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Abstract: This paper deals with the State-Dependent Riccati Equation (SDRE) technique for the design of 

helicopter nonlinear flight controller and the validation of designed SDRE controller using simulation environment. 

Since the SDRE controller requires a linear system-like structure for nonlinear motion equations, a State-Dependent 

Coefficient (SDC) factorization technique is developed in order to derive the conforming structure from a general 

nonlinear helicopter dynamic model. Also on-line numerical methods of solving the Algebraic Riccati Equation 

(ARE) are investigated to improve the numerical efficiency in design ing the SDRE controllers. The proposed method 

is applied to the various maneuvers and flight guidance logics are developed using maneuver attributes which consist 

of various mission task elements. Simulation environment is developed using three independent computers for 

validation the SDRE controller. Each PC is independently operated for flight control computer, artificial model 

helicopter and ground control station, respectively.  

 

1. Introduction 

 

The State-Dependent Riccati Equation (SDRE) technique is based on the Linear Quadratic Regulator (LQR) 

method and allows us to design the controllers for the nonlinear system with the same technique used in its linear 

counterparts[1,2,3]. The SDRE method basically differs from the LQR method in two points. First, the SDRE control 

technique demands a linear system-like structure with State-Dependent Coefficients (SDC) form of motion equations. 

But the general multi-variable nonlinear systems like helicopter do not always conform to this structure. Also, it is 

well known that the SDC form for multi-variable systems is not unique and there is no general method for its 

derivation. Second, the LQR method requires off-line solution of the ARE. However, the SDRE method needs the 

iterative solution of the ARE to calculate the feedback control in on-line because the state and control derivative 

matrices of derived SDC form are generally time-varying. Therefore an efficient numerical solution of the ARE is 

crucial for the system performance.  

The main purpose of this paper is to validate the designed SDRE controller and to check the real-time applicability 

by using simulation environment. Langson et. al.[4] realized the experimental implementation of the SDRE 
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controller for a third order nonlinear system. In its setup, one 75 MHz Pentium computer is used to simulate the plant 

dynamics, and another one of the same kind calculate the SDRE controller with 100Hz sampling rate. P. K. Menon et. 

al. [5] applied the SDRE controller to the missile control. To solve the ARE, various numerical methods and PC 

processors are used with sampling rate as high as 20 kHz. Above studies were made it possible to implement of 

SDRE in the real-time because comparatively simple models were used. However, the SDRE controller is 

computationally demanding high computing power when it is applied to complex dynamic models. In this regard, 

Kim et. al.[6] applied the indirect method to the various rotorcraft model to investigate the relative computational 

burden for its application to the design of nonlinear optimal controller.  

This paper focuses on the design of the SDRE controllers using a complex level 2 rotorcraft model[7] and on its 

validation through a simulation environment. Main objectives are to access performance of the designed controllers 

and to identify the required computer resources for its real applications. For three purposes, flight guidance laws are 

designed by combining various maneuver attributes and important results are discussed to recommend the guide-line 

for the design and application of the rotorcraft SDRE controllers 

 

2. SDRE Technique 

 

The general infinite-horizon nonlinear regulator problem can be represented as: 
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The SDRE technique requires the SDC form as shown in Eq. (3) with which the SDRE method finds controller 

gain by assuming the matrices, )(xA  and )(xB , are locally constant and by solving the ARE. 

 

uxBxxAx )()( +=&                                                       (3) 

 

If )}(),({ xBxA  in Eq. (3) is a controllable pair, the procedure of the SDRE technique is summarized as follows. 

 

( i ) Drive the SDC form as show in Eq. (3) using a SDC factorization. 

( ii ) Solve the State-Dependent Algebraic Riccati Equation (SDRE) 

0)()()()( 1 =+−+ − QPxBRxPBPxAxPA TT                               (4) 

to obtain 0)( ≥tP , where P  is function of x  

( iii ) Construct the nonlinear feedback controller 
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On the contrast to the LQR solution, the SDRE technique requires the SDC factorization and the solution of state-

dependent ARE at each time of control engagement. 

 

3. Numerical Methods for the SDRE Controller Design 

 

In the previous research [8], A. Bogdanov et. al. proposed a numerical SDC factorization method for nonlinear 

helicopter dynamic model. This paper uses the modified version of the SDC factorization proposed by the present 

author[3], by considering both system equilibrium states and kinematical offset in forcing functions. The nonlinear 

motion equation at an arbitrary time instant and that at an equilibrium condition can be written as following. 

 

),( uxFx =&                                                                (8) 

      const),( 000 == uxFx&                                                    (9) 

where 00 ,ux  denote equilibrium states and controls, respectively. 

 

Even in an equilibrium state, the value of forcing function, ),( 00 uxF , is generally nonzero. The consideration on 

the state variation from the equilibrium condition and the Taylor series expansion of motion equation around the 

equilibrium states and controls enable us to derive the motion equation for the perturbed states and controls as shown 

in Eq. (12). 
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Then, the SDC factorization can be carried out by using the following steps. 

 

( i ) Control derivative matrix 

u
FxBxB ~

~
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( ii ) State derivative matrix 
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As mentioned in previous section, the SDRE technique requires the derivation of the SDC form of motion 

equations and the solution of the state-dependent ARE. There are the causes of high computation burden. Many 

numerical methods to solve the ARE are being developed but the selection from the existing one is not simple since 
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the efficiency and applicability of each algorithms depend on numerous factors. 

H.T Bank and K. Ito proposed a hybrid method to solve the ARE for a system with a large size [9]. In their method, 

the initial feedback gain K  is obtained from the limiting solution of Chandrasekhar system and the result is refined 

through the Newton-Kleinman algorithm. Since the system dynamics of the rotorcraft are inherently unstable, the 

initial feedback system can be unstable. The solution of the Chandrasekhar system provides a stable feedback gain 

matrix with suitable chosen weighting matrices even for an unstable system. 

The Chandrasekhar system for initial gain can be written as following and the suitable time integrator such as 

Runge-Kutta algorithm can be used for resolving the initial value problem. 

 

 









==

=













−−
−

=








2/1)0(

0)0(

)]()[(
)()(

)(
)(

QCL

K
with

tBKAtL
tLtLB

tL
tK TT

&
&

                                              (15) 

 

The state-dependent ARE shown in Eq. (4) can be solved by applying the Newton-Kleinman  algorithm for 

following transformed system. 
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If we obtain a stable pair },{ 0 BBKA −  by solving Chandrasekhar system, the control gain matrix is iteratively 

obtained by applying the Newton-Kleinman algorithm using the following equations ),,1( maxii L= . 

 

ii BKAS −=                                                             (17) 

i
T
iiii

T
i RKKQSPPS −−=+                                                   (18) 

PPii
=

∞→
lim                                                               (19) 

where, i
T

i PBRK 1
1

−
+ =  

 

4. SDRE Controller Design for the Helicopter Flight Guidance 

 

The rotorcraft flight dynamic model used in this study is based on the previous research in Ref. [7]. Since the flap 

and inflow states are the unobservable states that can not measured or estimated, these states are considered as 

hidden or unobservable states during the controller design. Therefore, the rotorcraft model for controller design is 

defined by using the rigid body states  as shown in Eq.(20) and the rotor states corresponding to flap motion and 

inflow are estimated by using the rotor trim solution. However, the level 2 simulation model developed in Ref. [7] is 

used as the validation model. 
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In this paper, flight trajectories for the validation of the SDRE controller are defined by combining various 

maneuver attributes. A maneuver attribute is one of the flight elements with which a maneuvering flight can be 

totally defined. As an example, an acceleration maneuver from a trimmed rectilinear flight can be splitted into an 

initial trimmed rectilinear flight, an acceleration flight from maneuver entry to maneuver exit, and a final stabilized 

flight after finishing the maneuver. Then, these three maneuver stages consist maneuver attributes required for the 

description of an acceleration maneuver. If we have optimal control solution for each maneuver attributes, the flight 

guidance law can be designed by combining these solutions for a specific guidance mission. For these purposes, we 

consider various maneuver attributes related to bob-up, side step, turn, slalom, hurdle hop, acceleration, and 

deceleration maneuvers. In real applications, the maneuver attributes required for a specific mission task element 

should be identified prior to the application of the designed flight controller. 

The each maneuver attributes can be expressed as the sum of states at maneuver entry and its variation during the 

maneuver. 
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In this paper trigonometric functions are utilized to define various maneuver[6,11] because of its smoothness and 

simplicity. The height, lateral-position and forward flight speed change  during bob-up, side step, acceleration and 

deceleration are described as the following formula.  
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The height variation in hurdle hop maneuver and the lateral position change in slalom maneuver are formulated 

using Eq. (24) and (25), respectively. 
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where, 10)/()( ≤≤−−= tttttt entryfinishentry          

 

The time, entryt  and finisht , denote the maneuver entry and finish times, respectively and max)( x∆  are the 
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maximum variation in states variable. 

A turning flight is described by different maneuver phases as like entry phase, constant turning rate phase, exit 

phase. Ref[6,11] describes each maneuver phase using piecewise polynomials as 
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Therefore, each maneuver attributes for the turning flight are completely defined by 

time, finishexitsteadyentry tttt ,,, , and the maximum heading change max)( ψ∆ .  

 

        

Figure 1. Simulation environment                   Figure 2. Data flow of each PCs 

 

Figure 1-2 show simulation environment to design and validate the rotorcraft SDRE controllers and the main 

function of each PCs and the signal flow are represented in Fig 2. The artificial helicopter model using the Level 2 

rotor model in Ref.[7] is implemented in PC1, which receives control inputs calculated by the SDRE controller in 

PC2 and sends flight state information to PC2 and PC3. The flight control computer (PC2: FCC) updates the 

feedback gain on the artificial helicopter after solving the SDC factorization and the ARE. The ground control station 

(PC3: GCS) identifies the maneuver attributes and generates the switching signal in order for FCC to design the 

corresponding SDRE controller. 

 

5. Applications 

 

The SDRE controller for each maneuver attribute is designed for Bo-105 helicopter. The bob-up and bob-down, 

side step, acceleration and deceleration maneuvers start its maneuver from hover and the slalom, hurdle hop and turn 
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maneuver start its maneuver from steady level flight at 60 knots. Figure 1 compares calculated trajectories to the 

prescribed one. The SDRE controller shows some delay in the response but the results generally trace the prescribed 

trajectory well. 
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(a) Bob-up                                (b) Side step 
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(c) Hurdle hop                                   (d) Slalom 
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(e) Turn                              (f) Acceleration/Deceleration 

 

Figure 3. SDRE controller results with prescribed trajectory 

 

To validate the application of the SDRE controller, two mission segments are defined as shown in Table 1 and 

Table 2. 

Table 1. Flight guidance procedure Ι  

Maneuver Sequence Simulation time (sec) Maneuver Description Entry Time (sec) Exit Time (sec) 

Bob-up 0 ~ 12 ∆ h=15 m 2 10 

Side step 12 ~ 27 ∆ y= 5m 14 25 

Bob-down 27 ~ 39 ∆ h=-15m 29 37 



 8 

Table 2. Flight guidance procedure ΙΙ  

Maneuver Sequence Simulation time (sec) Maneuver Description Entry Time (sec) Exit Time (sec) 

Bob-up 0 ~ 12 ∆ h=15 m 2 10 

Acceleration 12 ~ 32 ∆ u=30 knots 13 30 

Turn 32 ~ 62 ψ∆ =360 deg 34 55 
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Figure 4. Maneuver trajectory for flight guidance Ι       Figure 5. Vertical velocity variation 
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Figure 6. Maneuver trajectory for flight guidance ΙΙ       Figure 7. Forward speed variation 

 

Figure 4-5 present the calculated maneuver trajectory in 3 dimensional space and vertical velocity variation for the 

flight guidance procedure Ι . Figure 6-7 show the results for the flight guidance procedure ΙΙ . The simulation results 

show the controlled trajectory trace the prescribed guidance well and indicate the successful implementation of the 

rotorcraft SDRE controller. 

 

6. Conclusion 

 

This paper has studied the numerical method of the nonlinear SDRE technique and validated the designed SDRE 

controller using a simulation environment. The results show the SDRE controller can be applied to the rotorcraft 

guidance and control. And the real-time applicability of the SDRE controller highly depends on the model 

complexity for the SDC factorization and on the efficient solution of the state-dependent ARE. 
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