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Abstract 

The paper presents a method to 
numerically calculate the motions of a 
non-linear dynamic system, without the 
need to derive the equations of motion. 
The method is described for the 
particular case of a system consisting of 
a chain of segments interconnected by 
hinges and springs. The system is 
specified by the inertia matrices of the 
segments and the transformation matrices 
of the hinges, after which a dynamic 
simulation of the motion can start 
immediately. The method is based on a 
transformation of the coordinate base 
towards generalized coordinates and 
generalized momenta, such as used in 
Hamilton's classical theory. 
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generalized angular coordinate 
elements of energy matrix [ A J 
positionvector of hinge (fig.l) 
total number of degrees of freedom 
generalized momentum 
generalized coordinate 
generalized force 
positionvector w.r.t. local frame 
positionvector w.r.t. inertial frame 
kinetic energy 
time 
potential energy 

indic-es: 
cg centre of gravity 
i row number in matrix 
j column number in matrix 
k denotes segment number 
0 denotes inertial system 

matrices: 
The most gen:eral I x J matrix is 
symbolized by [ A J, with elements aij~ 
where i=l ... I is the rownumber, and J=l 
••. J the columnnurnber. 
A row matrix is indicated by ( A ) with 
elements aj, and a column matrix by { A 
with elements ai. 
The transpose of a matrix is denoted by 
the superscript T: e.g. ( A ) = { A )T 
'rhe inverse is denoted as ( A ]-1 . 
{ E }: column with unit vectors i, j, k. 
( H ]: transformation w.r.t. inertial 
frame 
( X): row containing local Cartesian 
coordinates 
[ J ]: ''inertia matrix•• defined in (24) 

2.Introduction 

Formulating the dynamic equations of 
complex systems can be a formidable and 
tedious task. European Helicopter Forums 
since 1982 have given attention to new 
approaches in this area, intending to 
reduce the analytical effort involved, 
and shift the work to computerprocessing. 
several references about the subject are 
mentioned under refs. 1 through 6. 

The present paper deals with a method 
which is aimed at problems where the 
difficulties are still more serious than 
usual, viz. dynamic problems where 
linearizations are not allowed. The 
method outlined below is based on 
concepts found in the classical 
Hamiltonian formulation of mechanics. 

During the 13th Forum a paper was 
contributed containing an explanation of 
the first principles of the method 
(ref.6). Since that time the method has 
been extended somewhat further. The 
earlier method discussed in ref.6 needed 
some analytical preparations before the 
purely numerical procedure for solving 
the dynamic problem could start. Although 
these analytical preliminaries involved 
much less effort than the classical 
Lagrangian approach of setting up the 
equations, it nevertheless has proved a 
handicap in the case of large numbers of 
degrees of freedom. 

The paper describes a new extension of 
the theory so that no preliminary 
analysis is needed at all. After a 
specification of the system's 
configuration in terms of inertia- and 
transformation matrices, an entirely non­
linear numerical integration of the 
motion can be performed. The large saving 
of preparation time is however bought at 
the expense of increased computertime. 
The method may therefore be used best for 
analyzing special, non-recurring types of 
problems. The theory.is sh?wn below.fo~ a 
special kind of conflguratlon, cons1st1ng 
of a chain of elements connected by 
hinges and springs. Further extensions to 
other types of configurations will be 
obvious after the explanation below, and 
an example of this will be shown during 
the oral presentation during the Forum. 
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3. Preliminaries: the Hamiltonian concept 
of generalized momenta 

We assume a dynamical system whose 
generalized coordinates are qi (i=l ,2 
, • ••• , K). 
If the kinetic energy of the system T is 
a homogeneous quadratic function of the 
velocities, the expression for T may be 
written as: 

K K 
' ~ 

• ( 1) T E E 8ij qi qj 
i=l j=l . ' ( 2 ) = ~ ( q . [ A ) . ( q 

in which the symmetric matrix [ A ] will 
be called the energy-matrix, whose 
elements in general are functions of all 
the generalized coordinates. 

In Hamilton's dynamical theory use is 
made of generalized momenta Pi· These are 
defined as: 

( i=l . . • K) ( 3) 

or, written in matrix motation: 

( 4 ) 

Eq. (1) shows that for a system whose 
kinetic energy is a homogeneous quadratic 
function of the generalized coordinates, 
the generalized momenta will take the 
form: 

Pi 
K 

= E 
j=l 

( i=l .... K) ( 5 ) 

or, again in matrix notation: 
(p)=[A).(q) (6) 

The generalized momenta are lin~ar 
combinations of the velocities qi. 

4 . P_K_in_g_ip),.§..~_L.t_bB __ Qy.ng_mig_ method 
This chapter gives a summary of the 
method which was earlier reported in 
ref.6. The later derived extensions will 
be dealt with separately, in later 
chapters. 
According to Lagrange's theory the 
equations of motion of a system with K 
generalized coordinates qi (i=l ... K) 
can be derived from: 

d(<>T/>qi)/dt = >T/<><Ji - 'V/~qi + Gi 
(i=l .... K) (7) 

Substituting the definition of the 
generalized momenta (3) into (7), and 
changing for convenience again to matrix 
notation: 

P } = ( 'Tf"q } - { )V/~q ) + ( Q } 
( 8) 

Combined ~ith the inverse of eq.(6): 

q)=[A]-l.(p) (9) 

the eqs. (8) and (9) form a system of 2K 
first order differential equations which 
constitute the complete set of equations 
of motion. The equations have in fact 
been transformed to a new coordinate-base 
consisting of the generalized coordinates 
qi's and generalized momenta Pi's, 
instead of the usual coordinates qi's and 
the associated velocities qi's. 
Note carefully however, that { >T/Jq } 
stands for a vector whose elements are 
the partial derivatives 
( 'Tf'qilqi=co(lst> as in the original 
Lagrange equat1on (7). During a numerical 
integration of the system of equations 
(8) and (9), the calculation of the 
derivatives ( dTjOqi)qi=const can be 
performed conveniently by a numerical 
differentiation of eq.(2). 
1'he latter shows why the form of the 
equations of motion implied by (8) and 
(9) is of advantage when a purely 
numerical solution of the motion is aimed 
at: the sole preparation which is needed 
in order to perform a numerical 
integration, is to specify the functions 
aij(qr)· A considerable number of 
analytical differentiations are thus 
avoided, which would usually be needed 
when the Lagrange-equations are being 
used in their original form (7). 
During numerical work the matrix 
inversion 
in (9) can be avoided when eq.(6) is 
treated as a system of linear equations, 
so that by more efficient methods the 
solutionvector { q } may be determined. 

5. QP-ecification of the system 
As shown above, the functions aij (qr) 
must be specified before a numer~cal 
integration of motion can be performed. 
These functions implicitly describe the 
system's geometry and mass 
characteristics. For strongly non-linear 
problems or in cases with many degrees of 
freedom it soon becomes more convenient 
to calculate the values of aij just 
numerically at each time step of the 
integration. In the latter case, the 
geometry of the dynamical system has to 
be specified explicitly, in such a way 
that a subroutine can determine the 
numerical values of aii when the 
instantaneous values of the generalized 
Eoordinates qr are given. 

In this chapter it is shown how to 
accomplish this. Following this, an 
algorithm is derived which is able to 
calculate the instantaneous values of 
aij· For the time being the limitation of 
the approach shown below is, that the 
dynamical system must consist of a number 
of rigid segments, connected by hinges 
and springs. However, this limitation is 
not very fundamental. 

It is assumed that the dynamical system 
is composed of a total number of K 
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Schematic of configurations considered 
(drawn 2-dim for clarity) 

segments, forming a simple chain in which 
the segments are interconnected by hinges 
(see fig.1). For the purpose of 
explaining the method it is assumed for 
the time being that no forking of the 
chain occurs, where segments would be 
connected to three instead of two other 
segments. The chain is at one end 
attached to an inertial frame of 
reference, through a hinge with the 
"fixed earth". 

Each segment is assumed to be a rigid 
body without deformations. The 
generalized coordinates correspond with 
the rotations permitted by the hinges 
only, as there are no other deformations. 

The segments are numbered 1, 2, •..• , k, 
... , K. The segment at the end of the 
chain which is connected to the "fixed 
earth" is numbered k=l. The last segment 
at the free end of the chain is indicated 
by k=K. 
It is sometimes convenient to define 
"dumrny 11 segments, such that there are as 
many segments as there are rotational 
degrees of freedom. We thus assume that 
every segment has just one degree of 
freedom with respect to the previous 
segment. The actual hinges of the 
physical configuration may of course 
permit more degrees of freedom than just 
one. In such a case a 11 dummy 11 segment is 
interposed so that each rotation (degree 
of freedom) permitted by the hinge is 
followed by a segment. A dummy segment 
however, will have no mass and no spatial 
extension, in contrast to the real 
segments. 

By using the artifice of dummy segments, 
the numbering of the degrees of freedom 
is the same as that of the segments. The 
degree of freedom corresponding to the 
variable angle between the ''fixed earth'' 

and the first segment will be called a 1 , 
the angle between segment number 1 and 2 
will be denoted as a 2 , etc. 
The degrees of freedom are thus given by 
al, • .. ak, • • .. ,aK• 

In figure 1 the local Cartesian 
coordinate system of the k'th segment is 
drawn. Its origin coincides with the 
hinge point where the element is 
connected to the previous segment with 
number k-1. The unit vectors along the 
~xes.of the local coordinate system are 
~k' Jk, and Kk· In the following the 
notation ( Ek ) is used for the column 

( Ek l = lik, jk, Kkl· 

The angular orientation of the local 
coordinate system of the k'th segment 
with respect to the previous segment (the 
k-1'th) is defined by a transformation 
matrix: 

(10) 

where the elements of the transformation 
matrix [ ak ] are goniornetric functions 
of the angle ak (i.e. the generalized 
coordinate describing the rotation of 
segment k with respect to the previous 
segment k-1. 

The angular orientation of the local 
coordinate system with respect to an 
inertial frame of reference is denoted 
as: 

[ Hk l ( i:o l = 
[ ak ].[ ak-1 l 

[ a1 l · ( Eo (11) 

where ( Eo ) stands for the column of 
unit vectors of the inertial coordinate 
system. 

Using the above notations, a point p of 
the k'th segment with local coordinates 
( Xk ) = (xk, Yk, zk) has a 
positionvector ~k with respect to the 
local origin of the k'th segment given 
by: 

(12) 

In particular, the centre of gravity uf 
the k'th segment has a position with 
respect to its local coordinate system 
denoted by 

( 13) 

and the hinge between the k'th segment 
and the next segment k+l has a position 
gk (see fig.1) defined by: 

( 14) • 

6. Kinetic energy due to translation 

The kinetic energy due to translation of 
the centre of gravity of a segment is 
first considered in the following. Using 
the notations introduced above, it 
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follows that the position of the centre 
of gravity of the k'th segment with 
respect to the inertial frame of 
reference is given by: 

Rk,cg = ( xk leg·( Ek l + 
+ ( ek-1l·l Ek-1 l + 
+ . • • • + ( e1 l • ( .!::1 

k-1 
[c xk leg·( Hk l + 

I llo l 

~ ( en l • ( Hn J] 
n=1 

( 15 l 

or in short notation: 

( 16 l 

where the notation R in general will be 
used for the positionvector of a point 
with respect to the inertial frame of 
reference. The time derivative of the 
positionvector is: 

. k 
Rk,cg = ~ (;lRk/~<>i 

i=l 
leg • ( .Eo ) ( 17 l 

where ( 'Reg/ o<>i l symbolizes a row 
matrix whose elements consist of partial 
derivatives obtained from the elements of 
the ( Rk lcq row matrix. The steps taken 
to derive tfie corresponding kinetic 
energy are: premultiply the transpose of 
(17l by (17l, and multiply by 
~ Mk where Mk is the mass of the segment. 
Comparing with eq.(1l yields: 

(aijlk,transl = Mk (.lRk/ ;lai leg· 

( 18 l 

The row matrix ()Rk/ '"i lc in the 
r.h.s. of (18l is obtained ~rom eq.(15l: 

(6Rk1'"i leg= ( Xk lcg·()Hk/;,<>il + 

k-1 

n=i 

where, for i<=k: 

( "k ] .•. [ "i' ] ... [ "1 J 
(20l 

The matrix [ ai' ] is obtained from the 
transformation matrix [ ai ] by 
differentiating its elements with respect 
to ai. 

7. Kinetic energy due to rotatiQn 

The kinetic energy due to rotation around 
the centre of gravity is derived by 
hypothetically shifting the centre of 
gravity of the k'th segment towards the 
origin of the inertial frame of 
reference. The segment shall nevertheless 
describe the same rotations as the 
corresponding real segment. In that case 
the absolute positionvector of an 

arbitrary point of the segment is given 
by: 

Bk = (( xk l-( xk lcgl· [ Hk J.( .Eo l 
(21l 

and its time derivative: 
k 

Bk = (( xk l-( xk lcgl-~ [dHkf6ai 
i=1 

• < Eo ) (22l 

The procedure to obtain the corresponding 
kinetic energy is: premultiply (22l by 
its transposed. Observe that a product of 
the form ( .!:: l.[ ].( g )= Tr[ ], which 
means the 11 trace 11 of the matrix. The 
trace of a square matrix is defined as 
the sum of the diagonal elements, and is 
denoted by Tr[ B ]. After this operation 
the kinetic energy is determined by 
multiplying with the local mass and 
integrating over the whole segment. The 
final result is compared with eq.(1l, and 
yields: 

Tr l ()Hk/><>i ]T. [ Jk ] • 

. [>Hk/.l<>j l} ( 23 l 

where the elements of [ J ] (not to be 
confused with the usual inertia matrix !) 
are given by: 

[Jk]=J{{ Xk J-1 xk lcgl· 

(( xk l-( Xk lcgldm (24l 

a. computational procedure 

When the above derived theory is used in 
an actual calculation, much computation 
time can be saved by making use of 
several recurrence relations that can be 
derived. Furthermore, a lot of zero­
matrices and symmetric matrices occur, so 
that considerable savings may be realized 
by identifying these matrices beforehand. 

From (11l it follows: 

(k=l ... Kl 
(25l 

which sequence may be started from: 

[ Ho ] = [ I ], the unit matrix (26l 

From (20l: 

;, Hk/><>i 

[ 0 J 

(i<kl 
( 2 7 l 

(i=kl 
( 28 l 

(i>kl 
( 2 9 l 

II.3.5.4 



From (23l: 

(aijlk,rot 

(aijlk,rot 

From ( 19 l: 

(ajilk,rot 

0 ( i>k or j>k) 

) Rk~"i leg = ( 'Rk-1/""i leg + 

+ ( xk ) cg • [ a Hk/<> "i J + 

(30l 

( 31 l 

+ ( ( ek-1 l-( Xk-1 lcgl · [ 'Hk-1/:.ai 

(i<kl (32l 

( 0 ) ( i>k l (34l 

From (1Bl: 

(ajilk,transl (35) 

(aijlk,transl = 0 (i>k or j>kl (36l 

The resulting computational scheme is 
shown schematically in fig.2. 

Input: ai (i=1 ... K) 
Initialize [ Ho l = [ I l ' 
Choose k=1 ... K 

[ 

9. Further extensions of the thea~ 
Two modifications of the theory are 
straightforward (although not shown for 
lack of space): 
1. The method is easily extended to 
configurations consisting of chains of 
segments where branching of the chain 
occurs. This is just a matter of properly 
reorganizing the computational scheme. 

2. Savings in computing time are possible 
when some of the generalized coordinates 
describe small deviations. In that case 
partial linearizations are possible, and 
not all of the ai; have to be calculated 
during each timestep. 

10. Conclusions 
A method has been developed for the 
numerical solution of non-linear dynamic 
problems. The method only requires the 
geometrical and inertial data of the 
system to be specified. Following this, 
the motion of the system can be simulated 
immediately, without any further 
analytical preliminaries. 

aij l = [ 0 l 

calculate [ ak l and [ ak' l 
Eq.(25) ==> [ Hk l 
Choose i = 1 ... k 

Eqs.(27) or (28) ==> [ "Hkfoai l 
Eqs.(32) or (33) ==> ( ·;) Rkfoai leg 
Choose j= 1 ... i 

Eq. ( 18) ==> (aijlk,transl 
Eq. ( 23) ==> (aijlk,rot 
aij = aij + (aijlk,transl + (aijlk,rot 

Choose i = 1 ... K ' 
j = 1 ... i-1 . 

aji = a·. lJ 

Output: [ aij l 

Fig.2: Summary of computational scheme ace. to chap.8 
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