. Therefore, an implicit
model was used that models the dynamic inflow and ac-
counts for coning through an equivalent time delay. This
implicit model provided sufficient accuracy for forward flight
but not for hover.

Thus a standard hybrid formulation accounting for inflow
and coning was applied. This led to some improvement but
still did not provide a sufficient match for the hover data.



−40

−20

0

M
ag

ni
tu

de
 (

dB
)

−100

−50

0

−100

−50

0

M
ag

ni
tu

de
 (

dB
)

−40

−20

0

0

100

200

P
ha

se
 (

de
g)

−1000

0

1000

−1000

0

1000

P
ha

se
 (

de
g)

−300

−200

−100

 

 
measured
12−DoF model

1 10 30
0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
1 10 30

0

0.5

1

Frequency (rad/sec)

1 10 30
0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
1 10 30

0

0.5

1

Frequency (rad/sec)

(a) az/δlon

−40

−20

0

M
ag

ni
tu

de
 (

dB
)

−100

−50

0

−100

−50

0

M
ag

ni
tu

de
 (

dB
)

−40

−20

0

0

100

200

P
ha

se
 (

de
g)

−1000

0

1000

−1000

0

1000

P
ha

se
 (

de
g)

−300

−200

−100

 

 
measured
12−DoF model

1 10 30
0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
1 10 30

0

0.5

1

Frequency (rad/sec)

1 10 30
0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
1 10 30

0

0.5

1

Frequency (rad/sec)

(b) az/δlat

−40

−20

0

M
ag

ni
tu

de
 (

dB
)

−100

−50

0

−100

−50

0

M
ag

ni
tu

de
 (

dB
)

−40

−20

0

0

100

200

P
ha

se
 (

de
g)

−1000

0

1000

−1000

0

1000

P
ha

se
 (

de
g)

−300

−200

−100

 

 
measured
12−DoF model

1 10 30
0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
1 10 30

0

0.5

1

Frequency (rad/sec)

1 10 30
0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
1 10 30

0

0.5

1

Frequency (rad/sec)

(c) az/δped

−40

−20

0

M
ag

ni
tu

de
 (

dB
)

−100

−50

0

−100

−50

0

M
ag

ni
tu

de
 (

dB
)

−40

−20

0

0

100

200

P
ha

se
 (

de
g)

−1000

0

1000

−1000

0

1000

P
ha

se
 (

de
g)

−300

−200

−100

 

 
measured
12−DoF model

1 10 30
0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
1 10 30

0

0.5

1

Frequency (rad/sec)

1 10 30
0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
1 10 30

0

0.5

1

Frequency (rad/sec)

(d) az/δcol

Figure 11: Match in vertical acceleration for the overall model at 60 kts forward flight

Due to the EC 135 having a hinge offset of 10%, the hybrid
formulation was extended to account for the hinge offset.
Furthermore, two parameters that are usually fixed to the-
oretical values had to be estimated to match the flight test
data. With these modifications, the hybrid formulation pro-
vides a good match for the hover case.

This extended hybrid model for the vertical axis was fi-
nally used in an overall identification model that includes re-
gressive flapping, inflow/coning and regressive lead-lag and
yields a very good match for frequencies up to 30 rad/s.
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