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Abstract 

There is general agreement that the development of 
effective rotorcraft analysis software will require the 
use of modern computational mechanics methodolo
gies, especially finite clement analysis and multibody 
dynamics. This paper examines the analysis of rotor
craft dynamics from the perspective of these method
ologies. First, a general discussion of rotorcraft anal
ysis and modeling is presented. Then, a hierarchy of 
rotorcraft analyses is presented, ranging from simple 
to complex kinematics, where it is shown that in com
prehensive rotorcraft software, finite element analysis 
must be augmented by multibody dynamics in order 
to properly analyze large motions of rotorcraft com
ponents. Finally, a review of multibody dynamics is 
presented to further familiarize the rotorcraft com
munity with this technology. 

1. Introduction 

The development of analytical methods to predict 
rotorcraft aeromechanical characteristics is a chal
lenge that has absorbed the continuous attention of 
rotorcraft engineers and researchers. Numerous spe
cialized analyses have been developed to treat the 
various rotorcaft disciplines, such as aerodynamics, 
dynamics, flight control, propulsion, etc. A num
ber of analyses have addressed multiple disciplines 
in order to predict interdisciplinary problems such 
as rotor loads and vibration. Because of the com
plexity of the rotorcraft aeroelastic phenomena and 
the highly coupled nature of the physical system, sig
nificant efforts in recent years have been devoted to 
comprehensive rotorcraft analyses. One of the most 
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prominent of these is the Second Generation Com
prehensive Helicopter Analysis System {2GCHAS), 
Ref. [1]. The term "comprehensive" is used here to 
mean that the analysis is broadly interdisciplinary, 
and treats aerodynamics, dynamics, flight controls, 
and propulsion in order to predict a wide range of ro
torcraft problems, including performance, loads and 
vibrations, aeroelastic stability, stability ~nd control, 
aerodynamics, and acoustics. 

Until recently, comprehensive rotorcraft analyses 
were undertaken with so-called "first generation" 
codes (e.g., C60, C81, REXOR, CAMRAD) which are 
formulated around fixed structural models that pro
vide no modeling flexibilty beyond letting the user 
input a limited set of model parameters. Morever, 
the usefulness of these codes in analyzing dynamic 
phenomena is further limited by the absence of an 
adequate large motion maneuver capability, and by 
the use of obsolescent theory for rotor blade analy
sis (see Ref. [3]). In recent years, government and 
industry have embarked on several major projects 
(i.e., RDYNE, COPTER, DYSCO) with the aim of 
improving rotorcraft analysis capabilities. For the 
most part, these new codes offer improved rotor blade 
analyses based on second order or geometrically ex
act kinematics (see Refs. [4], [5], [6], [7], [8]), and 
some additional flexibility in modeling fuselage com
ponents, but none of these codes can be regarded as 
having a true, general purpose modeling capability, 
and none has a rigorous large motion maneuver ca
pability. 

The 2GCHAS project has attempted to remedy the 
deficiencies of earlier codes by formulating the struc
tural problem using classical finit'e element technol
ogy. The finite element method is essential to devel
oping general purpose modeling capability, but this 
technology is largely restricted to· small motion re
sponse analyses by virtue of fundamental assump-
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tions made in the finite element derivations. Re
cently, geometrically exact finite elements have been 
developed that can accomodate arbitrarily large ro
tations, but the technology of these elements has 
not yet fully matured, and in rotorcraft applications, 
these elements have mostly been applied to improv
ing steady flight rotor blade analyses. Consequently, 
2GCHAS, which is essentially an enhanced finite ele
ment code, is inherently prevented from analyzing ar
bitrary, large motion maneuver response ofrotorcraft. 
As will be seen later, a crucial part of this limitation 
is the inability to handle large motion that is arbi
trary. If the large motion is prescribed, the problem 
may be analyzed using a straightforward extension . 
of the usual finite element method, which explains 
the ability of 2GCHAS and other second generation 
codes to account for steady-state rotor spin. 

Along with finite element analysis, multibody dy
namics is a computational mechanics methodolgy 
that can be useful in comprehensive rotorcraft analy
sis. This method pertains to the analysis of the large 
motion response of systems of interconnected bod
ies, which arc generally assumed to be rigid. Clearly, 
multibody dynamics could be used to simulate the 
large motion response of a rotorcraft modeled as cou
pled rigid bodies, but it is inapplicable to deformable 
body analysis, so it alone cannot support the devel
opment of comprehensive rotorcraft software. Figure 
1 illustrates the different features o:£ finite element 
and multibody dynamics methods. Techniques are 
available that combine multibody and finite element 
analyses, and one application of these techniques em
ployed in 2GCHAS software is the use of inertial stiff
ness and damping matrices to account for the effects 
of frame motion. While broader applications of these 
techniques are appropriate in some problems, these 
techniques are often quite costly at the most general 
level, and it seems clear that not all rotorcra:£t anal
yses require such generality. 

In view of the above remarks, it is important that 
rotorcraft analysis requirements be fully understood 
in light of computational mechanics methods before 
software implementing these methods is designed. 
The first part o:£ this paper is a broad overview of 
rotorcraft analysis tasks and the essential compo
nents of rotorcraft models. The accuracy of various 
assumptions made in analysis and modeling will be 
assessed within the context of comprehensive rotor
craft analysis goals. The second part o:£ this paper is 
a discussion of rotorcraft analyses methods from the 
perspective of finite element and multibody dynamics 
methods. A hierarchy of increasingly complex analy
ses is described and their usefulness and restrictions 
in the context o:£ comprehensive rotorcraft analysis is 
discussed. It will be seen that the most general type 

of comprehensive analysis requires involves the anal
ysis of large motion dynamics of flexible bodies, and 
combines aspects multibody and finite element anal
yses. The last section of the paper presents a brief 
review of the multibody dynamics liter.ature to assess 
·the-suitability o:£ this technology for rotorcraft anal
ysis applications. This paper is a revised version o:£ 
Re:£. [2]. 

2, Rotorcraft Analysis and Modeling 

Before proceeding further, it will be useful to dis
cuss in general terms some of the specialized aspects 
of rotorcraft analysis and modeling from the perspec
tive o:£ structural dynamics. This is intended to pre
pare the way for more detailed analytical treatment 
of rotorcraft dynamics and better understand the dy
namics issues addressed in this paper. 

2,1 Rotorcraft Analysis Types 

A variety of diferent types of analyses are used to 
treat rotorcraft problems. These analyses are usually 
tailored to the specific needs of the desired applica
tion; many are adequately served without addressing 
the full complexity of the rotorcraft system. For ex
ample, rotor blade loads analyses commonly assume 
the rotor hub is fixed to a rigid support and com
pletely ignore any coupling between the rotor and 
the fuselage system. Such an assumption is gener
ally suitable for calculating rotor blade aerodynamic 
loads and vehicle performance characteristics. Al
though usually very inaccurate, rotor hub vibratory 
loads obtained for the fixed hub condition are some
times used to estimate fuselage vibration response by 
applying those isolated rotor loads to an uncoupled 
fuselage structure. 

A more complete special case of the general prob
lem treats rotor-fuselage dynamic coupling for the 
trimmed flight condition, where the vehicle exhibits 
steady state periodic responses. Several important 
simplifications from the general problem may be in
voked. For steady state conditions, all vibratory mo
tions of the vehicle may be taken as small (in a gen
eral sense). The steady state operating condition is 
an important one where the designer seeks to obtain 
accurate predictions of rotor system dynamic loads 
and the best possible estimates of fuselage vibration. 
Full rotor fuselage dynamic coupling is an important 
factor in these properties. 

The most general problem involves arbitrary tran
sient motion of the vehicle in flight, including dy
namic coupling between the rotor and fuselage sub
systems. Such an analysis would be required to accu
rately predict dynamic loads and vehicle vibrations 
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during maneuvering flight conditions. These condi
tions are especially difficult because at the limiting 
maneuvering conditions of the vehicle, the complex 
fluid flow problems such as blade stall, vortex inter
actions, and compressibility effects are strongest. In 
addition, nonlinear structural deformations are. the 
largest, and velocities and accelerations are high and 
changing rapidly. Such maneuver conditions are es
pecially important because the maximum structural 
stress and vibrations significantly influence the op
erational military capabilities of the vehicle. There
fore, it is important that designers be able to predict 
rotorcraft characteristics as accurately as possible. 
Full treatment of blade flexibility, rotor-fuselage-drive 
train dynamic coupling, large scale vehicle rigid body 
motions, and rotor rotational speed variations must 
be addressed. In summary, the most difficult and 
demanding problems for rotorcraft dynamic analysis 
occur during maneuvering flight and this application 
is primarily responsible for the fundamental dynam
ics issues addressed in this paper. 

2.2 Rotorcraft Modeling 

The complexity of rotorcraft systems leads to a 
wide range of anlaytical methods tailored to the phys
ical characteristics and behavior of the different com
ponents of the system. A brief discussion of kinemat
ics concepts used to encompass the behavior of these 
components and a description of the basic compo
nents will be presented. 

2.2.1 Kinematic Concepts 

Rotorcraft elastic motions are generally measured 
with respect to frames. Different frames may be used 
for different portions of the rotorcraft structure and 
they may or may not be attached directly to a point 
on the structure, the choice made according to the 
requirements of the analysis. The frame motion gen
erally represents motion of the rigid body degrees
of-freedom of the structure, and this motion may 
be large or small, and prescribed or nonprescribed, 
depending on the requirements of the particular dy
namic analysis. 

Rotorcraft elastic deformations may also be small 
or large in rotorcraft. Except for rotor blades, most 
rotorcraft elastic deformations are small. Rotor blade 
deformations are at least moderately large, and must 
be treated as finite rotations. Formulations for very 

· large deformations (small strain) have also been de
veloped, but the moderate deformation analyses are 
usually adequate. 

2.2.2 Rotorcraft Components 

A comprehensive rotorcraft analysis µmst be appli
cable to a wide range of different types of vehicles in
cluding single or tandem rotor helicopters, compound 
helicopters, and tiltrotors, to name a few common ex
amples. Similarly, a variety of rotors such as articu
lated, hingeless, and bearingless rotor types, all hav
ing distinctly different physical characteristics, must 
be treated. Other rotorcraft components present ad
ditional modeling requirements for dynamic analysis. 
The purpose of this section is to describe the physical 
features and unique physical properties of the key ro
torcraft components and then discuss modeling and 
dynamics issues that pertain to them. 

1. Fuselage. For the purpose of comprehensive dy
namic analysis, rotorcraft fuselages present few spe
cial issues, especially in comparison with other parts 
of the rotorcraft systems. The material properties 
are usually taken to be linear and elastic deforma
tions are small and may be treated with a suitable 
conventional linear finite element analysis, e.g., NAS
TRAN. When approximations are appropriate, sim
plified modal representations may be used. It is to 
be emphasized, however, that the analysis of complex 
fuselage structures cannot be regarded is routine, in 
view of the sensitivity of vibration response to such 
subtlties as large cutouts, concentrated masses, sec
ondary structures and attachments, isolator subsys
tems, and nonlinear structural damping. 

2. Rotor Blade. Rotor blade structural dynam
ics is a central concern of modern rotorcraft analysis. 
The large centrifugal forces of long slender rotating 
beams limit elastic deformations, but in general, and 
particularly for cantilever (hingeless and bearingless) 
blades, these deformations are sufficiently large to 
cause nonlinear kinematic couplings between bend
ing and torsional motions, which are important in 
blade aeroelastic phenomena. Accurate analyses of 
these phenomena therefore require that blade defor
mations be treated as moderately large, which means 
that terms of at least second order must be considered 
when describing the kinematics of blade rotations. 
In sum, the elastic rotor blade will undergo moder
ate elastic deformations with respect to a reference 
frame, while the rotor blade frame will undergo very 
large motions. 

3. Rotor Blade Articulation. Articulated and 
semi- articulated rotor blades have flap and lead-lag 
hinges or flap hinges respectively to accommodate 
rotor blade motions in flight and reiieve blade root 
stresses. The rigid body rotation of the blades about 
these hinges may be large and in general cannot be 
treated as a small rotation. 

4. Rotor Blade Feathering. Virtually all rotor 
systems employ cyclic and/or collective feathering to 
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control the rotor·forces acting on the vehicle. Feath
ering is a rigid body pitch rotation about the blade 
root feather hinge ( or torsion of a bearingless rotor 
blade flexbeam) produced by mechanical action of the 
swashplate and pushrod links connected to the blade 
pitch horns. The applied feathering control must be 
regarded as a finite rotation, but the feathering con
tributed by elastic deformation of the pushrods may 
be regarded as small perturbations. A key issue for 
structural analysis is the large periodic rotation of 
blade section principal elastic axes that occurs when 
cyclic pitch is applied to the rotor blades. 

5. Rotor-Body Coupling. One of the most im
portant rotorcraft dynamics analysis issues involves 
coupling between the rotor(s) and the fuselage. Since 
the equations for the two major subsystems, the rotor 
and the fuselage, are usually associated with different 
reference frames, rotor-body coupling basically deals 
with transformation of variables between the two ref
erence systems, a nonrotating frame associated with 
the fuselage and a rotating frame associated with the 
rotor. This topic will be dealt with more explicitly 
in the analytical treatment that is presented below. 
In general, the rotor frame experiences large rota
tion motion, while the fuselage frame may or may 
not experience large rotation, depending on whether 
a steady state or a maneuvering flight condition ex
ists. Other aspects of rotor-body· coupling involve 
multiple rotor- fuselage coupling, rotor-to-rotor cou
pling, and the distinctions between coupling of rotor
fuselage pitch and roll moments and coupling of the 
rotor-fuselage shaft torque moment. In general, mul
tiple rotor-fuselage coupling is similar to coupling of 
a single rotor. Rotor-to-rotor coupling and coupling 
of the rotor-fuselage shaft torque moment will be ad
dressed further under the discussion of the rotor-drive 
train coupling. 

6. Rotor-Drive Train Coupling. Coupling of the 
rotor(s) and drive train can be considered as part of 
the general subject of rotor-body coupling. A typical 
rotorcraft will generally consist of a fuselage and two 
rotor systems. The rotors are connected via a drive 
shaft system and are also connected to the propulsion 
system that provides drive torque to overcome blade 
aerodynamic drag. There are two questions of inter
est: 1) relating the rotorshaft spin degree-of-freedom 
to the fuselage degrees-of-'freedom and 2) modeling 
the internal degrees-of-fredom of the rotor-drive train 
system. This discussion may be aided by consider
ing a simple example. In the first case, a rigid rotor 
fixed to a rigid shaft is coupled to rigid fuselage in 
such a way that the rotor shaft spins freely in the 
fuselage. In this case the six rigid body degrees-of
freedom of each subsystem reduce to a total of seven 
for the coupled system. The seven consist of the six 

rigid body fuselage degrees-of-freedom and the rotor
shaft spin degree-of-freedom. The other five rotor 
degrees-of-freedom are constrained out by coupling 
with the fuselage. This example essentially represents 
the autorotation flight condition. Addition of a sec-

. ond rotor, engine, transmission, and a flexible drive 
shaft produces a complete drive train dynamic system 
that will include internal torsional elastic degrees-of
freedom. The rotor-drive train will retain the sev
enth rigid body shaft degree-of-freedom of the cou
pled rotor-body system until further constraint is ap
plied to the system. This constraint is the interface 
shaft torque between the rotor-drive train and fuse
lage. In realistic rotorcraft systems, this constraint 
is provided by the engine RPM governor control sys
tem. The consequences for rotorcraft dynamics anal
ysis is that under some conditions the rotor shaft 
spin degree-of-freedom may be analogous to a sev
enth rigid body vehicle degree-of-freedom and under 
other conditions it may be analogous to an internal 
elastic degree of freedom. These conditions will de
termine whether the rotor frame motion is large or 
small. 

7. Swashplate. The swashplate transfers flight con
trol actuator motions from the fuselage in the fixed 
system - collective, lateral cyclic, and longitudinal 
cyclic pitch - to rotor blade feather motion in the 
rotating system. The swashplate also mechanically 
transforms cyclic pitch into individual blade pitch 
motions. It generally comprises structural members 
that rotate with respect to each other and connect to 
both the fixed system flight control actuators and the 
blade pitch control push rods. In its simplest sense, 
it may be represented by simple kinematic equations 
relating fixed system rotor-pitch variables to rotat
ing system blade pitch variables. A more elaborate 
representation could model the mass and stiffness 
properties of the swashplate components, including 
azimuthal variations in stiffness. An accurate rep
resentation of the swashplate must also account for 
the reaction forces transmitted by actuator links and 
pushrods between the fixed and rotating systems. 

8. Lag Dampers. Articulated rotors and many 
hingeless and bearingless rotor systems incorporate 
mechanical dampers, both hydraulic and elastomeric, 
to provide blade lag damping in the rotor system. 
These dampers are strongly nonlinear, especially the 
hydraulic type. Generally this is not an issue from the 
point of view of structural dynamics analysis; such 
components must be modeled empirically or repre
sented as a force element having numerically defined 
properties, and the issue becomes one of most effi
ciently treating such a representation in the numeri
cal solution process. 

It should be noted that not all of the analytical re-
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quirements for modeling these rotorcraft components 
are addressed in the material that follows. However, 
the above discussion is intended to survey sources of 
dynamics analysis issues in a broad sense and provide 
perspective for the material that follows. 

3. Small Deformation Analyses for Elastic 

Rotorcraft 

This section develops the equations for several 
generic dynamic analyses that are useful for rotor
craft dynamics. The analyses are developed in pro
gressive fashion by using increasingly general kine
matic assumptions to development sets of governing 
equations. The progression culminates in the most 
general problem of a rotorcraft experiencing small 
elastic deformations and arbitrarily large rigid body 
motions. The analytical derivations do not include 
all steps; they are meant to illustrate the basic ap
proach and relevant dynamics issues. The progres
sive development yields specific equations suitable for 
the range of rotorcraft analysis types described ear
lier, and clearly reveals the applicability of finite ele
ment analysis and multibody dynamics in the various 
stages of rotorcraft analysis. 

3.1 Small Motions Relative to an Inertial 

Frame 

This section treats the dynamics of an elastic body 
undergoing small deformations relative to an inertial 
frame. Kinematically speaking, these are the simplest 
problems, and they can be analyzed using the well
known, general purpose finite element codes for solid 
mechanics applications. For the purposes of this dis
cussion, "small deformations" include the possibility 
of moderately large deformations of rotor blades. In 
the finite element method, the body being. analyzed 
is subdivided into subregions called elements that are 
connected at points called nodes. The displacement 
within an element interior is interpolated from nodal 
displacements in a manner that depends on the struc
tural behavior modeled by the element (e.g., beam, 
plate, shell, etc.). Thus, the displacement of a generic 
point in the body may be expressed as: 

u = u, +u.., 
u, = [N(ro)]{q} 

Unz = u..z(ro, {q}) 

(1) 

where u denotes the displacement of a generic point 
whose position within the undeformed structure is r 0 , 

uz and Unz denote the linear and nonlinear contribu
tions to the displacement, {q} is a vector of nodal 

degrees-of-freedom, and [N(ro)] is a matrix of inter
polation functions. Introducing equation (1) into the 
principle of virtual work, leads to the following set of 
equations (Ref. [9]) 

[M]{q} + [C]{q} + [K]{q} = {Feo:t} + {Fn1} (2) 

where [M], [C], and [K] are the familiar mass, damp
ing and stiffness matrices with: 

(M] = Iv p[Nf [N]dV 

[K] = fv[Bzf [D][Bz]dV 

where [Bz] represents the linear part of the strain
displacement equations applied to [N], (D] represents 
the stress-strain constitutive relations, which are as
sumed linear, and {Feo:t} are the consistent nodal 
loads contributed by external forces, including aero
dynamic and gravitational forces. The damping ma
trix, [CJ, contains only structural effects, and is usu
ally determined empirically. The {Fnz} loads arise 
from the Unz term in equation (1), and represents geo
metric stiffness. In rotorcraft applications, geometric 
stiffness is mostly significant in rotor blade behavior, 
and is responsible for phenomena such as bending
torsion coupling and centrifugal stiffening. In all the 
equations presented herein, geometric nonlinearities 
will be retained on the right-hand side, but it is of
ten necessary to put geometric nonlinearities on the 
left-hand side when solving these equations, in order 
to obtain stable and robust solution algorithms. 

The degrees-of-freedom correspond to the motion 
of node points. In what follows, it is assumed that 
the degrees-of-freedom in the vector {q} a.re arranged 
according to node; i.e., 

where n is the number of nodes and {qi} a.re the 
degrees-of-freedom for node i. It is further assumed 
that the degrees-of-freedom for each node a.re ar
ranged as follows: 

where the u's are the displacement degrees-of
freedom, and the 8's are the rotation degrees-of
freedom. For simplicity, it is assumed that all nodal 
quantities within a given body are referred to the 
same coordinate system. 

A small motion, deformable body analysis may be 
used for detailed stress analysis; typically the dy
namic terms ([M]{q} + [C]{q}) are determined from 
a separate analysis of a. relatively ·coarse structural 
model, and then placed on the right-hand side of 

91 - 10.5 



equation (2). The most common applications of this 
analysis to rotorcra.ft dynamics a.re fuselage vibra
tion response, a.nd eigenmode analysis. If a struc
trual component is -linear, that component may be 
represented in an analysis by a reduced set of eigen
modes, but it is well-known that representing a non
linear component. (e.g., a rotor blade) with a reduced 
set of linear eigenmodes can lead to serious euors. 
A linear eigenmode analysis can also provide essen
tial data for the design of rotorcraft components; for 
example, it may be necessary to know if the natural 
frequencies of a component lie within certain bounds 
in order to satisfy vibration control requirements. 

. 3.2 Small Motions Relative to a Prescribed 

Moving Frame 

The analysis just considered is applicable only if 
the body undergoes small motions in a.n inertial 
frame. The deformations of a. helicopter rotor blade 
a.re small only withn a. rota.ting frame, which is non
inertial, a.nd the effects of frame rotation on dynamic 
response of the blade are profound and must consid
ered in a. dynamic analysis. This section expands the 
scope of the previous section to motions of bodies rel
ative to frames undergoing prescribed motion. This 
analysis, although not sufficient for a. completely gen
eral rotorcra.ft analysis, has ma.ny important a.pplica.
tions a.nd represents the type of analysis performed 
by most rotorcra.ft codes. 

3.2.1 Isolated Bodies 

The development here considers the general case 
where frames have translational motion and nonzero 
a.ngula.r acceleration. This type of analysis is most 
commonly applied to fixed hub rotor blade response, 
in which case the prescribed frame motion is the con
stant speed angular rotation of the rotor frame. 

A finite element formulation of this analysis will 
now be presented. Refeuing to Figure 2, the mo
tion of a generic point on a deformable body ma.y be 
represented as: 

R= Ro+ro+u (5) 

where Ro is the position vector from the origin of 
the inertial frame to the moving frame's origin. The 
terms ro, u, and {q} ha.ve the sa.me meanings as in 
equation (1), but all these quantities a.re relative to 
the moving frame. The motion of the frame is char
acterized by its a.ngula.r velocity (w), a.nd its trans
lational velocity (Vo), both of which a.re prescribed. 
A kinematic issue tha.t must be resolved is how the 
actual body is constrained to move relative to the 

prescribed frame sect1on. It will become a.ppa.rent 
tha.t how this is done depends in pa.rt on the a.pplica• 
tion. Since the principal application of this a.nl!lrsis 
is to fixed hub response, it is assumed that the fra.the 
is rigidly attached to the body, but, this assumption 
is riot a.ppropria.te "for other analyses involving pre
scribed frame motion. 

Utilizing equation (5) in the principle of virtual 
work leads to the following equations of motion 
(Refs. [11], [13]): 

where: 

[C'] 

[K'] 

{F} 

[P] 

[H] 

[M]{q} + [C']{ci} + [K']{q} = {F} (6) 

= [C] + 2 i p[Nf [w][N]dV 

= [C] + [C1] (7) 

= [K] + [ [Nf ([w][w] + [di])[N]dV 

[K] + [K1] (8) 

= {Fn1} + {Fezt}
-[P][w]{Vo}- [H]{w}-

-<[ p[M]T[w][w]dV){ro} -

-[P]{V0 } (9) 

= i p[N]T dV (10) 

= - [ p[N]T[ro]dV (11) 

a.nd{w} = {w1,w2,wsF a.nd{Vo} = {Vo1, Vo2, Vos}T 
denote the components of the angular and tra.nsla.
tional velocities of the frame. A tilde over a vector 
signifies a. skew-symmetric matrix containing the vec
tor components; e.g. 

-wa 
0 (12) 

As before, {Fn1} contains geometric stiffness effects, 
. but as will be seen shortly, the presence of nonlinear 
· constraints ca.n contribute terms to {Fn1}. 

It ma.y be seen tha.t equation (6) differs from equa
tion (5) by inertial contributions to the damping 
and stiffness matrices ([C1] a.nd [K1]), and by fra.me
induced contributions to the forcing functions on the 
right-hand side of the equation. [C1] represents Cori
olis a.ccelera.tion; it is antisymmetric a.nd therefore 
does not result in a.ny energy dissipation. [K1] con
tains a. symmetric pa.rt, which comes from centripetal 
acceleration, and a.n antisymmetric pa.rt, which comes 
from angular acceleration. If the aerodynamic forces 
are included in the analysis, then the nonlinearities in 
these forces in {q} and {ci} will also appear in {Fn1}. 
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In view of the structure of [C1] and [K1], and it 
would appear that equation (6) is of the same gen
eral form as equation (2), and that equation (6) may 
therefore be assembled and solved using the same, 
well-known techniques employed in the small defor
mation finite element codes. This is largely the c_a:5e, 
and this fact underlies the design philosophy for the 
first level release of 2GCHAS. However, the geomet
ric nonlinearities that are important in rotor blade 
response require special handling, which will now_ be 
explained. 

Geometrically nonlinear phenomena that are cru
cial in the rotor blade response include stiffening ef
fects of centrifugal forces, the effects of blade fore
shortening on Coriolis forces, and coupled bending
torsion effects. It is well known (Ref. [4]) that in order 
to account for these phenomena, the analysis of ro
tor blade beam kinematics must assume that elastic 
rotations are finite and at least "moderately large." 
The need to treat finite rotations for rotor blades sig
nificantly impacts the assembly process as well as the 
formulation of rotor blade finite elements. Finite ro
tations are not vector quantities, and this often leads 
to nonlinear constraints, as opposed to the linear con
straints that are assumed by most assembly proces
sors. For example, when rigidly joining nodes that 
are parameterized with different orientations angles, 
as when joining rotor blades at skew angles, it is im
possible to select a single set of parameters to which 
one can linearly relate the orientation angles of each 
element. The simplest solution to this problem is 
to use alternative rotational degrees-of-freedom, such 
as incremental rotations, that simplify the transfor
mation process, but if the orientation angles are re
tained, the assembly process must account for the 
nonlinear relationship between the element degrees
of-freedom at the skewed joint. Nonlinear constraints 
also arise when coupling blade segments at an ar
ticulated joint, and when coupling blade feathering 
rotations to pitch link motions, but in both these in
stances, the nonlinearity cannot be removed by an al
ternative parameterization of the rotational degrees
of-freedom. An assembly method has been proposed 
(Ref. [12)) for a limited class of nonlinear constraints 
that uses the nonlinear transformation to eliminate 
redundant degrees-of-freedom; while this method is 
conceptually straightforward, the elimination process 
is involved, and the resulting equations are quite com
plicated. An alternative is to couple the element ro
tations using Lagrange multipliers (Ref. [21)) which 
leads to simpler equations at the expense of addi
tional degrees-of-freedom. Note that both of the 
latter assembly processes will contribute additional 
terms to {F,.z} in equation (6) because the constraint 
is nonlinear. 

The foregoing discussion assumes that the elastic 
rotations of the rotor blade are relative to the mov
ing frame, and that these rotations must therefore 
include the effects of blade articulation due to the 
presence of a hinge or pitch bearing. If articulation 
occurs, an alternative analysis procedure is to treat 
the articulation as a frame motion and to assume 
that elastic displacements of the blade are relative to 
the articulated frame. A difficulty of this procedure 
is that the articulated frame motions are unknown, 
and solving for these unknowns requires significant 
enhancements to the assembly and solution processes. 
Solving for unknown frame motions is a problem that 
arises in more general rotorcraft analyses, and will be 
discussed in more detail later. 

3.2.2 Coupled Bodies 

In order to consider a complete rotorcraft model, 
the previous analysis must be expanded to consider 
multiple bodies, with each body moving in its own 
prescribed frame. The problem of dynamic response 
of a coupled rotor-fuselage· system of a rotorcraft 
in trimmed steady state flight is the most common 
example of coupled body analysis under prescribed 
frame motion. The identification of the "bodies" is 
problem dependent, but in rotorcraft applications, 
the bodies are most often the fuselage and the ro
tors, and a frame with prescribed motion is assigned 
to each body. A discussion of linear rotor-fuselage 
coupling is given in Ref. [14). 

Conceptually, this analysis can be separated into 
two tasks: first, the equations of the separate· bodies 
are formulated, and then the separate sets of equa
tions are coupled to reflect the joining of the bodies. 
Both these tasks will now be discussed. 

The equations of each body may be formulated us
ing equation (6), but as mentioned earlier, a ques
tion that must first be resolved is how bodies are 
coupled to their respective frames. In the context· 
of the analysis assumptions,. the fuselage frame mo
tion is the flight path of the rotorcraft, and the rotor 
frame motion translates with the fuselage frame and 
rotates relative to it in some prescribed fashion. The 
combined rotor and fuselage frames can therefore be 
thought of as a fictitious rigid rotorcraft that is used 
for formulating the dynamic response analysis of the 
vehicle. Observe that the frames are really fictitious 
rigid bodies that are assumed to define, to within an 
elastic perturbation, the motion of the flexible body. 
The exact motion of any point on a body, however, 
cannot be prescribed because it is an unknown that 
must be solved for. Inasmuch as the frame motions 
are entirely prescribed, the bodies· must not be con
strained relative to their frames if the rotorcraft re-
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sponse problem is to be properly posed. 
The equations of the separate bodies must be 

solved subject to the constraint that the responses 
of the bodies are the same at the point where the 
bodies are joined. The imposition of this constraint 
on the equations of motion is the well-known "rotor
body coupling problem." The two most commonly 
used rotor-body coupling methods will now be briefly 
discussed. In the analysis that follows, it is assumed 
for simplicity that the vehicle consists only of one 
rotor and a fuselage. 

The "fully coupled" method for rotor-body cou
pling involves eliminating redundant degrees-of
freedom so that the rotor and fuselage equations are 
combined into one unified set. Recalling the earlier 
discussion of rotor blade kinematics, rotations of the 
rotor blade relative to its frame must usually be re
garded as finite, but the rotations at the hub rela
tive to the rotating frame are small enough to justify 
their being treated using the small angle approxima
tion. As a consequence, rotor-body coupling may be 
accomplished with a linear transformation. Formally, 
the process proceeds as follows. First, partition the 
rotor and fuselage degrees-of-freedom according to: 

{q,.} = {q,.h,q,.,.}T 

= { {qrh}T 1 {q1}T 1 {q2}T 1 • • .} 

= { Urhl, Urh2, Urh8, Orh1 1 8rh2 1 8rh81 • • .} 
{q,} = {qJh,qJJ }T 

= { {qJh}T 1 {q1}T 1 {q2}T 1 • • .} 

= {u1h1,Ufh2,ufhs,OJh1,01h2,81hs, .•. } 

where the subscripts rh and fh, respectively may be 
interpreted as identifiers of nodes on the rotor and 
fuselage where the bodies are joined. The subscripts 
rr and ff refer, respectively, to nodes on rotor and 
fuselage that are not at the attachment points. Spe
cializing equation (6) to the rotor and fuselage bodies 
and collecting the equations leads to: 

[M]{i} + [C']{<I} + [K]{q} = {F} (13} 

where: 

[M] [~' ;,.] 
[C'] = [CJ i;] 
[K] = [ K1 0 ] 

0 K; 

{F} = {i} 
{q} = { :~} 

Note that equation (13) applies to bodies that have 
been aggregated, but not yet coupled. 

Figure 3 shows the geometry of the undeformed 
and deformed locations of the fuselage and rotor in 

-their respective frames. It is assumed that the co
ordinate systems are oriented so that the 3-axes of 
the fuselage and rotor frames are parallel to the spin 
axis, which means that vector components parallel 
to these axes are the same in both coordinate sys
tems. Vector components along the 1 and 2 axes in 
the different frames are related by a simple rigid body 
rotation, and therefore: 

{q,.h} = [ Tt T~,.] {qth} 

= [Th]{qJh} (14) 

where: 

[ 

cos '11 sin '11 0~ l 
[Ttr] = - sin '11 cos '11 

0 0 
(15) 

where: 

'11 = '11(t) (16)_ 

is the rotor azimuth angle. In steady flight conditions, 
'11 = nt where O is the rotor rotational speed, but it 
will be assumed here that '1'(t) is a general function 
oft. 

Because of the constraint, there are redundant 
degrees-of-freedom, which must be eliminated. Let 
the retained system degrees-of-freedom be: 

(17) 

In view of equations (14} and (17), we have: 

{q,} [[~ 0 
~] {q,y,} = [I] 

- [T, I]{ q,y,} (18) 

{q,.} [ [~h] 0 
[~] {q,y,} = 0 

- [T,., ]{ q,y,} (19) 

or: 

{ :~} [Tt, ~'] {q,y,} 

[T,y,]{q,y,} (20) 

Substituting equation (20) into equation (()) and pre
multiplying by [T,y,]T yields: 

1M,y,]{q,y,} + [C, 11,]{q,y,} + [K]{q} = {F;11,} (21) 
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where: 

[M,y,] 

[C,y,] 

[K,y,] 
{F,y,} 

= 
= 
= 
= 

[T,y,f [.M][T,y,] 

[T,y,f (2[.M][T,y,] + [C'][T,y,]) 

[T,y,f ([M][T,y,] + [t'][T,y,] 
[T,y,f {.F} (22) 

Equation (21) contitutes the complete set of govern
ing equations for the rotorcraft. 

Since the transformations between the rotor and 
fuselage interface degrees-of-freedom are time depen
dent, the coefficient matrices of the governing equa
tions contain terms that are time varying, but if the 
frame motions are prescribed, the time varying terms 
are known explicitly, and conventional finite element 
techniques may be applied to assembing the coeffi
cient matrices and then solving the governing equa
tions. 

Another method for rotor-body coupling is the 
"force-balance" method, which treats the rotor
fuselage interface forces as auxiliary variables, and 
then solves separately for the rotor and fuselage mo
tions until the interface forces converge. If the rotor 
motions, fuselage motions, and the interface forces 
are solved for jointly, the force balance method can 
be thought of as an application of the classical La
grange multiplier method for enforcing constraints, 
and the Lagrange multipliers may be interpreted as 
interface forces. In what follows, the Lagrange multi
plier method is used to derive the force-balance equa
tions. 

Regarding the rotor and fuselage as unconstrained 
bodies, it follows from equation (6) that the virtual 
work of internal and external forces is: 

cSWuc = {cSq}([.M]{q}+[C']{q}+[.K]{q}-{.F}) (23) 

By virtue of the constraint relations ( equation (20)), 
the virtual displacements of the rotor and fuselage 
are related by: 

{6q}T [-[lJ'] '= {6q}T[A) = 0 (24) 

The presence of these constraints leads to constraint 
forces, and the virtual work of these forces must be 
considered in the system equations. It can be shown 
(see Ref. [21]) that the virtual work of the constraint 
forces is: 

(25) 

The principle of virtual work for the constrained sys
tem is then: 

bW = bWuc + cSWcf = 0 (26) 

where the virtual displacements can now be regarded 
as independent quantities. The complete system 
equations are obtained by appending the constraint 
equation to the virtual work equations, which gives: 

[! 
where: 

{q} = { ! } (28) 

It can be shown from equation (27) that -{,q are the 
forces exerted by the fuselage on the rotor degrees
of-freedom, while [T/r ]T {).} are the forces exerted by 
the rotor on the fuselage degrees-of-freedom. 

It is readily shown that elimination of the con
straint forces from equation (27) (Ref. [15]) leads to 
the fully coupled method. The force-balance method, 
with the Lagrange multipliers retained as variables, 
is advantageously used in certain solution algorithms 
for trim. 

3.3 Small Motions Relative to Arbitrarily 

Moving Frames 

The discussion thus far has assumed that the large 
rigid body motions of the rotorcraft are prescribed, 
but there are many applications where this is not the 
case; for example, it has already been mentioned that 
blade articulation may be analyzed by assigning a 
nonprescribed frame to the articulated blade. Arbi
trary frame motions are also needed in analyzing ro
torcraft phenomena such as large motion maneuver 
response to arbitrary pilot controls, and autorotation 
where large rotor speed changes occur. 

3.3.1 Isolated Bodies 

To illustrate the application of arbitrary frame mo
tion in rotorcraft analysis, it shall be assumed, as 
before, that the bodies are the fuselage and rotors. 
Since the frame motions are nonprescribed, they can 
absorb rigid body motion, and therefore constraints 
must be applied to relate the bodies and their frames. 
In what follows, it is assumed that the frame is rigidly 
attached to a point on the body. If the kinematics of 
each body is expressed using equation (5), then equa
tion (6) with the frame motions as unknowns, remains 
valid: 

[M*]{q*} + [C'*]{q*} + [K'*]{q*} + [H*]{w} + 
[P*]{V0} = {F;} (29) 

where: 
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-<[ p[N*f [w][w]dV){ro} (30) 

Starred quantities are obtained from unstarred quan
tities by zeroing rows and columns corresponding to 
degrees-of-freedom at the node where the frame is 
attached. This modification is necessary because the 
motion of a frame nodes is embodied entirely in the 
frame degrees-of-freedom, and the elastic deforma
tions at these nodes must therefore be zero. In or
der to compute the motions of the frames, additional 
equations are required, which are described next. 

The frame equations of motion may be obtained 
from the principle of virtual work by imparting vir
tual displacements to frame degrees-of-freedom. Suit
able virtual displacements are infinitesimal displace
ments along frame coordinate axes for the transla
tional degrees-of-freedom, and infinitesimal rotations 
about frame coordinate axes for the rotational de
grees of freedom .. Note that the equations obtained 
from these virtual displacements correspond to trans
lational a.nd rotational equilibrium equations for the 
entire body. The translational equilibrium equations 
are: 

[P*f {q*} + [G*f {w} + M{V} = {Fv} (31) 

in which M is the mass of the body and [L.,] is ihe 
inertia. matrix of the undeformed body. 

To aid in interpreting the frame equations J?hys
ically, consider what happens when the elastic de
formations a.re ignored. After converting to vector 
notation, the frame equations become: 

MVo + M('3 x Tea +w x (w x rca)) = Fu,t (40} 

L./J + Mrca x (Vo +w x Vo)= Mu,t (41) 
where rca is the position vector of the center of mass 
of the undeformed body. Equations ( 40) and ( 41) a.re 
recognized as the force and moment equilibrium equa
tions of a rigid body having the inertial attributes 
of the undeformed body. The terms that have been 
dropped in deriving these equations ma.y be thought 
of as the effects of elastic deformations on the at
tributes of the body when it is regarded as rigid. 

By defining the column matrices: 

{qc} = { n , {go}= { ~} (42) 

the equations of motion may be written in the com
pact form: 

[Ma]{fo} + [Ca]{4a} + [Ka]{qa} = {Fa} (43) 
where: where: 

[G*f = - [ p[(ro + [N*]{q})]dV (32Y 

{Fv} = {f;:t} - M[w]{Vo} -
-2[w][P*f {q*} -

-[w][w] [ p({r0} + [N*]{q*})dV{33) 

in which {f::tl is the resultant external translational 
force vector. and M is the mass of the body. The 
second set of frame equations may be obtained by 
considering moment equilibrium of the entire body: 

[H*f {q} + [I..,]{w} + [G*]{Vo} = {M..,} (34} 

where: 

{M..,} = {Me:t} - [G][w]{Vo} -
-{MeOt'} - {Meent} (35) 

[I..,] = -Iv pffo]2dV (36) 

[H*f = [ p[ro][N*]dV (37) 

{Me°"} = 2([ p[r][w]dV){q*} (38) 

{Meent} = [ p[ro + [N*]{q*}][w]2({ro} 

+[N*]{q*} )dV (39) 

[ M' 
P* n•] [Ma] = p•T MI G* {44) 

H*T G*T I.., 

n· 0 ~] [Ca] = 0 (45} 
0 

[~' 0 ~] [Ka] = 0 (46) 
0 0 

r·} {Fa} = F// (47) 
M* 

"' 
Equation ( 43) is the complete set of equations for a 

single body. This equation is partially formulated us
ing intrinsic coordinates (i.e., the frame translational 
and angular velocities), which lead to relatively sim
ple equations, but do not describe the how the frames 
are positioned or oriented in space. Positional and 
oi:ientational data. is necessary not only to determine 
the vehicle's location, but to compute orientation de
pendent external loads such as gravity. Consequently, 
it is necessary to augment the equations of motion 
with additional equations that relate the intrinsic co
ordinates of the frames to their Lagrangian coordi
nates. Reference (20] gives a discussion of systems of 
Lagrangian coordinates and how they may be related 
to intrinsic coordinates. 
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3.3.2 · Coupled Bodies 

Figure 4 illustrates the geometry of the coupled 
bodies. The figure shows the coupled system unde
formed at ·time t0 , then at a later time t when both 
frames have undergone rigid body rotations, W~f;re 
the deformed system is shown in comparison with 
the undeformed system. In contrast to the case of 
prescribed frame motions, the frames are attached to 

· their bodies, and are able to move relative to each 
other. It is assumed that the 3-axes of the rotor 
and fuselage frame are initially aligned along the ro
tor spin axis, and that the rotation of the rotor disk 
plane relative to the fuselage frame is small. Before 
proceeding, it is first necessary to clearly identify the 
states of the bodies. For the fuselage, the states may 
be partitioned analogously to the case of prescribed 
frame motion: 

(48) 

For the rotor, it shall prove convenient to assume 
that its frame is attached to the rotor-fuselage inter
face node. Since there is no elastic deformation at 
the frame node, there can be no degrees-of-freedom 
{qrh}• Consequently, the rotor states are partitioned 
as follows: 

{ 
qrr} 

{qar} = ~ {49) 

Lagrange multipliers are used to couple the bodies. 
The process of coupling the bodies largely parallels 
what was done earlier in the case of prescribed frames. 
The first step in the coupling process is collecting 
the uncoupled equations and expressing them in the 
form: 

(50) 

where: 

[Ma] = [M:t 
:aJ 

[Ca] = [cg, 
c:J 

[Ka] = [ Kg, K:J 
{Fa} = {Fat} 

Far 

{qa} = { qaJ} 
qar 

The virtual work of the unconstrained system 1s 
therefore: 

6Wue = {6qa}T([M]{~} + [C){q} + [.K){q}- {.F}) 
(51) 

where: 

{6q} = { b<JaJ } (52) 
6qar 

where the 6ri and the 6,pi are virtual displacements 
and rotations in the directions of the frame coordi
nate axes. 

The next step is to develop constraint relations for 
the coupled bodies. Two cases will be considered. 
In the first case, the rotor azimuth angle rotates in a 
prescribed manner relative to the fuselage, and in the 
second case, there is no kinematic constraint on the 
azimuth angle. Note that the second case includes 
the possibility that there is an azimuth-dependent 
torque acting between the rotor shaft and the fuse
lage. When the rotor rotation is prescribed, it can 
be shown that the translational and angular veloci
ties of the coupled bodies are related by the following 
equations: 

= ( { 
iL1h1 } { v,1 } ) [Tt] ~Jh2 + V12 (54) 
1Ljh3 v,s 

= ( { 
8Jh1 } { Wjt } ) [Tt] ~Jh2 + w12 (55) 
8Jha· WJs 

where: 

[T_fr] = [TJr ]([I] - [B Jh]) (56) 

It immediately follows from equations (54) and (55) 
that the virtual displacements of the two bodies are 
related by: 

(57) 

{ !t~ } = [TtJ ( { !:~~~ } + { !t~ } ) (58) 
b,Pra 68Jh3 b,PJS 

Equations (57) and (58) may be expressed in matrix 
form as: 

6qjh 
6qJJ 

[A#] 
6R1 
b,PJ =0 (59) 
6qrr 
6Rr 
b,Pr 
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where: 
[TtY 0 

0 [TtY 
[TtY 0 

[A#f = 0 [Tf,.]T (60) 

0 0 
-[I] 0 

0 -[I] 

The constraints give rise to constraint forces, whose 
virtual work is: 

(61) 

where {A} is a vector of Lagrange multipliers The to
tal virtual work is the sum of the virtual work of the 
uncoupled bodies and the virtual work of the con
straint forces. Since the virtual displacements are 
arbitrary, the equations of motion of the constrained 
system are obtained by setting the coefficients of the 
virtual displacements to zero. The complete system 
.equations are obtained by appending the constraint 
equations to the equilibrium equations, which gives: 

[~G ~]{qG}+[~i ~]{~G}+ 
[ ~G A:T] {ga} = { ~G} (62) 

where: 

(63) 

For the case of variable rotor speed, equations (53) 
and (56) also apply to the translational constraints, 
but the rotational constraints must be modified to 
reflect the fact that the rotor angular velocity par
allel to the spin axis frame is not constrained to the 
fuselage. This effectively reduces the number ofrota
tional constraints from three to two. The constraint 
on rotational motion is then: 

where 

[ # ] [ cos 'IP' sin 'IP' o] [ 8 T/r,p = - sin 'IP' cos 'IP' 0 ( I] - [ /h.]) (65) 

The azimuth angle ('IP') is a variable, and is related to 
the system degrees-of-freedom by: 

,ii- = Wra - [81h2(01h1 + "'11) - e,h1(WJh,2 + w12)] 

-w1a - IJ/h.8 (66) 

The complete system equations have the same form 
as equation (62), but [A#] must be replaced by: 

[T,~]T 0 

0 [Ttv,f 

[A!f = 
[T,~]T 0 

0 [Tt.,Y 
(67) 

0 0 
-[I] 0 

0 -[lv,]T 

where: 

[Iv,] = [ ~ 0 ~] -1 
(68) 

Equation (62) is the complete set of equations for 
analyzing the large motion dynamics of elastic bod
ies, but these equations are fundamentally different 
from the ones presented earlier for other classes of 
rotorcraft analyses. The key difference is the pres
ence of frame motion variables, which are not field 
variables; they apply across an entire body, which 
means that their "assembly process" is fundamen
tally different from that of the elastic deformation 
variables. Large motion analysis is further compli
cated by the fact that the frame motions and elastic 
deformations are coupled nonlinearly in the governing 
equations. Clearly, the treatment oflarge motion dy
namics problems, such as those involving rotorcraft, 
requires analysis methods that go well beyond tra
ditional small motion finite element methods. The 
equations developed here could serve as the basis for 
analyzing large motion rotorcraft dynamics problems, 
but their main purpose ha.s been to delineate tech
nical issues, and they may not be computationally 
efficient. Dynamics of bodies undergoing large mo
tion falls within the domain of multibody dynamics, 
and we must look to that discipline in order to de
velop definitive methods of comprehensive rotorcraft 
analysis. 

4. Methods of Multibody Dynamics 

The relatively new field of multibody dynamics is 
the study of the dynamic response of mechanical sys
tems undergoing arbitrarily large motions; until re
cently, most treatises on analytical dynamics ( e.g., 
Refs. [21], [22]) were concerned, with general princi
ples and methologies and were not concerned with 
applying these methods to the_ analysis of complex, 
dynamical systems. By the 1960's, the advent of in
creasingly sophisticated flight vehicles and mechani
cal systems, coupled with the need for more refined 
analyses of these systems stimulated research into im
J?roved methods of dynamic analysis. Early work 
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considered only systems of rigid bodies, but subse
quently, rigid body analyses were augmented with fi
nite element methods for analyzing deformable bod
ies in order to permit the analysis of multibody dy
namics of flexible bodies. 

This section contains a brief review of the multi
body dynamics literature. For brevity, it is largely 
a qualitative discussion of formulation and solution 
methods. 

4,1 Systems of Rigid Bodies 

Formulating the dynamical equations of a mechani
cal system-whether it contains rigid or flexible bodies
can be thought of as a two step process: first, the 
equations of motion of each component must be for
mulated, and then the equations of motion of the 
separate components must be combined into a set of 
equations representing the complete system. When 
a mechanical system consists only of rigid bodies, 
the equations of each component are the well-known 
Newton-Euler equations (Refs. [21], (22]) so the real 
task is assembling the complete set of equations. In 
general, the methods for assembling the system equa
tions fall into two categories: the first category as
sumes the system configuration conforms to some 
generic model, while the second category assumes the 
system configuration is completely general .. Methods 
in both these categories will now be discussed, start
ing with the category of generic models. 

Initially, investigators in multibody dynamics fo
cused on the analysis of hinge connected systems of 
rigid bodies having a tree topology (i.e, no closed 
loops), because this configuration is relatively easy 
to analyze, and corresponds to many actual flight ve
hicles and mechanical systems. A key development 
in this area was the work of Hooker and Margulies 
(Ref. [23]), who derived the dynamical equations of 
the system in terms of constraint torques and exter
nally applied forces by applying the Newton-Euler 
equations to judiciously selected subassemblies. The 

. constraint torques were then eliminated with an ad
ditional equation expressing the condition that the 
torques must be orthogonal to the hinge rotations. 

Huston and Passerello (Refs. (24], [25]) employed 
Kane's equations of motion (Rei. [17]) to analyze dy
namical systems with tree topology. The equations 
were applied to the same subassemblies considered 
by Hooker and Margulies, but consideration of con
straint torques was avoided altogether by the use of 
relative hinge rotation rates as generalized speeds. 
The avoidance of extraneous constraint forces, cou
pled with an efficient, recursive method for comput
ing angular velocities results in an extremely efficient 
formulation. 

Many mechanical systems encountered in practice 
are not tree topologies, but contain closed loops. 
A way to analyze such systems, which exploits the 
hightly efficient methods for solving multibody net
works with tree topologies, is to .represent a closed. 
loop system as a tree system and append addi
tional constraints that enforce loop closure. The 
equations of the full dynamical system are then the 
open tree dynamical equations plus the loop clo
sure constraint equations. Several methods have 
been proposed for solving the combined system equa
tions. One method adjoins the constraint equations 
to the dynamical equations using La.grange multipli
ers (Ref. [19]), while another solution method reduces 
the dynamical equations using a transformation ob
tained from a singular value decomposition of the 
constraint equations (Ref. [26]). A study compar
ing these solution methods (Ref. [27]) has shown that 
their relative efficiencies are highly problem depen
dent. 

The second category of multibody dynamics anal
ysis completely foregoes consideration of tree topolo
gies, or any other generic configuration, and is based 
on directly formula.ting the equations of motion of 
systems of arbitrary configuration. An early example 
of this approach is the mechanical simulation pro
gram ADAMS (Automatic Dynamic Analysis of Me
chanical Systems), which developed from the work of 
Orlandea (Refs. [28], [29]) Since there is no generic 
model to work from, ADAMS must formulate the 
dynamical equations of each rigid body in terms of 
its absolute translational and rotational coordinates, 
rather than make use of relative coordinates as in 
the methods based on tree topologies. The equations 
of each rigid body are formulated using Lagrange's 
equations instead of Euler's equations, and use gen
eralized momenta. as auxiliary variables. A library of 
mechanical joints embodying a wide variety of body 
interconnections gives the user considerable flexibil
ity in modeling. Constraint equations representing 
the interconnections are adjoined to the system equa
tions using Lagrange multipliers. The equations as
sembled by ADAMS are far from a minimal equation 
set, but the equations are quite sparse and ADAMS 
is specially designed to exploit that sparseness. 

A very different approach to self-formulating me
chanical simulation software is the code SD-EXACT 
(Ref. [30]). This code, which is bl).sed on Kane's 
equations of motion, employs sy~bolic manipulation 
techniques to formulate the dynamical equations of 
user specified mechanical systems. The equations 
produced are more complex than those generated by 
ADAMS, but constitute a minimal solution set. 
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4.2 Systems of Flexible Bodies 

If the bodies comprising a. system a.re quite stiff, it 
suffices to model the system as a. collection of rigid 
bodies, in which case the methods just described will 
give a. complete view of system dynamic response. In 
the case of rotorcra.ft, the bodies a.re flexible and the 
motion of these bodies involves substantial coupling 
between elastic and rigid body response. 

Two methods have been proposed for a.nalyzing the 
multibody dynamics of flexible bodies and their dif
ferences a.re based on how they handle kinematics. 
The first method was developed by Likins (Refs. [13], 
[18]) and is embodied in equations (1) - (12) given 
above. As noted earlier, this method treats the mo
tion of ea.eh flexible body as the superposition of a. 
large rigid body motion of a. frame attached to the 
body and some sma.11 elastic deformation of the body 
relative to the frame. Partitioning the response in 
this manner a.llows the extensive technology that has 
been developed for small motion finite element anal
ysis to be fully exploited, but as noted earlier, this 
method can greatly complicate the process of assem
bing system equations. 

Since equations (1) - (12) are valid only for a sin
gle body, some way must be found to couple these 
equations in order to permit the analysis of multiple 
bodies. The methods that have been devised for this 
process para.llel the methods given previously for mul
tiple rigid bodies. The method of Huston and Passer
rello for systems with tree topologies was extended to 
systems with flexible bodies by Singh, VanderVoort, 
and Likins (Ref. [31]). This formulation is t·he basis 
for the multibody dynamics codes DISCOS, TREE
TOPS, and CONTOPS (Ref. [321), which have been 
used for a.nalyzing spacecraft dynamics. 

A general purpose code for analyzing flexible bod
ies is DADS (Refs. [33], [34], (35]) DADS may be re
garded as an extension of the ADAMS methodology 
to flexible bodies. Like ADAMS, it employs abso
lute coordinates for the large motion frame variables, 
and enforces body coupling using Lagrange multipli
ers. A somewhat different approach to flexible body 
analysis is embodied in the code LATDYN (Ref. [36]) 
which is primarily intended for deployment analysis 
of large, flexible space structures. LATDYN uses a. 
co-rotational approach which uses the nodal displace
ments of ea.eh element to define the large motion 
frame for that element. Ea.eh element is therefore 
a. "body" and standard finite element connectivity is 
used to enforce coupling. If additional constraints a.re 
needed, the constraint equations a.re used to eliminate 
redundant degrees of freedom. 

It must be emphasized that the multibody dynam
ics codes mentioned above generally assume the flex
ible bodies a.re linearly elastic, and they do not have 

elements that can model large elastic deformations. 
The reason for this is that these codes were formu
lated for application in the mechanical design and 
aerospace industries, and geometric stiffness effects 
a.re typically ignored in these applications. For ex
ample, in mechanical design applications, mechanical 
components can spin at high speeds, but the compo
nents are usually too stiff for the spin to induce ge
ometric stiffening; in spacecraft applications, highly 
flexible components are present but spin rates are too 
small to induce geometric stiffening. Although most 
current multibody dynamics codes cannot accomo
date large elastic deformations at the element level, 
some of these codes can model geometric stiffness ef
fects; for example, Wu and Haug (Ref. [37]) have 
demonstrated that geometric stiffness can be modeled 
in DADS by linking flexible bodies with large motion 
mechanical joints. It is not clear if this would be an 
efficient alternative to large deformation elements for 
analyzing geometric stiffness effects in rotor blades. 

Recently, a new class of methods for multibody dy
namics, known as "recursive methods" (Refs. [38], 
[391), has been developed that offers dramatic im
provements in computational efficiency over most 
previous methods and is well suited for para.llel pro
cessing applications. The method is based on me
chanical systems with tree topology, but closed loop 
systems can be handled by use of appropriate con
straint equations. Suppose the equations of motion 
of a multibody system are represented in the form: 

[M]{q} = {F} (69) 

where [M] is the system mass matrix. Recursive 
methods use recursion to form {q} = [M]-1 {F}. 
Recursion eliminates the need to manipulate large, 
full matrices, which is a prime contributor to the 
high computational cost of many multibody dynam
ics codes. 

As noted earlier, the primary reason conventional 
finite element software cannot analyze multibody dy
namics is that most finite elements are not designed 
to accomodate finite rotations. Recently, geomet
rica.lly exact finite elements have been developed 
(Refs. [5], [6], [7], [8]) that are valid for arbitrarily 
large rotations. Although some of these elements are 
too computationally expensive to be used in practical 
simulation software, research is underway to develop 
more efficient elements, and this approach could lead 
to the unification of finite element analysis and multi
body dynamics into a. single discipline. 

An important contribution to flexible body dy
namics from the rotorcraft community is the code 
GRASP (Refs. [42],[43]). GRASP is limited in scope 
to the stability analysis of a hovering rotorcraft, but 
to achieve that end, it employs a computational for-
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mulation that combines geometrically exact finite ele
ments with a novel approach to solving for the hover 
condition. Unlike virtually all other methodologies 
previously mentioned here, GRASP uses an implicit 
solution formulation, which means that explicit equa
tions of motion for the system are never formed. _'I'.he 
hover state is calculated by using an iterative solution 
process to force to zero the generalized forces of all 
system degrees-of-freedom, which can include frame 
degrees-of-freedom, and element degrees-of-freedom 
that are defined within the frames. Generalized forces 
corresponding to element elastic deformations are as
sembled using an element-by-element approach. The 
analysis of frame generalized forces is facilitated by 
grouping elements in hierarchically organized sub
structures within which frame motions are defined. 
Starting with the root substructure, frame virtual 
displacements are propagated down through the sub
structure hierarchy, and frame generalized forces are 
assembled by traversing the hierarchy in the reverse 
direction. Once the hover solution is obtained, the 
linearized stiffness matrix is generated by numerical 
perturbation of the generalized forces, while the mass 
and damping/gyroscopic matrices are formed from 
symbolically derived expressions. 

5. Concluding Remarks 

The development of effective comprehensive rotor
craft analysis software will require a. capability that 
combines large motion analysis with general model
ing capability. Although finite element analysis can 
handle general purpose modeling within the context 
of small motion analysis, multibody dynamics will 
be needed to analyze large motions. A formulation 
for the large motion dynamic analysis of rotorcra.ft 
has been presented in order to fully detail the inad
equacies of finite element analysis alone in the anal
ysis of rotorcraft dynamics. Although the formula
tion presented may be used in an actual analysis, 
the multibody dynamics literature contains far more 
efficient and more flexible methodologies. Applying 
these methodologies to rotorcra.ft dynamics must be 
a high priority goal for rotorcra.ft analysts. 
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Fig. 1, - Illustration of finite element and multibody dynamics methods. 

Fig. 2. - Geometry of frames for small motions 
of a defromable body. 
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Fig. 3. - Coupling of rotor and fuselage rela
tive to frames with prescribed motion. 
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Deformed at t 

Undeformed at t 

Fig. 4. - Coupling of rotor and fuselage relative to frame with arbitrary motion. 
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