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Summary

It is shown in the paper that a single rotor with-
out reaction torque is theoretically possible, thus
eliminating the need for anti-torque devices. The
principle is to actively excite the flapping motion
so that the blades provide both lift as well as their
own propulsion, similar to the wings of birds. It
is furthermore investigated in the paper whether
this principle could be used in a practical heli-
copter, considering the power required, the mag-
nitude of flapping angles, vibrations, and control
characteristics. The preliminary conclusions are
that such an ”ornicopter” could be practically
feasible.

1 Notations

Restricted to those not defined in the text or in
figures:

dL lift on blade element

I inertia moment w.r.t. flapping hinge

If inertia moment fuselage

K spring constant

m blade mass

r radius of blade element

R rotor radius

S static moment w.r.t. flapping hinge

t time

vi induced velocity

V flight velocity

αs shaft plane angle of attack

γ Lock number ρClαcR
4/I

µ advance ratio V/(ΩR)

ψ azimuth angle

Ω angular speed rotor

2 Introduction

The tail rotor of helicopters, needed to counteract
the reaction torque of the engine and to control
the helicopter in yaw, has always been considered
a necessary evil. It is expensive, costs power (5
to 10% of the total power), it has only marginal
control authority under unfavorable wind condi-
tions, and is on top of that noisy, vulnerable and
dangerous. Numerous attempts have been done to
find alternative solutions. However, even the best
of these alternatives solve only a part of the prob-
lem. The ideal solution would be to have a main
rotor without reaction torque at all, which at first
sight seems asking for a system which would vio-
late Newton’s laws.

Taking a closer look at bird flight may provide
the answer nevertheless. In the usual helicopter
the rotor blades have the same degrees of freedom
as bird wings: the blades are free to flap up and
down, to have a lead-lag motion in their plane of
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rotation, and they may be rotated around their
span axis (pitching). In conventional helicopters
only the pitch is actively controlled by means of
the swash plate, so that the thrust can be vec-
tored to obtain longitudinal or roll control of the
aircraft.

The wings of birds possess the same degrees of
freedom, but all of them are actively used so that
by suitably coordinating the different wing mo-
tions birds are able to derive lift, control as well
as propulsive force from their wings (see fig. 1).

Figure 1: Motion of bird wing, according to Mag-
nan (Ann. Sci. Nat. Zoo (10)5, 1922)

In principle a similar coordination of motions
should be possible in the case of helicopter blades,
by applying a direct flapping moment to the blade
roots with the correct phase angle. In this way
the rotor blades would propel themselves like bird
wings, without needing shaft torque and therefore
without the need for an antitorque device. The
necessary power to drive the rotor is in such a
case entirely supplied by the flap forcing mecha-
nism, again similar to a bird where the necessary
power for flight is supplied by the flapping mus-
cles.

During the patenting of this idea by Delft Uni-
versity of Technology it was discovered that the
principle had already been independently sug-
gested by Vladimir Savov on a Bulgarian website
(ref.[1]). Probably due to the lack of a quantita-
tive analysis, there was at the time of this ear-
lier publication however serious doubt whether
Savov’s so called ”Rotopter” could be applied to
a practical helicopter.

A quantitative analysis - which also indicates that
several refinements and modifications of the ba-
sic principle are necessary - shows that the system

may be perfectly feasible in practice. The result-
ing helicopter configuration is here called an ”or-
nicopter” (helicopter + ornithopter).

The following questions will be addressed and
quantitatively treated in the present paper:

1. Can the rotor indeed be driven by flap forc-
ing to a sufficiently high angular speed as
needed by a practical helicopter ?

2. How large is the required power compared
with conventional shaft drive ?

3. How large are the necessary flapping angles,
and are vibration problems to be expected
due to the additional flapping ?

4. Are the cyclic control and trim characteris-
tics influenced by the flap forcing ?

5. Is a mechanism feasible which can, although
eliminating the reaction torque, at the same
time provide powerful yaw control?

3 Principles of bird flight

Consider a symmetric aerofoil (fig. 2 to 4) mov-
ing through the air along an undulating path, i.e.
the superposition of forward speed and a flapping
motion. It is seen from fig.2 that, averaged over
a flapping cycle, an efficient aerofoil will experi-
ence a positive propulsive force due to the peri-
odic forward tilt of the lift vector. To sustain the
flapping motion power will be needed, since the
lift is always opposing the vertical motion. On the
average there will be no upward force.

Setting the aerofoil at a positive incidence and
keeping the incidence constant whilst perform-
ing the flapping motion may obtain propulsion
as well as a net upward force. In the case of small
incidence- and path angles the total lift will be
the superposition of a constant value and the lift
variations of fig.2, as sketched in fig.3.

Birds do apply incidence variations when flapping
their wing, as may be seen from the experimental
data shown in fig.1. A limiting case is shown in
fig.4, where the incidence variations are so large
that the angle of attack is kept constant. In this
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case the lift will be constant, but averaged over
one cycle there will be no net thrust.

Birds apply incidence variations in magnitude
somewhere between the situations of fig.3 and 4
depending on the flight phase: during accelerat-
ing flight their wing motion is closer to the situ-
ation of fig.3 than during steady flight. Actually,
the flight of birds is a lot more sophisticated and
complex than sketched above. The flap down oc-
curs in general at a larger horizontal speed (using
the lead-lag degree of freedom) than the flap up
motion. Furthermore, different parts of the wing
describe different motions, and often the aerofoil
shape is changing during the motion.

However, the above sketched principles suffice to
explain the rotor system without reaction torque.
Looking at the flow angles of the blade element
of a helicopter rotor blade, it is seen from fig.5
that a strong downward flapping motion leads to
a forward tilt of the lift vector, thus giving rise
to a propulsion force. Of course, upward flapping
has the opposite effect. We could however try to
approximate the situation of fig.3 , in order to
obtain a net propulsive force during one blade
revolution. To achieve this, the flapping motion
will have to be excited by some kind of mechanism
which supplies power to the rotor blade, like the
flapping muscles of birds.

L

L

D

D
D

D

L

D

zero pitch no net lift

average propulsion

Figure 2: Flapping wing with a pitch angle equal
to zero.

L

L L

L L
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D D

D D
pos. constant pitch
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average lift

Figure 3: Flapping wing with a constant pitch
angle.
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constant a.o.a positive constant lift

no propulsion

Figure 4: Flapping wing with a constant angle of
attack.
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Figure 5: Velocity diagram of blade element.

4 Principle of a flap forcing

mechanism

The principle of a flap forcing mechanism for a
two-bladed helicopter rotor is shown in fig.6. For
clarity the conventional swash plate mechanism
is not drawn, although it is also present. The
flap forcing mechanism consists of a push-pull rod
through the center of the hollow rotor shaft, the
rod co-rotating with the shaft and the rotor. The
once-per-rev push-pull motion is converted to a
flapping moment on both the blades. Note that
there is an essential difference between the flap
forcing and the application of cyclic pitch by a
swash plate: both are periodical with a frequency
of once-per-rev, but cyclic pitch is asymmetrically
applied (the magnitude is equal but the direction
is different for the two blades), whereas the flap
forcing is symmetrical.

The once-per-rev push-pull motion is derived
from a mechanism analogous to hydraulic pumps:
a radial extension of the push-pull rod is forced to
rotate in an inclined, stationary plane. The driv-
ing power is derived from the main engine, via
the main rotor shaft. If the flap forcing is just
sufficient, no direct shaft power needs to be trans-
mitted to the rotor to maintain its speed, and all
the power is then available for the driving mech-
anism of the push-pull motion. In this situation
there is an average torque exerted on the inclined
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Flapping hinge

Rotor−shaft

Non−rotating disc

Engine

Tilting hinge

Rotating push−rod Spline

e

spring stiffness K
neutral position δ

 Rotor blade

Non−reversible rudder

pedal connection(yaw control)

Figure 6: Principle of a possible mechanism for
flap forcing.

plane equal in magnitude but opposite in direc-
tion to the torque exerted by the main engine on
its mountings (ref.[2]). Hence the absence of re-
action torque on the helicopter as a whole.

The pilot regulates the inclination of the plane.
The amplitude of the push-pull motion deter-
mines the division of the total engine power be-
tween shaft- and flap power. It thus determines
whether there is some reaction torque left and in
which direction it acts. Therefore a powerful yaw
control for the helicopter as a whole may be real-
ized by varying the plane’s inclination.

5 Power required

In steady forward flight the inflow angle φ of a
blade element is, according to fig.3:

φ ≈ tanφ

=
V sinαs + vi + β̇r + V cosαs cosψ · β

Ωr + V cosαs sinψ
(1)

The inflow angle determines the magnitude of the
lift component opposing the blade rotation, so
that the shaft power required to maintain steady
rotation is:

Psh = Pp +
1
2π

∫ 2π

0

dψ

∫ R

0

dL · sinφ · Ωr (2)

where the power Pp has been added, the so called
”profile power” associated with profile drag.

By some algebraic manipulation and substitution
of eq.1the latter expression may be interpreted as
follows:

Psh = Pp +
1
2π

∫ 2π

0

dψ

∫ R

0

dL sinφ (Ωr + V cosαs sinψ)

−V cosαs
1
2π

∫ 2π

0

dψ

∫ R

0

dL sinφ sinψ

= Pp + T (V sinαs + vi) +
1
2π

∫ 2π

0

β̇dψ

∫ R

0

dL · r

−V cosαs · 1
2π

∫ 2π

0

dψ

∫ R

0

dL (−β cosψ + φ sinψ)

= Pp + T (V sinαs + vi) +HiV + Pβ (3)

where the symbol Pβ stands for:

Pβ = +
1
2π

∫ 2π

0

β̇dψ

∫ R

0

dL · r (4)

The equilibrium of forces in steady flight is (see
fig.7):

D

T
Shaft plane

H

H

par

i

0

αs

V

Figure 7: Equilibrium of forces in steady horizon-
tal flight.

T sinαs + (Hi −H0) cosαs −Dpar = 0 (5)

where Hi is the in-plane force associated with the
lift on the blade elements, and H0 is the in-plane
force associated with the drag. Dpar is the para-
site drag. Substituting eq.5 into eq.3 yields:

Psh = Pp +H0V + Pi + Ppar − Pβ (6)

where Pi is the induced power, and Ppar is the
parasite power.
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Eq.6 is the usual expression for the total shaft
power required in forward flight, except for the
term Pβ . The latter will be analyzed more care-
fully below.

6 General flapping equation

Let us for simplicity assume a simple, centrally
hinged rotor blade (fig.8), where a mechanical
flapping moment is applied to the root. The equa-
tion of motion is:

��
�
�
�
�
�

�
�
�
�
���

β
  β

2
Ω

Ω

Mechanical

flapmoment
M

Rotor shaft

Shaft plane

dL

dm      r  cos 

fl

Figure 8: Moments on flapping blade.

β̈ +Ω2β =
Ma

I
+

Mfl

I
(7)

whereMfl stands for the mechanical flapping mo-
ment, and Ma is the aerodynamic flapping mo-
ment. Using the flat disc approximation for the
tip path plane:

β = a0 − a1 cosψ − b1 sinψ (8)

it follows that

Ma = −Mfl + a0Ω2I (9)

In eq.4 for Pβ it is recognized that:

∫ R

0

dL · r = Ma (10)

so that it finally follows that

Pβ = − 1
2π

∫ 2π

0

β̇Mfldψ (11)

The physical interpretation of this expression is
clear. The product β̇Mfl is the instantaneous
power exerted by the flap forcing mechanism on
the blade. Denoting the cycle averaged power by
Pfl it may thus be concluded that

Pβ = −Pfl (12)

7 Decoupling the cyclic con-

trol from the yaw control

Returning now to the power equation

Psh = Pp +H0V + Pi + Ppar − Pfl (13)

it is seen that one can cancel the required shaft
power by making Pfl sufficiently large. The nec-
essary driving power is then entirely supplied to
the rotor by the flap forcing mechanism. In this
case there will be no reaction torque. The power
needed by the flap forcing mechanism to maintain
rotor speed is equal to the shaft power it replaces.

It should be realized that the flapping angle oc-
curring in eq.11 is the total flapping angle, which
not only arises from the mechanical flap forcing,
but also from cyclic control and the effect of the
flight speed. At first sight one would conclude
that the required moment Mfl would depend on
the cyclic control position. In other words, one
would expect a strong, and probably unaccept-
able cross coupling between the cyclic and yaw
control.

This is not the case however, as will be shown
now. Considering fig.6 the mechanically applied
flapping moment Mfl may be expressed like:

Mfl = K (δ − β · e) e (14)

where δ is the upward displacement of the push-
pull mechanism, and e is the offset distance of the
spring, with spring constant K.

Substituting eq.14 into eq.11 it follows under
steady flight conditions (i.e. the flapping angle β
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returns after one revolution to its initial value):

Pfl = Ke · 1
2π

∫ 2π

0

β̇δdψ (15)

Using linear aerodynamics the flapping equation
reads after writing out the aerodynamic flapping
moment Ma:

β′′ + f1 (ψ, µ)β′ + f2 (ψ, µ,K)β =

f3 (ψ, µ) θ (ψ) + f4 (ψ, µ) (λc + λi) + Ke
Ω2I δ (ψ)

(16)

where the symbols β′ and β′′ denote differentia-
tions w.r.t. the azimuth angle ψ.

Eq.16 is a linear, second order differential equa-
tion with variable coefficients. There are three
forcing terms on the right hand side of the equa-
tion. They are respectively associated with the
cyclic control, the inflow state of the rotor (which
in turn depends on forward velocity), and on the
mechanical flap forcing. Thanks to the linearity
of the equation the solution will be the sum of
three contributions:

β = βδ + βθ + βλ (17)

where βδ is the flapping associated with the flap
forcing, βθ depends on the cyclic control, and βλ

on the flight speed.

If we consider a second blade as sketched in fig.6,
the flapping equation will be identical except for
the flap forcing term, which will have a negative
sign. Fig.9 shows the tip path planes of the two
blades. Cyclic control and flight speed will result
in both blades rotating in the same tip path plane.
The mechanical flap forcing is such that the tip
path plane associated with it is antisymmetric for
the two blades. Therefore, if we sum the flapping
power of the two blades, the following expression
is obtained:

Pfltot
= N ·Ke · 1

2π

∫ 2π

0

β̇δδdψ (18)

where N is the number of blades, in this case N=2.

Cyclic Control

T.p.p. Both blades

Shaft plane

Flap Forcing

T.p.p. Blade #1

T.p.p. Blade #2

Shaft plane

Figure 9: Split of tip path plane due to flap forc-
ing.

The important conclusion from this expression is,
that the total flapping power does not depend on
the position of the cyclic control. Looking at fig.9
it is seen that the flap forcing does not cause any
additional forces or moments on the fuselage, be-
cause of the antisymmetric motion of the blades
as far as the flap forcing is concerned. This means
that the required cyclic control is not influenced
by the flap forcing system or by the yaw control.
In other words, there is a complete mutual decou-
pling of the cyclic and yaw control. Trim curves
and the response to cyclic input are both entirely
conventional (refs. [3] and [4]).

8 Magnitude of the required

flapping

Assuming linear aerodynamics, the aerodynamic
flapping moment Ma in eq.16 may be written out
analytically. If we now consider only the flapping
motion associated with the flap forcing, the flap-
ping equation reads:

β′′ +
γ

8

(
1 +

4
3
µ sinψ

)
β′

+
[
1 + Ke2

Ω2I + γ
6µ cosψ

(
1 + 3

2µ sinψ
)]

β

= Ke2

Ω2I
δc

e cosψ (19)
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where δ(ψ) has been assumed to be δ = δc cosψ.
Using once again the flat disc approximation eq.8
an approximate solution of the flapping equation
19 can be obtained. The flapping coefficients a1

and b1 are given by:

a1 = − κ2 · ( δc

e

)
κ2 +

(
γ
8

)2 (20)

b1 = −κ · ( δc

e

)
γ
8

(
1− 1

2µ
2
)

κ2 +
(

γ
8

)2 (21)

in which:

κ =
Ke2

Ω2I
(22)

Next the integral for the total flapping power
eq.18 can be solved:

Pfltot
= N ·Ke · 1

2π

∫ 2π

0

β̇δδdψ

=
Ω3I

π

∫ 2π

0

[a1 sinψ − b1 cosψ]
(
κ
δc

e

)
cosψdψ

= −Ω3I

(
κ
δc

e

)
b1

= +Ω3I
κ2 γ

8

(
1− 1

2µ
2
)

κ2 +
(

γ
8

)2 ·
(
δc

e

)2

(23)

Eq.13 provides the required value of the flapping
power in order to achieve the situation of no re-
action torque. In combination with 23, 20 and 21
the amplitude of the required flapping may be
calculated. Fig.10 shows an example for a typical
light helicopter. It has been assumed here that
the springs in the mechanism of fig.6 are soft, so
that the control characteristics of a semi-rigid ro-
torsystem are obtained. It is seen that the flap-
ping angles needed are relatively modest.

9 Vertical vibrations

In order to estimate the magnitude of the verti-
cal vibrations of the fuselage the dynamic model
shown in fig.11 was used (ref.[5]), based on an

0 0.05 0.1 0.15 0.2 0.25 0.3
0

20

40

60

80

100

µ

P
 [k

W
] |β|

P
tot

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

β 
[o ]

Figure 10: Flap forcing power required and flap-
ping angle for typical light helicopter.

alternative but equivalent form of the flap forc-
ing mechanism (fig.12). For simplicity we consider
only hovering, and a blade excitation of the form
δ = δc cosψ.

β

χ

Y
Z

X

Y

Y

Y

X

X

X

X

X

e

0

0

0

b

b

Zb

 t
bl

Xb

p

b

bl

bl

t

2

2

1

2

Y
1bl

(Inertial)

(Body)

(Additional swashplate)

(Blade projection)

ε

β
ψ

τ

Figure 11: Dynamic model for analyzing vertical
vibrations.

The resulting equation of motion for the vertical
movement ε is:

(M +m) ε̈+
γ

4
ΩI
R2

ε̇ = −Sβ̈ − γ

6
ΩI
R

β̇ (24)

where S is the static moment of the blade, and
M is the fuselage mass.

From this equation it appears that the physical
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effects which cause a vertical vibration are the
lift variations due to flapping, as well as the ver-
tical acceleration of the blade center of gravity.
It is interesting to note that the rotor drive sys-
tem, which exerts oscillating vertical forces on the
blades (and by reaction on the fuselage) does not
enter into the equation of motion 24. There is in
fact a closed loop for these vertical forces. They
find a direct reaction through the flapping hinges
and the main rotor shaft.

Eliminating the vertical vibrations at the source
is possible in the case of a four bladed rotor. Forc-
ing an opposed flapping motion upon the two sets
of blades (each set consisting of two blades cou-
pled in the way shown in fig.6) the excitations in
the equation of motion 24 cancel each other (see
fig.13).

ε

Rotor−shaft Blade flaps due to 
vertical motion of rod

Rod is free to move

Spring

Rotor−blade

Ball tracks surface of swash−plate

Tilted swash−plate

Y

X

Z

Engine driven gear

Flapping hinge

Figure 12: Alternative flap forcing mechanism.

10 Alternative rotor configu-

rations

In order to solve the problem of vertical vibra-
tions, there is an alternative rotor configuration
possible. This consists of two sets of teetering
rotors mounted perpendicular to each other on
the same shaft (fig.13). Once again the excitation
of the vertical vibrations is then completely can-
celled. In this case the flapping motion should be

2 x Anti−symmetric

2  x Teeter rotor

Tail
.
β = 0

β > 0

.

β < 0

β = 0

    β < 0

β = 0

.

Ω

Tailβ = 0
β > 0
.

β = 0

β > 0
. β = 0

β = 0.
β < 0

.
β < 0

β > 0

β = 0
.

Ω

Figure 13: Four-bladed configurations to elim-
inate vertical vibrations: a) Double teeter,
b)Twice two-bladed configuration according to
fig.6, in opposite phase.

forced in the way shown in fig.14 , so that the two
tip path planes are anti-symmetrical, as in fig.9.

11 Vibrations around the

yaw axis

The dynamic model is shown in fig.14. The fuse-
lage now has a degree of freedom χ around the top
axis. Again we consider the hover. As a first step a
one-bladed configuration is considered where the
blade forcing is assumed to be δ = δc cosψ.

Writing out the equation of motion for the yaw it
is found:

If

I
χ′′ + κ

(
δc

e
cosψ − β

)
δc

e
sinψ = −Qeng

Ω2I
(25)

In this equation Qeng is the engine torque, as-
sumed to be constant. The flapping angle is ex-
pressed like β = −a1 cosψ − b1 sinψ.

The physical interpretation of the second term
is given in ref.[2]. It is the instantaneous torque
around the top axis which originates from the fact
that the spring in fig.6 presses on the inclined
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Figure 14: Dynamic model for analyzing yaw vi-
brations, double teeter.

plane and so gives rise to a horizontal force whose
work line does not pass through the top axis.

It must be remarked that it was assumed during
the derivation of eq.25 that there is a soft tor-
sional spring between the engine and the drive
system sketched in fig.12. The blade is allowed to
undergo rotational accelerations, and is not re-
stricted to turn at a constant angular speed. In
the case of a torsionally stiff connection between
the rotor head and the engine the results would
be different.

In the case of the double teeter configuration we
have to add a second rotor blade perpendicu-
lar to the first rotor blade. For the second blade
the same expression holds, with ψ2 = ψ + π/2,
δc2 = −δc, a12 = −a1 and b12 = −b1. Summing
the contributions of the two blades, we find the
equation of motion

If

I
χ′′ + κ

(
δc

e

)
b1 = −Qeng

Ω2I
(26)

From the flapping equation the value of b1 was
found (see eq.21), from which it appears for the
case of hovering:

If

I
χ′′ − Pfltot

Ω3I
= −Qeng

Ω2I
(27)

In other words χ” = 0 in the case of yaw equi-
librium. The vibrations around the top axis not
only are cancelled in a cycle-averaged way, but
even instantaneously in the case of the double-
teeter configuration.

The four-bladed anti-symmetric configuration
shown in fig.13 displays a different behavior. In
this case it is found that a strong two-per-rev
torque oscillation results, which would require a
vibration isolation system.

12 Roll and pitch vibrations

For the analysis of roll- or pitch vibrations again a
dynamic model like fig.14 has been used. In this
case the vertical degree of freedom ε has been
replaced by a roll degree of freedom ϕ (see fig.15).

Y

Xb

b

Zb

 

χ

X
0 (Inertial)

Y
0 0

Zϕ

Figure 15: Dynamic model for roll and pitch.

The dynamic equation for the single blade config-
uration is:

Iφ̈ sinψ + If φ̈+ΩIφ̇ sin 2ψ +
γ

8
ΩIφ̇ sin2 ψ

= Iβ̈ sinψ +Ω2Iβ sinψ +
γ

8
ΩIβ̇ sinψ

∼= Mfl sin 2ψ (28)

If the springs in the push-pull mechanism of the
rotor drive are soft so that the eigenfrequency of
the blade flapping equation is almost equal to Ω,
a clear physical interpretation is possible. Under
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such conditions the r.h.s. of equation 28 may be
approximated by the flap forcing moment Keδ,
multiplied by sinψ. In other words, the reaction
of the flap forcing moment acts on the fuselage.
Vectorially, the flap forcing moment rotates with
the blade.

In the case of the antisymmetric blade configura-
tion of fig.13 no resulting roll- or pitch moments
will be carried over to the fuselage. In the case
of the double teeter configuration there will be a
resulting 2-P excitation of the fuselage. In the lat-
ter case of the double teeter a dynamic vibration
absorber may be needed in order to counteract
the vibrations.

13 Conclusions

Using a quantitative analysis it has been shown
that active flap excitation can drive a helicopter
rotor, so that there is no need to supply shaft
power. In this way a single rotor without reac-
tion torque may be realized, which eliminates the
need for anti-torque devices. The actual mecha-
nism to effect the flap forcing can be arranged in
such a way that nevertheless yaw control is avail-
able. The power to drive the rotor by flap forc-
ing is equal to the shaft power in a conventional
layout. The additional flapping angles are com-
parable in magnitude to the usual flapping an-
gles. The flap forcing mechanism can be arranged
such that there is no interference with the nor-
mal cyclic control. Cyclic control does not affect
the drive function, nor is the force and moment
balance influenced by the flap forcing. Therefore
no undesirable cross coupling between roll- and
pitch control on the one hand and yaw control
on the other occurs. A socalled ”ornicopter” will
display a conventional trim behavior, comparable
with that of a soft semi-rigid rotor system. In the
case of a four-bladed configuration it is possible
to eliminate vertical vibrations of the fuselage. A
double-teeter layout seems an attractive arrange-
ment because of its relative simplicity and since
no torque fluctuations around the top axis occur.
Dynamic vibration absorbers will however be nec-
essary to reduce roll- and pitch vibrations of the
fuselage.

The characteristics found so far seem to indicate

that ornicopters could be feasible in practice. Fur-
ther investigation is worthwhile, e.g. into the mat-
ter of blade stresses, mechanical complexity and
overall costs.
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