Validation of the SDRE Controller for Rotorcraft Trajectory
Tracking Problems

Chang Deok Yang!, Jeong Hwan Lee?, and Chang-Joo Kim®

123 Department of Aerospace | nformation System Engineering , Konkuk University , Seoul, Korea
1E-mail: changduky @naver.com
2E-mail: starjh@naver.com

3E-mail: cjkim@konkuk.ac.kr
Key words: Helicopter Flight Control, Trajectory Tracking, SDRE, Flight Simulation

Abstract: This paper deals with the State-Dependent Riccati Equation (SDRE) technique for the design of
helicopter nonlinear flight controller and the validation of designed SDRE controller using simulation environment.
Since the SDRE controller requires a linear system-like structure for nonlinear motion equations, a State-Dependent
Coefficient (SDC) factorization technique is developed in order to derive the conforming structure from a general
nonlinear helicopter dynamic model. Also on-line numerical methods of solving the Algebraic Riccati Equation
(ARE) are investigated to improve the numerical efficiency in designing the SDRE controllers. The proposed method
is applied to the various maneuvers and flight guidance logics are devel oped using maneuver attributes which consist
of various mission task elements. Smulation environment is developed using three independent computers for
validation the SDRE controller. Each PC is independently operated for flight control computer, artificial model

helicopter and ground control station, respectively.
1. Introduction

The State-Dependent Riccati Equation (SDRE) technique is based on the Linear Quadratic Regulator (LQR)
method and allows us to design the controllers for the nonlinear system with the same technique used in its linear
counterparts[1,2,3]. The SDRE method basically differs from the LQR method in two points. First, the SDRE control
technique demands a linear system-like structure with State-Dependent Coefficients (SDC) form of motion equations.
But the general multi-variable nonlinear systems like helicopter do not aways conform to this structure. Also, tis
well known that the SDC form for multi-variable systems is not unique and there is no general method for its
derivation. Second, the LQR method requires off-line solution of the ARE. However, the SDRE method needs the
iterative solution of the ARE to calculate the feedback control in on-line because the state and control derivative
matrices of derived SDC form are generally time-varying. Therefore an efficient numerical solution of the ARE is
crucial for the system performance.

The main purpose of this paper isto validate the designed SDRE controller and to check the real-time applicability

by using smulation environment. Langson et. a.[4] redlized the experimenta implementation of the SDRE



controller for athird order nonlinear system. In its setup, one 75 M Hz Pentium computer is used to simulate the plant
dynamics, and ancther one of the same kind cal culatethe SDRE controller with 100Hz sampling rate. P. K. Menon et.
al. [5] applied the SDRE controller to the missile control. To solve the ARE, various numerical methods and PC
processors are used with sampling rate as high as 20 kHz. Above studies were made it possible to implement of
SDRE in the real-time because comparatively simple models were used. However, the SDRE controller is
computaionally demanding high computing power when it is applied to complex dynamic models. In this regard,
Kim et. al.[6] applied the indirect method to the various rotorcraft model to investigate the relative computational
burden for its application to the design of nonlinear optimal controller.

This paper focuses on the design of the SDRE controllers using a complex level 2 rotorcraft model[7] and on its
validation through a simulation environment. Main objectives are to access performance of the designed controllers
and to identify the required computer resources for its real applications. For three purposes, flight guidance laws are
designed by combining various maneuver attributes and important results are discussed to recommend the guide-line

for the design and application of the rotorcraft SDRE controllers

2. SDRE Technique

The general infinite-horizon nonlinear regulator problem can be represented as:

: 1 ¥ T T
min  J(X,u,t) _EQX(t) Qx(t) +u(t) ' Ru(t)dt @)
st X=f(x)+ B(xX)u 2

where Q2 O,R>0

The SDRE technique requires the SDC form as shown in Eq. (3) with which the SDRE method finds controller
gain by assuming the matrices, A(X) and B(X) , arelocally constant and by solving the ARE.

X =A(X)x+ B(x)u 3
If {A(x),B(x)} inEg. (3)isacontrollable pair, the procedure of the SDRE technique is summarized as follows.

(i) Drivethe SDC form as show in Eq. (3) using a SDC factorization.
(ii) Solvethe State- Dependent Algebraic Riccati Equation (SDRE)

PAX) + AT (x)P- PB(YR BT (Y)P+Q=0 @

toobtain P(t)3 O, where P isfunctionof x

(iii) Construct the nonlinear feedback controller

u=-Kx(t)=-R BT Px({) ()



On the contrast to the LQR solution, the SDRE technique requires the SDC factorization and the solution of state-

dependent ARE at each time of control engagement.

3. Numerical Methods for the SDRE Controller Design

In the previous research [8], A. Bogdanov et. al. proposed a numerical SDC factorization method for nonlinear
helicopter dynamic model. This paper uses the modified version of the SDC factorization proposed by the present
author[3], by considering both system equilibrium states and kinematical offset in forcing functions. The nonlinear

motion equation at an arbitrary time instant and that at an equilibrium condition can be written as following.

x= F(x,u) ®
Xg = F(Xg,Ug) =const ©)
where Xq,Uq denote equilibrium states and controls, respectively.

Even in an equilibrium state, the value of forcing function, F(Xg, Ug) , is generally nonzero. The consideration on
the state variation from the equilibrium condition and the Taylor series expansion of motion equation around the
equilibrium states and control s enable us to derive the motion equation for the perturbed states and controls as shown

inEq. (12).

X=Xy +X, U=uy+0 (10)

X:XO +).(~ (12)
=F(xu)

X = F(x,U) - F (Xg,Up) (12

Then, the SDC factorization can be carried out by using the following steps.

(i) Control derivative matrix

B(x) = B(X) :j]—;, where IE(x,u) =F(x,u)- F(xg,Ug) (13)
(ii) Satederivative matrix
f(X)=AX)X, where f(X)=F(xu)- B(XT (14)

As mentioned in previous section, the SDRE technique requires the derivation of the SDC form of motion
equations and the solution of the state-dependent ARE. There are the causes of high computation burden. Many

numerical methods to solve the ARE are being developed but the selection from the existing one is not simple since



the efficiency and applicability of each algorithms depend on numerous factors.

H.T Bank and K. Ito proposed a hybrid method to solve the ARE for a system with alarge size[9]. In their method,
the initial feedback gain K is obtained from the limiting solution of Chandrasekhar system and the result is refined
through the Newton-Kleinman algorithm. Since the system dynamics of the rotorcraft are inherently unstable, the
initial feedback system can be unstable. The solution of the Chandrasekhar system provides a stable feedback gain
matrix with suitable chosen weighting matrices even for an unstable system.

The Chandrasekhar system for initial gain can be written as following and the suitable time integrator such as

Runge-K utta algorithm can be used for resolving the initial value problem.
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The state-dependent ARE shown in Eq. (4) can be solved by applying the Newton-Kleinman dgorithm for

following transformed system.

S=A- BK

16
S'P+PS+K'RK+Q=0 (16

If we obtain astable pair { A- BK,B} by solving Chandrasekhar system, the control gain matrix is iteratively

obtained by applying the Newton-Kleinman agorithm usingthe following equations (i =1,-++,i 12, -

S=A- BK, (17)
STF?+PIS =-Q- KITRKI (18)
limP =P (19)

i®¥

where, K, =R'B'P

4. SDRE Controller Design for the Helicopter Flight Guidance

The rotorcraft flight dynamic model used in this study is based on the previous research in Ref. [7]. Since the flap
and inflow states are the unobservable states that can not measured or estimated, these states are considered as
hidden or unobservable states during the controller design. Therefore, the rotorcraft model for controller design is
defined by using the rigid body states as shown in Eq.(20) and the rotor states corresponding to flap motion and
inflow are estimated by using the rotor trim solution. However, the level 2 simulation model developed in Ref. [7] is

used as the validation model.



XR = [U,V,W, pyqaryf !q yy 1XE1yN yh] (20)

In this paper, flight trajectories for the validation of the SDRE controller are defined by combining various
maneuver attributes. A maneuver attribute is one of the flight elements with which a maneuvering flight can be
totally defined. As an example, an acceleration maneuver from a trimmed rectilinear flight can be splitted into an
initial trimmed rectilinear flight, an acceleration flight from maneuver entry to maneuver exit, and a final stabilized
flight after finishing the maneuver. Then, these three maneuver stages consist maneuver attributes required for the
description of an acceleration maneuver. If we have optimal control solution for each maneuver attributes, the flight
guidance law can be designed by combining these solutions for a specific guidance mission. For these purposes, we
consider various maneuver attributes related to bob-up, side step, turn, slalom, hurdle hop, acceleration, and
deceleration maneuvers. In real applications, the maneuver attributes required for a specific mission task element
should beidentified prior to the application of the designed flight controller.

The each maneuver attributes can be expressed as the sum of states at maneuver entry and its variation during the

maneuver.

X(t) = X(tentry) + Dx(t) (21)
KO = Xanry) + () DXO)ck @)

entry

In this paper trigonometric functions are utilized to define various maneuver[6,11] because of its smoothness and
simplicity. The height, lateral-position and forward flight speed change during bob-up, side step, acceleration and

deceleration are described as the following formula.

Dx(f) = %[8 +cos(3pt - 9cos(pt )] (23)

The height variation in hurdle hop maneuver and the lateral position change in sldlom maneuver are formulated

using Eq. (24) and (25), respectively.

x(®) =20 2 + sin2pf) - 20in(4pE) + 25in(Ep) (24

DX(F) = 64(DX) o1~ 3 +3F 2- £3]£3 (25)
where, t =(t- tentry) It finish - tentry) O£t £1

Thetime, tengry and tiinish, denote the maneuver entry and finish times, respectively and (DX)nax a@ethe



maximum variation in states variable.

A turning flight is described by different maneuver phases as like entry phase, constant turning rate phase, exit

phase. Ref[6,11] describes each maneuver phase using piecewise polynomials as

_ _ 5
1 (DY ) max(- A3+ ) tentry £t Etgeady

Dy (t) = I (BY Imax- tsteady £t £texit (26)
% (DY )max (- 23 +3t2), teyit £t £t finish

(W)max = (Dy max) /(tfinish + eyt - tsteady' tentry)

t=(t- tentry) / (tsteady - tentry) (27)

t=1- (t- tog) /Crinisn - texi)

Therefore, each maneuver attributes for the turning flignt ae completely defined by

time, tentry tsteady texit » finish » @nd the maximum heading change (Dy ) -
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maneuver start its maneuver from steady level flight at 60 knots. Figure 1 compares calculated trajectories to the

prescribed one. The SDRE controller shows some delay in the response but the results generally trace the prescribed
trgjectory well.
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Figure 3. SDRE controller results with prescribed trajectory

To validate the application of the SDRE controller, two mission segments are defined as shown in Table 1 and
Table 2.

Table 1. Flight guidance procedure |

Maneuver Sequence | Simulation time (sec) | Maneuver Description | Entry Time(sec) | Exit Time (sec)
Bob-up 0~12 Dh=15m 2 10
Side step 12~27 Dy=5m 14 25
Bob-down 27 ~39 D h=-15m 29 37




Table 2. Flight guidance procedure |l

Figure 4. Maneuver trajectory for flight guidance |

Figure 6. Maneuver trgjectory for flight guidance |l

Figure 4-5 present the calculated maneuver trajectory in 3 dimensional space and vertical velocity variation for the
flight guidance procedure | . Figure 6-7 show the results for the flight guidance procedure Il . The simulation results
show the controlled trajectory trace the prescribed guidance well and indicate the successful implementation of the

rotorcraft SDRE controller.

6. Conclusion

This paper has studied the numerical method of the nonlinear SDRE technique and validated the designed SDRE
controller using a simulation environment. The results show the SDRE controller can be applied to the rotorcraft

guidance and control. And the real-time applicability of the SDRE controller highly depends on the model
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complexity for the SDC factorization and on the efficient solution of the state-dependent ARE.

Maneuver Sequence | Simulation time (sec) | Maneuver Description | Entry Time(sec) | Exit Time (sec)
Bob-up 0~12 Dh=15m 2 10
Accedleration 12~32 D u=30 knots 13 30
Turn 32-~62 Dy =360 deg 34 55
A
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