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Abstract

This work presents the application of Lyapunov Characteristic Exponents (LCEs), or in short Lyapunov
Exponents, to the evaluation of rotorcraft aeroelastic stability. Current state of art literature on rotorcraft
aeroelastic stability analysis approaches the problem by either using a constant coefficient approximation or
by computing the eigenvalues of the monodromy matrix according to Floquet Theory. The former neglects
periodicity and the latter is only applicable to the perturbation of the problem about a periodic orbit. Often
such approximations are acceptable; however, LCEs can be applied to generic trajectories of non-linear systems
to produce an estimate of the stability properties without the need to reach a steady orbit or determine the
period of the system. Being more general, LCEs can provide a common environment in rotorcraft aeroelastic
stability among both linear and non-linear systems, and be applicable to all problems that can be proficiently
analyzed by time marching analysis, including experimental data. This work presents the evaluation of the
stability of an isolated rotor formulated as a linear time-periodic system by computing the LCEs from arbitrary
fiducial trajectories. The method is illustrated in relation with the problem of rigid helicopter blade flapping,
and ground resonance with one damper inoperative and with non-linear dampers.

1. INTRODUCTION

The stability of a dynamical system is related to the
evolution of a solution after perturbation. The prac-
tical, quantitative way of measuring stability depends
on whether a system is autonomous (i.e. not explic-
itly dependent on time) and linear. Stability of linear,
time invariant (LTI) systems can simply be inferred by
computing the eigenvalues of the state space matrix,
namely its spectrum. The problem is more complex
when the system is linear non-autonomous, but time
periodic (LTP), i.e. the state space matrix has peri-
odic coefficients. The stability of LTP systems is eval-
uated by computing the eigenvalues of the monodromy
matrix, namely the state transition matrix over one pe-
riod. For non-linear, autonomous problems, the eigen-
values and eigenvectors of the linearized system com-
puted at the coordinates of the phase plane correspond-
ing to a steady solution provides the local information
about the behavior of the system in the neighborhood
of that solution. Once these points are evaluated and
connected for the whole phase plane, geometric under-
standing of the system is possible. However, for prob-
lems having higher dimensions geometric understand-
ing is not so easy and quantitative way of measuring is
necessary.

LTI and LTP problems typically result from lin-
earization of non-linear, non-autonomous problems
about a steady (both LTI and LTP) or a periodic (LTP
only) reference solution. They require the existence of
such solution, and the capability to define and com-
pute it. Obtaining a steady or periodic solution by
numerical integration in time requires that solution to
be stable, so the study of the stability of the solution
is actually the study of how much stable it is, i.e. of its
stability margin.

A method that does not require a special reference
solution (i.e. a stable point or a stable orbit) but, on
the contrary, provides indications about the existence
of an attractor, being it a point, a periodic orbit or a
higher-order solution (e.g. a multidimensional torus),
while computing the evolution of the system towards it,
would give valuable insight into the system properties
and, at the same time, provide a viable and practical
means for its analysis.

Lyapunov Characteristic Exponents (LCE) or in
short Lyapunov Exponents are indicators of the na-
ture and of the stability properties of solutions of dif-
ferential equations (see for example Refs.[1, 2] and refer-
ences therein). They define the spectrum of the related
Cauchy (initial value) problem. Lyapunov theory can
be applied to non-linear non-autonomous systems. The



stability of trajectories in state space can be estimated
while computing their evolution.

Both LTI and LTP find several applications in the
analysis of problems related to rotary-wing aircraft
as a consequence of the intrinsic periodicity of rotor
motion1. Moreover, non-linearity always present in
any dynamical system including rotorcraft, and should
be checked for stability. This work presents the use
of LCEs in analyzing rotorcraft stability that is be-
lieved to provide a common stability analysis platform
for dynamical rotorcraft systems having different lev-
els of complexity. The method is demonstrated on
well-known rotorcraft problems. Rigid helicopter blade
flapping and helicopter ground resonance problems are
chosen as LTP cases and LCEs are compared with
the results obtained using Floquet Theory. Moreover
LCEs of a non-linear problem is estimated by introduc-
ing non-linear dampers to helicopter ground resonance
problem.

2. Lyapunov Characteristic Exponents

This section recalls the definition of non-autonomous
problems and of the so-called Lyapunov Characteristic
Exponents as a measure of its spectrum and the numer-
ical procedure used in this study for their estimation.

2.1 Non-Autonomous Problems

In engineering practice, differential problems of the
form

ẋ = f (x, t) , x(t0) = x0(1)

arise often. Special cases occur when the problem is
linear, i.e. f(x, t) = A(t)x(t), or even periodic, i.e. lin-
ear with A(t + T ) = A(t) for a given constant T , ∀t.
Autonomous problems arise when f(x) does not explic-
itly depend on time t; a special case occurs when the
problem is linear, i.e. f(x) = Ax. In the latter case,
the spectrum of the problem is clearly represented by
the eigenvalues of matrix A. In the other cases, its
definition is less intuitive. Yet, the rate of decay of the
amplitude of the trajectory with respect to initial per-
turbations, i.e. stability , have the same interpretation
and they are quantitatively comparable. This corre-
sponds to the real part of eigenvalues of matrix A for
a LTI system, logarithm of the real part of eigenvalues
of matrix monodromy matrix for an LTP problem and
as it is shown here LCEs for any problem including
non-linear and non-autonomous problems.

1Strictly speaking, periodic problems only occur under strict
assumptions; for example, the motion of a helicopter is periodic
only during idealized steady, coordinated maneuvers.

2.2 Lyapunov Exponents

Given the problem ẋ = f(x, t), with the state
x ∈ Rn, the time t ∈ R, and the nonlinear function
f ∈ Rn+1 → Rn, and a solution x(t) for given initial
conditions x(0) = x0, the Lyapunov Characteristic Ex-
ponents λi are defined as2

λi = lim
t→∞

1

t
log ‖ix(t)‖ ,(2)

where ix(t) is the solution that describes the exponen-
tial evolution of the i-th axis of the ellipsoid that grows
from an initially infinitesimal n-sphere according to the
map f/x tangent to f along the fiducial trajectory x(t),
i.e. the solution of the linear, non-autonomous problem

iẋ(t) = f/x(x(t), t) ix(t), with ix(t0) = ix0. The defi-
nition involves the limit for t → ∞; hence, in practice
LCEs can only be numerically estimated for a suffi-
ciently large value of t. In this study, unless explicitly
stated, with the term “LCEs” we refer to their estima-
tion using a large enough value of t.

LCEs represent a measure of the rate of growth of
perturbed solutions. Consider infinitesimal, indepen-
dent perturbations of the states with respect to a solu-
tion x(t) of Eq. (2) (the fiducial trajectory). The per-
turbed solution can be computed in terms of the state
transition matrix Φ(t, t0), considering A(x, t) = f/x,
as the solution of the problem

Φ̇(t, t0) = A(x, t)Φ(t, t0), Φ(t0, t0) = I.(3)

According to the Ostrogradskĭı-Jacobi-Liouville for-
mula,[1] the determinant of Φ(t, t0) (the Wronskian de-
terminant of the independent solutions that constitute
Φ(t, t0)) is

det (Φ(t, t0)) = det (Φ(t0, t0)) e
∫ t
t0

tr(A(τ)) dτ
,(4)

where tr(·) is the trace operator. Thus, the Wron-
skian never vanishes when A(t) is regular in [t0, t], since
Φ(t0, t0) ≡ I. The Wronskian geometrically represents
the evolution in time of the volume of an infinitesimal
portion of the state space.

The evolution of an arbitrary perturbation ix(t0) =

ix0 is ix(t) = Φ(t, t0) ix0. As such, the contraction or
expansion rate along the direction of ix is estimated
by considering (

eχit
)2

= lim
t→∞

ix
T
ix

ix0
T
ix0

.(5)

Consider now the singular value decomposition
(SVD) of Φ(t, t0),

UΣVT = Φ(t, t0),(6)

2Actually, Eq. (2) should be

λi = lim
t→∞

1

t
log

‖ix(t)‖
‖ix(t0)‖

;

however, one can easily prove that for any non-zero constant c
the LCE of cf(x, t) is equal to the LCE of f(x, t).



where U = U(t) and V = V(t) are orthogonal ma-
trices. The singular values σi, namely the diagonal
elements of Σ = Σ(t), which are strictly greater than
zero as a consequence of the above mentioned Ostro-
gradskĭı-Jacobi-Liouville formula3, Eq. (4), express the
growth of the perturbed solution along orthogonal di-
rections in the state space.

The LCEs can also be interpreted as the limit for
t → ∞ of the logarithm of the singular values, σi,
divided by the time itself [2]4. In fact, using the SVD
to express the state transition matrix, Eq. (5) becomes

(
eχit

)2
= lim
t→∞

ix0
TVΣ2VT

ix0

ix0
T
ix0

(7)

and independently considering perturbations ix0 along
the directions represented by the columns of V, ix0 =
Vi, one obtains

χi = lim
t→∞

log(σi)

t
= λi.(8)

So-called continuous formulas for the estimation of the
LCEs can be derived from the definition based on the
SVD, as well as on the QR decomposition (see for ex-
ample[3]). Such formulas suffer from the numerical
difficulty of dealing with matrices whose coefficients
either rapidly converge to zero (exponential stability)
or diverge (instability). For this reason, different ap-
proaches have been formulated; the so-called discrete
QR method, based on the incremental use of the QR
decomposition of the state transition matrix for each
time step, is discussed in the next section.

2.3 The Discrete QR Method

The definitions of Eqs. (2) and (8) can hardly be
applied to the practical estimation of LCEs, because
some sort of orthogonalization is needed to prevent
the solution for each axis of the ellipsoid from inter-
fering with the others. Numerical methods have been
devised for this purpose. One of the most popular is
the so-called Discrete QR method, which is based on
incrementally updating the LCEs estimates with the
diagonal elements of matrix R obtained from the QR
decomposition of the state transition matrix between
two consecutive time steps.

Given the state transition matrix Y(t, tj−1) from
time tj−1 to an arbitrary time t as the solution of the

problem Ẏ = f/x(x(t), t)Y with Y(tj−1, tj−1) = I, set

3When Φ(t0, t0) = I is chosen, its determinant is 1; the inte-
gral of matrix A(t) is finite, and thus its exponential is a strictly
positive number.

4In,[2] the actual definition is

λi = lim
t→∞

log(σ2
i )

2t
,

where σ2
i are the eigenvalues of ΦT (t, t0)Φ(t, t0) = VΣ2VT .

Yj = Y(tj , tj−1). Consider then the QR decomposi-
tion of YjQj−1, which implies QjRj = YjQj−1. Now,

after defining RΠj
= Πj

k=0Rj−k, one can show that

YjQj−1RΠj−1
= QjRjRΠj−1

= QjRΠj
(9)

This way, YjQj−1RΠj−1 can be used to construct RΠj

by only considering incremental QR decompositions
over YjQj−1, i.e. with limited contraction/expansion.
The LCEs are then estimated from RΠj

as

λi = lim
j→∞

1

tj
log rii(tj),(10)

where j ∈ N and rii(tj) are the diagonal elements of
matrix R(tj) = RΠj

. Since the product of two upper
triangular matrices C = AB is also an upper trian-
gular matrix, whose diagonal elements are cii = aiibii.
Thus the logarithm of cii can be incrementally com-
puted as log(aiibii) = log(aii) + log(bii). This helps
preventing overflow/underflow in numerical computa-
tions. Furthermore,

rii(tj) = Πj
k=0r(j−k)ii ,(11)

thus

log (rii(tj)) =

j∑
k=0

log(rkii),(12)

which leads to

λi = lim
j→∞

1

tj

j∑
k=0

log(rkii).(13)

2.4 Computation of State Transition Matrix

The state transition matrix is required in discrete
QR decomposition method; hence, numerical integra-
tion is necessary to obtain it. For a small enough time
step, Eq. (1) is linearized,

δẋ = A(x(t), t)δx(14)

where A = f/x, partial derivative of non-linear func-
tion f with respect to state space variables x. Gen-
erally, since f can be any non-linear function of the
trajectory xj and time t, the integration of the state
transition matrix requires the knowledge of the trajec-
tory. Computing the fiducial trajectory is not specif-
ically addressed in this context; the computation of
the state transition matrix is discussed for clarity. In
this study, two methods are considered for the practical
computation of the state transition matrix. The One-
leg trapezoid rule is used to compute the state tran-
sition matrix for all types of problems from linear to
non-linear time variant. Hsu’s Method is also used for
linear problems.



One-Leg Trapezoid Rule Integration: As ex-
plained in,[4] under the assumption that a constant in-
tegration time step h is used, state x and its derivative
ẋ at time tj can be defined respectively as the average
of and the difference between the values of the state ±
half of the time step forward and backward

xj =
xj+1/2 + xj−1/2

2
,(15a)

ẋj =
xj+1/2 − xj−1/2

h
(15b)

This corresponds to using a one-leg trapezoid rule-like
approximation of the state and its derivative. Eq. (15)
at time tj , using the expressions of xj and ẋ from
Eq. (14), and solved for xj+1/2, yields

xj+1/2 =

(
I +

h

2
Aj

)−1(
I− h

2
Aj

)
xj−1/2(16)

implies

Yj =

(
I +

h

2
Aj

)−1(
I− h

2
Aj

)
(17)

This equation is required to be integrated together with
Eq. (1) if f is nonlinear. For LTI systems, the state
transition matrix is independent of the trajectory x(t),
hence there is no need to integrate Eq. (1).

Integration Using Hsu’s Method: When Hsu’s
method[5] is used to compute the state transition ma-
trix of Linear Time Variant (LTV) (and the special
case of Linear Time Periodic, LTP) problems, the for-
mulation can be written in a more compact form.

The method applies to LTV problems of the form
ẋ = A(t)x by considering a piecewise constant approx-

imation of matrix A(t), namely A(t) ≈ A(t̂) = Â with
t̂ ∈ [tj , tj+1], where tj ≤ t ≤ tj+1. The choice of t̂ may
influence the results. Then, the state transition matrix
is readily obtained as

Y(t, tj) ≈ eÂ(t−tj),(18)

where the matrix exponential may be approximated
(e.g. truncated when computed as a matrix power se-
ries) to improve the computational efficiency of the
method.

3. Numerical Examples

This section presents numerical applications of the
proposed procedure. Most of them are related to Lin-
ear Time Periodic (LTP) problems because such prob-
lems, although linear, require special methods for sta-
bility evaluation (i.e. Floquet theory) and, as such, pro-
vide the opportunity to compare results. Specifically,
the stability of solutions of a LTP problem can be eval-
uated using Floquet’s theory, by checking the eigenval-
ues of the monodromy matrix. The applications are
related to helicopters, and present a clear source of pe-
riodicity, non-linearity, and a variety of stability issues.

3.1 Helicopter Blade Flapping

Rigid blade flapping can be considered as a second
order single degree of freedom Linear Time Periodic
problem (from Ref.[6]) under simplifying assumptions.
Since the purpose of this example is to address LTP
systems, rather than using a more realistic but complex
helicopter blade dynamics model only periodicity is re-
tained, and the model is oversimplified by linearizing
the dynamics, using quasi-static aerodynamics and ne-
glecting reverse flow conditions. Considering the dots
represent differentiation with respect to t, where t is
the azimuth angle (in this context it represents non-
dimensional time), the equation of motion can be writ-
ten as,

β̈ +
γ

8

(
1 +

4

3
µ sin(t)

)
β̇(19)

+

(
ν2
β +

γ

8

(
4

3
µ cos(t) + µ2 sin(2t)

))
β = 0

that represents the flapping of a rigid helicopter blade,
where β is the blade flap angle, γ is the Lock num-
ber (the non-dimensional ratio between aerodynamic
and inertial flapping loads, which in the present con-
text loosely represents the damping factor), µ is the
advance ratio (the ratio between the helicopter for-
ward velocity and the blade tip velocity in hover, which
weighs the periodic part of the coefficients) and νβ is
the non-dimensional flapping frequency. In order to
demonstrate the trend of LCE estimates for a range of
parameter, the advance ratio µ is chosen as the param-
eter.

Clearly, a trivial fiducial trajectory is β(t) = 0, which
is obtained for β(0) = 0 and β̇(0) = 0. Other non-
trivial trajectories can be obtained starting from arbi-
trary initial conditions; were β(t) = 0 asymptotically
stable, the solution converges on it. Since this prob-
lem is linear and homogeneous, β(t) = 0 is the unique
equilibrium point and stability does not depend on the
initial conditions.

The problem is rewritten in first order form,{
β̇

β̈

}
=

[
0 1
Kβ Cβ

]{
β

β̇

}
,(20)

and integrated to compute the state transition matrix
at each time step. LCEs are estimated according to the
proposed approach. The evolution of LCE estimates in
non-dimensional time, associated with complex conju-
gate eigenvalues is shown in Fig. 1: at the top starting
from the time when the system is initially perturbed
and at the bottom the behavior is zoomed for large
enough value of t.

Owing to periodicity, the mean value of the two LCE
estimates when Floquet characteristic values are com-
plex conjugate shows a decaying oscillatory behavior
with the period of the system, T = 2π. The decay is
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Figure 1: Blade flapping: nondimensional time evolu-
tion of LCE estimates associated with complex con-
jugate eigenvalues; time history (top) and zoom after
convergence (bottom).

caused by the division by t in accordance with Eq. (2).
In order to have an accurate estimate of the LCEs,
integration needs to be performed for a large enough
non-dimensional time, to let the oscillations vanish.

The LCE estimates are compared in Fig. 2 with the
corresponding values obtained using the Floquet the-
ory in[7] for a range of advance ratio 0 ≤ µ ≤ 1.5. The
results are in good agreement.

3.2 Helicopter Ground Resonance with Dis-
similar Lead-Lag Dampers

Helicopter Ground Resonance is a mechanical insta-
bility associated with the in-plane degrees of freedom
of the rotor.[8] The combination of the in-plane mo-
tion of the blades causes an overall in-plane motion of
the rotor center of mass which couples with the dy-
namics of the airframe and undercarriage system. For
this reason, the damping of the in-plane motion of the
blades is essential and is usually provided by lead-lag
dampers. The problem has been studied using models
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Figure 2: Blade flapping: estimates of LCEs for a range
of advance ratio µ.

with various complexity levels. Hammond’s model[9]

has been extensively used due to its simplicity; as such,
it is chosen as the helicopter ground resonance model
in this study.

Using multi-blade coordinates, Hammond’s model is
not periodic for a symmetric rotor (i.e. with identical,
equally spaced blades); hence, its stability can be an-
alyzed as a LTI system. Whenever the symmetry of
the rotor is broken, time dependence surfaces. A typ-
ical case of engineering interest is that of one blade
damper inoperative. This is not a normal operating
condition; yet, it needs to be analyzed to assess stabil-
ity, especially for soft in-plane rotors. The equations of
motion in the rotating reference frame can be written
as

(21) Mr(t)q̈r + Cr(t)q̇r + Kr(t)qr = 0

where qr, Mr, Cr and Kr are degrees of freedom vector
and mass, damping and stiffness matrices in rotating
frame with periodic terms as given in original work.[9]

In Hammond’s model there are 4 blade lag degrees of
freedom (ζi, i being blade index) and 2 hub in-plane
degrees of freedom, x being longitudinal and y being
lateral. Therefore,

(22) qr = [ζ1 ζ2 ζ3 ζ4 x y]T

where ψi = ψ + i2π/N is the azimuth angle of the
corresponding blade with blade index i, whereas ψ is
the reference azimuth angle. The parameter values are
reported in Table 1.

The degree of freedom vector and matrices can be
transformed into the non-rotating frame using trans-
formation matrix T1, its first time derivative T2 and
second time derivative T3, normalized with the angular
speed of the rotor, Ω.[10]



Table 1: Ground resonance: numerical values of Hammond model parameters[9]

Number of blades, N 4
Blade mass moment, Sb 189.1 kg m
Blade mass moment of inertia, Jb 1084.7 kg m2

Lag hinge offset, e 0.3048 m
Lag spring, kb 0 N m rad−1

Lag damper, cb 4067.5 N m s rad−1

Hub mass, mx, my 8026.6 kg, 3283.6 kg
Hub spring, kx, ky 1240481.8 N m−1, 1240481.8 N m−1

Hub damper, cx, cy 51078.7 N s m−1, 25539.3 N s m−1

T1 =


1 cos(ψ1) sin(ψ1) −1 0 0
1 cos(ψ2) sin(ψ2) 1 0 0
1 cos(ψ3) sin(ψ3) −1 0 0
1 cos(ψ4) sin(ψ4) 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,(23)

T2 =
dT1

dψ
, T3 =

dT2

dψ
.

The degrees of freedom vector in non-rotating frame is

(24) qnr = T−1
1 qr = [ζ0 ζ1c ζ1s ζN/2 x y]T ;

qnr includes the collective, ζ0, cyclic, ζ1c and ζ1s, and
reactionless, ζN/2 blade lead-lag modes, and the two
hub displacement modes x and y, as in qr. It should
be noted that, as opposed to the isotropic rotor case
in which all dampers are operative, the collective and
reactionless modes may also contribute to the dynam-
ics of the rotor when coupled with the hub degrees of
freedom so these terms should not be simplified. Then,
the equation of motion in the non-rotating frame can
be written as

(25) Mnrq̈nr + Cnrq̇nr + Knrqnr = 0

with the corresponding mass Mnr, damping Cnr and
stiffness Knr matrices in non-rotating frame which are
transformed from the rotating-frame using,

(26) Mnr = T−1
1 MrT1

(27) Cnr = T−1
1 (2ΩMrT2 + CrT1)

(28) Knr = T−1
1 (Ω2MrT3 + ΩCrT2 + KrT1)

In the non-rotating frame, the elements of the ma-
trices do not depend on the azimuth angle, unless the
isotropy of the system is spoiled, e.g. by removing or
modifying one of the characteristics of the blades such
as the lead-lag damper or spring restraint. The es-
timation of LCEs is illustrated removing the damper
from one blade, and by considering the rotor angular
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Figure 3: Helicopter ground resonance with one blade
damper inoperative: estimate of the largest LCE with
a range of rotor angular speed Ω.

speed as the parameter. Since the model has 12 states,
only the most critical damping level is shown for clar-
ity. Fig. 3 illustrates the results of the periodic rotor
in which one damper is removed. The estimated LCEs
match well with the results obtained using the Floquet
theory.[7, 9] Fig. 4 presents the time evolution of LCE
estimates for Ω = 400 rpm: the top plot starts from
the time when the system is initially perturbed and
the bottom one zooms the behavior for a large enough
value of t. The first LCE shows an oscillating behav-
ior and converges to the value given in the plot at the
bottom of Fig. 4.

3.3 Helicopter Ground Resonance with Non-
Linear Lead-Lag Dampers

A distinctive advantage of LCEs is their capability
to analyze the stability of non-linear, non-autonomous
dynamical systems. Helicopter rotors presents the gen-
eral characteristics of non-linearity and time depen-
dence.[11] Among non-linear phenomena, limit cycle
oscillations (LCO) are defined as isolated closed trajec-
tories of non-linear dynamical systems; when an LCO
develops, the system oscillates in a self-sustained man-
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Figure 4: Helicopter ground resonance with one blade
damper inoperative: time evolution of estimates of the
two largest LCEs (Ω = 400 rpm), time history after
start (top) and zoomed view after convergence (bot-
tom).

ner without the need of an external input.[12] Clearly,
the occurrence of LCOs can effect material life, flight
safety and ride comfort of a rotorcraft; their possibil-
ity can only be detected if the system is considered
non-linear.

For this purpose the same ground resonance model of
the previous example is studied with a non-linear lead-
lag damper formulation in order to verify the applica-
tion of the proposed formulation to a non-linear prob-
lem. The constitutive law of the non-linear damper
model given in Ref.[13] is modified by adding also a
linear term to the quadratic term and given as,

(29) fd =

{
X ζ̇|ζ̇|+ cLζ̇ ζ̇ < ζ̇L

X̄ ζ̇L|ζ̇L| ζ̇ ≥ ζ̇L

where X = X̄ −cL/ζ̇L to ensure that the value of damp-
ing at the discontinuity point ζ̇L remains the same
when the slope cL is changed. The slope is chosen
as the parameter for investigating change of LCE esti-
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Figure 5: Helicopter ground resonance with nonlinear
blade damper: blade lag motion starting from different
initial conditions, LCO (cL = 0, top) and exponentially
stable (cL = cb, bottom)

mates with respect to a parameter, and is expressed as
a percentage with respect to the nominal linear damper
cb, having the value given in Table 1. The same pa-
rameter values given in Ref.[13] are used for the other
parameters and given in Table 2.

In the model of Ref.[13] there is no linear damping,
hence the slope cL is zero. As a result Limit Cycle
Oscillations (LCO) are observed. Without the linear
term, the model is not realistic, since flow in a hydraulic
damper tends to be laminar at small flow rates. Thus,
the linear term better describes the physics of the de-
vice in the low speed regime. Indeed, this problem has
been selected to obtain a LCO in an otherwise reason-
ably realistic model and to test LCE estimation with a

Table 2: Ground resonance: saturated hydraulic
damper parameters.

X̄ 1.2203× 106 N m s2 rad−2

ζ̇L 1.0 deg s−1
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Figure 6: Helicopter ground resonance with nonlinear
blade damper: first two LCE estimates for a range of
damper slope at zero lag rate cL.

non-linear problem that may include LCO, exponential
stability, and unstable equilibria.

First of all, the blade lag motion (only one of four
blades is shown for clarity) is discussed. Fig. 5 shows
the blade lag motion for the cases in which the blade
experiences LCO (cL = 0, top) and exponential sta-
bility (cL = cb, bottom). In both plots, the simu-
lations start from different initial conditions; one of
them has amplitude smaller than that of the expected
LCO, whereas the other one is greater, to assess the
LCO nature of the attractor by starting from inside
and outside the expected periodic orbit. In the plot
at the top of Fig. 5, curves with the same amplitude
and period are obtained, although a time shift can be
observed, thus confirming the limit cycle interpreta-
tion of the attractor. It is worth noticing that ζ = 0
is also an equilibrium solution. However, since solu-
tions obtained with initial conditions in the vicinity of
ζ = 0 converge to the previously mentioned limit cycle,
the solution ζ = 0 is topologically an unstable equilib-
rium point, a so-called repellor. The instability of such
solution is confirmed by the present analysis, which es-
timates a positive LCE. In the plot at the bottom of
Fig. 5, the resulting curves converge to ζ = 0, con-
firming the interpretation of the attractor as a stable
point.

If the system has a periodic attractor, a so-called
LCO, zero-valued LCE estimates are expected[14] (or
very close to zero from a numerical analysis point of
view). In order to see this and also further investigate
the trends, LCEs are estimated for a range of damper
slope at zero lag rate, cL (cL = 0 was used in Ref.[13]).
Results are shown in Fig. 6; as it can be observed,
starting from cL = 0 the largest LCE is zero and re-
mains approximately zero until cL ≈ 0.35cb. Hence,
a LCO occurs in this range after the system encoun-
ters a perturbation. For larger values of cL, the two
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Figure 7: Helicopter ground resonance with nonlinear
blade damper: time evolution of LCE estimates, LCO
(cL = 0, top) and exponentially stable (cL = cb, bot-
tom)

largest LCEs (nearly) merge (i.e. they become quite
close from a numerical point of view) and the system
becomes exponentially stable with all LCEs negative.
This is verified by looking at the lag motion of the
blade, as given in Fig. 5: in the plot at the top, which
corresponds to cL = 0, the blade motion converges to
a stable LCO with magnitude 0.015 deg, as reported
in Ref.[13] Increasing the zero lag rate slope provides
asymptotic stability: for example, when cL = cb, all
LCEs are negative; as shown in the plot at the bottom
of Fig. 5, the motion is exponentially stable.

The time evolution of LCE estimates corresponding
to the cases of Fig. 5 is shown in Fig. 7. In the case
resulting in an LCO, (cL = 0, plots at the top of Fig. 5
and Fig. 7), the first two LCE estimates are distinct.
The first LCE, λ1, quickly converges to zero, corre-
sponding to the stable LCO with magnitude 0.015 deg.
Since zero-valued LCE indicates an LCO, the LCE es-
timates and the time simulations are in agreement. In-
creasing the slope at zero lag rate provides stability; for
a sufficiently large value of cL, as shown in the plots at



the bottom of Fig. 5 and in Fig. 7, the first two LCE
estimates converge to the same value, suggesting that
they are coincident, with multiplicity 2, as if they were
associated with complex conjugate eigenvalues in a LTI
system. This solution is stable, as observed from the
time simulations and indicated by the negative largest
LCEs.

4. CONCLUSIONS

The estimation of Lyapunov Characteristic Expo-
nents (LCE) to investigate the stability of trajectories
of increasingly complex problems is presented and ap-
plied to rotorcraft-related problems. The method is
illustrated in relation with two periodic and one non-
linear problem related to rotorcraft dynamics. Results
are found in good agreement with Floquet theory for
LTP problems and verified by time simulation for non-
linear problem.

It is believed that for rotorcraft applications time
dependence, often in conjunction with non-strict peri-
odicity and quasi-periodicity, as well as non-linearity
cannot be neglected in many applications. Lyapunov
Characteristic Exponents provide a quantitative way
of measuring stability of trajectories of such systems.
LCEs correspond to the real part of eigenvalues for LTI
systems, and to Floquet multipliers for LTP systems;
hence, they represent a natural generalization of stabil-
ity indicators that are familiar in current engineering
practice, and can proficiently support the analysis of
systems with increasing levels of complexity.
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