
Root Corrections for Dynamic Wake Models1

 
 

David A. Peters 
McDonnell Douglas Professor of Engineering 

Andrew Burkett and Sydnie M. Lieb 
Undergraduate Research Assistants 

 
Department of Mechanical, Aerospace & Structural Engineering 

Washington University 
Campus Box 1185 

St. Louis, MO 63130 
 

 
Abstract 

The solution for the induced flow of a rotor in axial flow has a long history of interest going back to Prandtl and 
Goldstein.  The nominal inflow is computed in a rather straightforward manner for an infinite number of blades, but 
complicated root and tip corrections appear when there are a finite number of blades.  Prandtl worked out an elegant, 
yet simple approximation for the tip correction that still has widespread applications.  The purpose of this paper is to 
provide a similar root correction for the induced flow of rotors with a finite number of blades.  Several alternative 
versions of the correction are provided, ranging from a simple computation in the spirit of Prandtl to a virtually exact 
numerical solution. 
 
Nomenclature 
a polynomial coefficient, 1/b2 
[A] matrix of Galerkin coefficients 
b zero of root-correction polynomial 
{B} vector of Galerkin coefficients 
c0 homogenous coefficient 
cn coefficients of circulation expansion 
d, dn function coefficients 
d1, d2 homogeneous constants, App. B 
E Prandtl tip-correction function 
fk(�) velocity potential expansions 
F(Q) correction factor for forward problem 
G(Q) correction factor for inverse problem 
hk(�) root-correction functions 
hA final version of approximation, Eq. (19) 
hR boundary correction (particular plus homogeneous) 
H( ) root-correction function in either x or μ 
i imaginary number 
j summation index 
k harmonic number 
m summation index 
n exponent of circulation  
n harmonic number, App. B 
p, pn elements of summation theorem 
Pj(x) Legendre polynomials 
q polynomial exponent 
Q number of blades 
r radial coordinate, m 
R blade radius, m 
S(p) summation result 
So, Se summation for odd, even indices 
s, t polynomial exponents, t � q/2 
trig( ) either sin( ) or cos( ) 
v(r) induced velocity at disk normal to vortex sheet, m/sec 
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v0(r) nominal induced velocity, no correction, �/(2cos�), m/sec 
V climb rate, m/sec 
vn, wn function coefficients 
x mapping coordinate, 21/ �� � = cos(�) 
y dynamic variable, App. B  
z axial coordinate, m 
�, 	 function coefficients 

(�) nondimensional normalized circulation, ��/V2 

b nondimensional circulation per blade, �b�/V2 

n circulation expansion coefficients 
�(r) normalized nominal circulation, uncorrected, m2/sec 
�0(r) nominal circulation per blade, uncorrected, (2�/Q)�(r), m2/sec 
�b(r) total circulation per blade, m2/sec 
� function coefficient 
�(�) Dirac delta function 

 blade root cut-out, m 
� non-dimensional screw coordinate, � = � - �z/V 
� angle of screw surface, rad 
�(μ) nondimensional induced velocity downstream, 2�(μ) 
�0(μ) nondimensional nominal velocity, 2�0(μ) 
� radial coordinate, �r/V = cot(�) 
μ0 value of μ at blade tip, �R/V 
�(μ) nondimensional induced velocity at disk, v(r)/V 
�0(μ) uncorrected value of �(μ) 
� nondimensional time 
� inflow angle, arctan(1/�) 
�(μ,�) velocity potential, normalized on V2/� 
�j admissible functions of either μ or x 
� rotor speed, rad/sec 
 
Introduction 
 Betz and Prandtl, Ref. 1, found the optimum velocity distribution (i.e., for minimum power) for a rotor in axial 
flow.  Although they were unable to find an exact solution for the circulation distribution that would result in such a 
velocity distribution, they were able to find this optimum circulation for a rotor with an infinite number of blades and 
then offer an approximate tip correction that would account for the effect of blade number.  Although the Prandtl 
correction factor is based on a two-dimensional inflow model, it is quite accurate and is used extensively in rotorcraft 
analysis. 
 It fell to Goldstein, Ref. 2, to find the exact solution for the optimal circulation on a propeller with a finite number 
of blades.  He treated both two-bladed and four-bladed rotors at various inflow angles.  The results agree nicely with 
computations based on Prandtl’s approximation, as shown in Fig. 1––taken from Ref. 2––where the condition chosen is 
μ0 = 5.0 which is a fairly high climb rate.  For four blades, the two solutions are quite close, although there is a small 
discrepancy that occurs near the root of the blade.  For the two-bladed rotor, this discrepancy is more pronounced.  The 
behavior of the Prandtl approximation at small μ is nearly identical for all Q, but the Goldstein solution increasingly 
differs from the Prandtl solution (at small μ) as Q decreases. 
 For any number of blades, the correction that must be made to the Prandtl result is an increase in the optimum 
circulation for μ < 1 (i.e., for inflow angles greater than 45º) and a decrease in circulation for μ > 1. This result is 
counterintuitive because, for tip corrections, the increased inflow due to the ends of the vortex sheet implies that––to 
maintain constant inflow for optimum power––circulation must decrease at the tip.  To the contrary, the Goldstein 
solution shows that––although outboard of a 45º inflow angle the circulation for minimum power is below nominal––
inboard of a 45º inflow angle, circulation must be increased to maintain an optimum. 
 Makinen, Ref. 3, analyzed an optimum propeller by finite-state inflow methods.  He found that dynamic inflow 
models successfully give the optimum circulation for rotors with a finite number of blades (including capture of the 
correct tip effects) but that they tend to follow the Prandtl solution rather than the Goldstein solution near the blade root, 
Fig. 2.  This is because the assumption of an actuator-disk breaks down as the inflow angle approaches 90º.  Garcia-
Duffy, Ref. 4, looked further at these root effects by considering a propeller of infinite length.  She discovered that the 
root correction has a defined shape that is similar for all blade numbers and inflow ratios.  This result gave motivation 
to look for a simple root correction––similar in spirit to the Prandtl tip correction––that could enhance the accuracy of 
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momentum or dynamic wake models for high-incidence inflow in real-time simulations and preliminary design 
applications.  The purpose of this paper is to put forward such a root correction procedure. 
 
Background 
 In this section, we derive the basic equations of root corrections.  We will follow the general outline of Ref. 2 but 
proceed along what we believe is a more direct and compact approach.  To begin, note that the pressure and velocity 
around a propeller in axial flow are governed by the following velocity potential: 
 

(1) � � � � � � � � � � QkfQ k /20,trig/, �����
���� ������ �  

where 
(�) is some nominal circulation, � is the nondimensional radial coordinate (μ=�r/V), � is the nondimensional 
axial screw coordinate, and Q is the number of blades.  (Note that μ is also the cotangent of the inflow angle �).  The 
first term in Eq. (1) is the nominal velocity potential that is chosen to give a nondimensional velocity distribution �(μ) = 

(μ)/cos(�).  The second part of Eq. (1), involving fk(�), is a correction term that accounts for root effects.  (The 
summation is taken over appropriate k’s as will be defined later.) 
 This total velocity potential (nominal plus correction) must satisfy Laplace’s equation in helical coordinates. 
 
(2) � � � � 0/1/ 2222 ��������� ����  

  
This implies that the correction functions fk(�) are related to a set of basic functions hk(�)––governed by a differential 
equation that follows from Eqs. (1) and (2)––namely: 
 
(3) � � � �� � � � � � � � � �� ��
������� 2222 /1/ ddhkhdd kk ����  

 
(We will demonstrate the relationship between fk and hk later.)  The resultant circulation per blade 
b(μ) and the 
resultant velocity distribution in the wake �(�) can be given in terms of the total velocity potential: 
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Therefore, once hk(�) and fk(�) are determined, the circulation and velocity can be found; and that is the focus of what 
is to follow. 
 First, consider the forward problem, “Given a specified circulation on the blades, 
b = (2�/Q)
(�), find the 
resulting velocity distribution �(�).”  Since the circulation on the blades––and consequently 
(�)––are specified, the trig 
functions in Eq.(1) are taken as sin(k�), where k = Q, 2Q, 3Q, etc., so that the specified 
b(�) is not affected.  For 
convenience, [�/Q - �] is then expanded as a summation of sine terms over the same k’s. 
 

(5) � � � ��
�

�
��

�,3,2,
sin2/

QQQk
k

k
Q ���  

 
It follows that, in order to obtain the standard relation of Eq. (3) from Laplace’s equation in Eq. (2), one must define  
fk(�) � 2hk(�)/k.  Once an appropriate solution for hk(�) is found from Eq. (3), the velocity in the far wake due to any 
specified circulation can be computed from Eq. (4) in terms of the hk(�) as follows: 
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(Note that the velocity in the far wake is twice the velocity at the rotor disk.)  The correction in Eq. (6) involves the sum 
of 2hk(�) over k = Q, 2Q, 3Q, etc. 
 Next, consider the inverse problem, “Given a velocity distribution �(�), find the applied circulation 
b(�) that 
would produce it.”  In order to preserve the desired velocity �(�) from Eq. (4), we take trig(k�) = cos(k�) in the 
summation of Eq. (1) with k = Q/2, 3Q/2, 5Q/2, etc.  This ensures that the derivative of  � will be zero at the boundary.  
It is then convenient to expand [�/Q - �] in cosine terms summed over these same k’s. 
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The nominal circulation to obtain the desired velocity distribution is 
 

(8) � � � ���
�

��

21�

�  

 
and this becomes the forcing function for the correction terms in Eq.(3). 
 When Eq. (1) and Eq. (7) are placed into Eq. (2), it is clear that one must define the relation fk(�) � 2Qhk(�)/(�k2) 
in order to obtain the standard form of Eq. (3).  It follows that the total circulation distribution per blade is given from 
Eq. (4) as: 
 

(9) � � � � � �
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For the summation over k in Eq. (9), �k/Q = �/2, 3�/2, 5�/2, etc. 
 Both the forward problem (given circulation, find velocity) and the inverse problem (given velocity, find 
circulation) are governed by hk(�) from Eq.(3) with the appropriate k, as given by Eqs.(6) and (9).  Notice that, in the 
forward problem, the velocity is decreased due to hk(�); while, in the inverse problem, the circulation is increased due 
to hk(�).  Below is a table of typical blade numbers Q along with the values of k that would be needed to solve for either 
the forward or inverse problem in each case. 
 

Q k for forward problem k for inverse problem 
1 1, 2, 3, 4, 5, . . . 1/2, 3/2, 5/2, 7/2, 9/2, . . . 
2 2, 4, 6, 8, 10, . . . 1, 3, 5, 7, 9, 11, . . . 
3 3, 6, 9, 12, 15, . . . 3/2, 9/2, 15/2, 21/2, . . . 
4 4, 8, 12, 16, 20,  . . 2, 6, 10, 14, 18, . . . 

 
For most applications (i.e., for forward problems with Q � 2), only integer values of k having k � 2 are required.  
Nevertheless, for completeness, here we will consider all integer multiples of 1/2 from k = 1/2 and on up. 
 Goldstein, Ref. 2, determined 
b(�) in closed form for some special conditions––namely: 1.) for the inverse 
problem only, 2.)  for circulation 
(�) = �2/(1 + �2), and 3.) for cases with Q = 2 or Q = 4.  Here, we attempt a general 
solution for: 1.) both the forward and inverse problems, 2.) for general 
(�), and 3.) for general Q.  The Goldstein 
solution, although limited, will provide a good benchmark to ensure that our numerical approach is correct.  The 
Goldstein procedure is provided in Appendix A, and examples of hk(μ) from that methodology are given in Fig. 3 for 
k = 1, 2, 3.  One can see from that figure that the general shape of the correction term is an initial peak near μ = 0.5 with 
a zero near μ = 1.0 followed by a secondary, negative peak and decay, just as we saw in Figs. 1-2. 
 
Numerical Computation 
 Next, we formulate a numerical solution to the root-correction problem.  Since both the forward and inverse 
problems are governed by hk(�) from Eq. (3), the goal is to find a numerical solution for hk(�).  In particular, we are 
looking for a method that could be applied efficiently to dynamic conditions in which the circulation distribution is 
given numerically and may be changing as a function of time. 
 If one: 1.) takes the original differential equation in Eq. (3), 2.) expands hk(�) in a Galerkin series of admissible 
functions cm�m(�), 3.) multiplies by the comparison functions �j(�)/�, and 4.) integrates from zero to infinity, one 
obtains a numerical Galerkin scheme to solve for hk(�).  Integration by parts takes the equations into a symmetric form, 
 
(10) [A] {c} = {B} 
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Note that the second version of Bj does not require that any derivatives of 
(�) be taken.   
 Since the �m(�) must be zero both at � = 0 and at μ = �, the μ in the denominator of �j(μ)/� causes no problems 
in the integrals, but rather serves to weight more heavily the low-� range (where the greater accuracy is required).  The 
use of �j(μ)/μ also serves to make the matrices symmetric.  As a consequence, the formulation in Eqs. (10) and (11) is 
robust. 
 Next, a change of variable maps the domain and the integrals onto 0 < x < 1 
 

(12) � ��
�
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1 2

�
�

�x  

 
where � is the angle of the vortex sheet leaving the blade (90º at the blade root).  This change of variable allows 
admissible and comparison functions to be chosen on a more convenient interval, 0 < x < 1.  The integrals are 
consequently transformed to: 
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For test functions, we chose the combination of Legendre polynomials Pj(2x-1) that have been applied to the p-version 
finite element method, Ref. 5, 
 

(14) 
� � � �

� �122
1212 2

�

���
�� �

j
xPxP jj

j
        �,4,3,2�j  

 
For j � 2, the polynomials are zero both at x = 0 and at x = 1.  The derivatives of the �j(x) are the Jacobi polynomials.  
The resultant matrices from the integrals in Eq. (13) can be found in closed form and are very well-conditioned.  Figure 
4 shows for n = 2 (with either k = 1 or k = 8) convergence of the method as the total number of terms in the Galerkin 
method is increased from 3 to 5 to 15.  At 15 terms, the solution is virtually exact. 
 The above Galerkin method can be used to solve for all hk(�) and thus obtain the proper root correction for all 
cases.  To apply this methodology to a particular problem, at each time step in the solution one would: 1.) find the 
nominal 
(μ) for that condition, 2.) form Aj and Bj from Eq. (13), 3.) solve for the appropriate set of hk(�) due to 
(�) 
(where k would take on values of Q, 2Q, 3Q, etc. for the forward problem or Q/2, 3Q/2, 5Q/2, etc, for the inverse 
problem), and 4.) modify either the induced flow by the summation in Eq. (6) or the circulation by the summation in Eq. 
(9) as appropriate.  Since tip and root corrections are virtually instantaneous, no time delay would be needed in such an 
application. 

 
Practical Solutions 
 Despite the efficacy of the direct method described above, it is often advantageous to have a simpler and more 
easily implemented method available.  In this section, we offer such a procedure.  To begin, Goldstein shows in Ref. 2 
that hk(�) can be expanded in a series the first term of which is 
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Although the series (for which this is the first term) does not converge for k/n � 1, the first term nonetheless has a 
reasonable shape that seems qualitatively to approximate hk(�) over a wide range of k and over a large class of 
(�). 
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For example, consider  the family of circulation distributions of the following form (where n=2 is the case treated by 
Goldstein). 
 

(16) � � n
n
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For this family of distributions, one can write the resultant H(�)––or alternatively H(x)––in closed form from Eq. (15) 
as 
 

(17) � � � � � �22222 /11 bxxxnxH n ��� ; 
2�

�
n

nb  

 
Thus, for all values of n, H(x) from Eq. (17) has zeroes at x = 0, x = b, and x = 1; it has a positive peak in the range x � 
b; and it has a negative, smaller peak in the range x > b.  This behavior follows the general form of the exact solution. 
 By comparing Eq.(17) with numerical results, we have been able to determine a magnitude-correction factor that 
gives a reasonable approximation for hk(�)––valid over both a broad range of k and a broad class of circulation 
distributions. 
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Equation (18) provides a valuable computational tool for use in root corrections.  It is quantitatively accurate for k > 2 
and qualitatively accurate for k =2 for all n.  Thus, it is an excellent approximation for the forward problem with rotors 
having three or more blades (or the inverse problems with rotors having four or more blades); and it is a reasonable 
approximation for the forward problem with rotors having two blades (or the inverse problem for rotors having three 
blades). 
 In the application of this approach, note that (�d/d�) = (rd/dr) where r is the radial position.  It follows that 
(μd/dμ)2
(μ) = rd
/dr + r2d2
/dr2 which can be readily computed for any general circulation distribution.   Furthermore, 
since the factor 1+�2 = 1 + (�r/V)2 is in the denominator, the correction quickly dies out as r moves away from the root 
(i.e., as the inflow angle becomes less than 45º). 
 For example, given a helicopter in climb with inflow, �R/V = 10, the resultant denominator in Eq. (13) would be 
[1 + (10r/R)2].  Since the maximum hk(�) occurs at about � = 0.4 ( which is r/R = .04)––and since the zero cross-over is 
at about � = 1.0 (which is r/R = .10)––the bulk of the root correction is relegated to the region of the inner 10% of the 
rotor radius, much of which would be inboard of the blade, itself (depending on the root cut-out).  Furthermore, since a 
typical maximum value of hk(�)––for the region μ > 1.0––is hk = .015, the correction for r/R > 0.1 would be less than 
3%.  Thus, the correction need only be computed over a small range of blade stations. 
 
Higher-Order Approximation 
 If the above solution is not accurate enough for a particular application, there is an alternate procedure that we 
have developed in which a more general functional form is used for arbitrary values of k and n in which  is replaced 
by  and by  

nx
qx 22 )1( x� sx )1( 2�

 
(19) � � � � � � � � A

sq hbxxxnkFxH ���� 222 /11,  
 
where F, b, q, and s depend on k and n.  To utilize this form, one must map a given circulation distribution 
(�) onto x, 
(i.e., 0 < x < 1), and then fit that distribution with a polynomial in xn where n = 1, 2, 3, . . . 
 

(20) � � �
�

�
�

�,3,2,1n

nx
n


�
  

 
The root correction then appears in the form of a summation over n = 1, 2, 3, . . . 
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(21) � � � � � � � 22

,3,2,1

2 /11, bxxxnkFh
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q
nk ��� �
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� �

� � 

 
where 21/ �� ��x .  Of course, for blades with a root cut-out 
 and a finite length, R, 
(μ)  is assumed to be zero 
outside of the interval [�
/V < � < �R/V)]. 
 The parameters for Eq. (21) have been determined by an optimal fit of the numerical results from the 
Galerkin/Jacobi method over a broad range of data from n = 0 to n = 4 and from k = 0.5 to k = 8.  The parameters for 
the polynomial are represented as follows. 
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The weighting function F(k, n) is approximated as given below. 
 

(25) 
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k
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For : 3.n ,32.166.1 �� n�  ,0.1��  0.1032 �� nd  

 

 
Note that the min(d1, d2) is d1 for small k; but is d2 at larger k. 
 The above approximation was determined by utilization of 1.) q to match the peak location, 2.) s to match the ratio 
of maximum to minimum, and 3.) F(k, n) to match the maximum peak of the numerical result.  The parameter values 
were then approximated by a set of appropriate functions.  The solution in Eqs. (19) - (25) is valid for k > 0.5,  and so is 
applicable to all cases with the exception of the inverse problem for one-bladed rotors.  For one-bladed rotors––or for 
increased accuracy at very small � for other cases––boundary corrections can be made.  We treat these corrections in 
the next section. 
 
Boundary Corrections 
 The assumed solution in Eq. (19) emerges from x = 0 as xq and ends near x = 1 as (1-x)s.  However, the behavior 
of the exact solution close to the root can be more complicated than this and can involve fractional powers and log 
terms.  These boundary terms have only minor effect on the results at most conditions, but can have significant effects 
for the case of k = 0.5 which emerges as hk = x1/2 for small x.  Our approach here is to find closed-form solutions (near x 
= 0) and then blend that with the approximate solution above so as to model properly the boundary behavior whenever 
such behavior is important.  For simplicity, this boundary behavior is studied in terms of the variable x at the root with 
the assumption x << 1. 
 Equation (3) can be written as an expansion in x for small x.  Then both the particular and homogenous solutions 
can be found in closed form via a straightforward application of the theory of differential equations.  Occasionally, 
secular terms appear in the expansion which result in xln(x) terms; and thus there are special cases to the particular 
solution, as shown below. 
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(27) 
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The homogeneous solution is given by the following, which is independent of n, 
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where c0 is a constant that can be determined by matching the homogeneous inner solution with the particular outer 
solution. 
 Although a matched asymptotic expansion to obtain c0 is beyond the scope of this paper, by comparison of the 
sum of the particular and homogeneous solutions above with the numerical results of the Galerkin Method, we have: 1.) 
verified that the numerical solution gives the proper root behavior and 2.) found an approximation for the values of c0 in 
the homogeneous solution of Eq. (29), as shown below. 
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Note that, for n > k, it is the homogeneous solution that dominates in the small-x region; whereas, for n < k, it is the 
particular solution that dominates.  For n = k, the secular terms involving ln(x) dominate. 
 Although the tip behavior is not as crucial to accuracy as is the root behavior, it is nonetheless interesting to look 
at its form.  For the tip solution, only particular terms are involved; and the expansion can be given in terms of 1-x. 
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We have verified that this expansion matches the numerical solution from the Galerkin method for the region 0.98 < x < 
1.0 (5 < � < �). 
 To blend the closed-form solution in Eq.(19)––i.e., hA(x)––with the sum of the particular and homogeneous 
solutions in Eqs. (26-30)––i.e., hR(x)––we multiply hR(x) by a function that brings it to the peak of hA(x) and with zero 
slope. 
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This solution is only for mxx 1  after which one transitions to the original solution in Eq.(19). 
 
(33) � � � � mA xxxhxh .�  
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The parameter xm is the location of the first positive peak of hA(x) and is given by the smaller positive root of the 
quartic equation: 
 
(34) � � � �� � 011 24 �������� atxtatsxts  
 
where a � 1/b2 is from Eq. (24); and s and t are from Eqs. (22) and (23) with t � q/2.  This can be solved for  by the 
quadratic equation, and then the value of xm follows immediately. With this root boundary correction, the 
approximation in Eq. (32) is valid even for one-bladed rotors.  However, for maximum accuracy, one can always revert 
to the Galerkin procedure. 

2
mx

 
Numerical Results 
 Figure 5 compares the virtually exact Galerkin method (Polys) with both the simplest approximation (Quick) from 
Eq. (18), and the higher-order approximation (Complex) from Eqs. (19, 22-25).  For illustration, the following family of 
distributions is chosen as typical inputs. 
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Results are plotted on 0 < x < 1, which the entire range 0 < � < �.  Figure 5 shows that the simple method is 
qualitatively accurate at all values of n for k � 2 and is quantitatively accurate at all n’s for k > 2.  Thus, the simple 
method should be sufficient either in applications to the forward problem (for rotors with two or more blades) or in 
applications of the inverse problem (for rotors with three or more blades).  Figure 5 also demonstrates that the higher-
order approximation is qualitatively accurate for all cases and quantitatively accurate for all cases except k = 1/2 with 
n � 3.  Figure 6 shows the improvement in the approximate functions that can be obtained when the boundary 
corrections in Eqs. (26) - (31) are blended according to the algorithm in Eqs. (32) - (34).   Because Fig. 6 deals only 
with a small-x correction (there is no correction past the first peak of the curve), results are plotted on 0 < x < 0.5 (i.e., 0 
< μ < 0.577).  The curves labeled “Polys” are the virtually exact solution from the Galerkin procedure with the 
Legendre polynomials.  The curves labeled “Ha” are the improved approximation based on Eq.(19) but without the root 
correction.  The curves labeled “root correction” are the small-x asymptotic expansions.  Finally, the curves labeled 
"Hshift" are the results with the blending of the other two results according to Eq. (32).  One can see that this procedure 
greatly improves the small-x behavior of the approximation for all values of k and n. 
 When deciding whether or not to utilize one of the more accurate approximations, however, one must weigh the 
gains against the losses.  The higher-order approximations involve mapping the instantaneous circulation onto 0 < x < 1 
and then fitting it with a power series in xn.  After this, one must solve for a family of hk(μ) for every power of n, and 
then sum all effects over n and k.  This is much more involved than simple utilization of Eq. (18).  At some point, if 
additional accuracy is desired, one might also consider the possibility of the direct Galerkin solution to obtain hk(x); but 
a summation over k is still required.  With the simplest approach, on the other hand, one needs only first and second 
derivatives of the existing circulation distribution; and even the k-summation can be eliminated, as shown in the section 
to follow. 
 
Applications 
 We now utilize the above methodologies in some typical applications.  Because there is always a summation over 
k (either for the forward or inverse problem), the simple method of Eq. (18) has another special advantage.  In 
particular, since the functional derivatives taken over � (or over r) do not depend on k, the correction factors in the 
summations can be summed a priori for use in any application.  For example, in the forward problem, we need the 
summation of 2hk(�) in Eq. (6) which involves 
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where k takes on multiples of Q.  Appendix B gives the derivation of closed-form expressions that can then be used to 
find the summations.  To utilize these theorems, we put Eq. (36) into the form of the theorems in Appendix B: 
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where n = 1, 2, 3, . . .�.  The theorems of Appendix B yield a closed-form expression for this correction factor. 
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We note that Eq. (40) is well-approximated by a simple rational function of Q. 
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This is the final form for the correction factor to be applied to Eq. (37). 
 For the inverse problem, the summation in Eq. (9) implies a correction factor G(Q) that must similarly multiply 
[1 + �2]-1(�d/d�)2 [
(�)], 
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where 
 

(43) � � � � � ��
�

�

 
!

"
#
$

%

�
�

�
�

�,
2

5,
2

3,
2

22222

2

2/7
1

2/1
1

QQQk
kkkk

QQG
�

 

 
where k takes odd multiples of Q/2.  Application of Appendix B yields a closed form for G(Q). 
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This G(Q) also has a simple approximation in terms of a rational function. 
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The closed-form expressions for F(Q)  and G(Q) allow for efficient application of the formula for root corrections of 
either forward or inverse problems.  It is interesting that F(Q) and G(Q) have the same large-Q behavior, F = G = 
3.3/Q2. 
 The total correction can be computed for either the forward or the inverse problem in a straightforward manner.  In 
particular, combination of Eqs. (6) and (9) with the closed-form Eq. (18) gives solutions that can be cast dimensionally.  
For the forward problem with Q blades––and with a nominal velocity at the rotor disk of v0(r)––the corrected velocity 
field at the rotor disk can be given in terms of the circulation per blade �b as: 
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For the inverse problem––if �0(r) is the nominal total circulation per blade that gives the desired velocity field without 
root effects––the corrected circulation distribution per blade is given by: 
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F(Q) and G(Q) give the effect of blade number, and the sin(�) or sin2(�) causes the effect to die out away from the root. 
 It is interesting to consider how the Prandtl tip effect compares to the root effect and how Prandtl’s correction 
could be included with Eq. (46) or (47).  To apply the Prandtl method simultaneously with the root correction formulae 
(for either the forward or inverse problem), one defines the Prandtl correction function as: 
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Equation (48) represents a two-dimensional approximation for the circulation required to obtain a uniform inflow––the 
optimum distribution in two dimensions.  Prandtl shows in Ref. 1 that the formula can also be used to obtain a 
correction for the flow at the tip of a three-dimensional rotor.  Thus, Eq. (48) has been used for many years as a 
practical tool. 
 Some dynamic inflow models already include tip-loss effects implicitly in the formulation.  However, when tip 
effects are not included in the nominal inflow, the Prandtl function can be used in conjunction with the root correction 
function to obtain the entire solution to either the forward or inverse problem.  For the forward problem, the application 
takes the form: 
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If the blade circulation �b(r) does not approach zero at the root or the tip, the inflow approaches infinity at that end, 
which is in accordance with the physics of a concentrated tip or root vortex. 
 For the inverse problem, the Prandtl correction takes the simple form: 
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The E insures that the circulation has the correct tip behavior––in that it approaches zero at the blade tip in such a way 
as to give the desired induced flow.   It is interesting (and not surprising) that both the root correction and the tip 
correction explicitly involve both the blade number Q and the angle of the vortex sheet �. 
 
Summary and Conclusions 
 Several alternative solution methods are offered for finding a correction term for root effects in rotors.  These are 
intended for use as corrections to either dynamic wake models or momentum models––in the same spirit as the Prandtl 
tip-loss correction.  The methods apply either to the forward problem (given circulation, find induced flow) or to the 
inverse problem (given induced flow, find circulation).  They are: 
 1.) The simplest approach in Eqs. (46-47)––valid for the forward problem in rotors with two or more blades (or for 
inverse problems in rotors with three or more blades)––involves simple derivatives of the applied circulation multiplied 
by either the factor F(Q) for the forward problem or by G(Q) for the inverse problem, Eqs. (41) and (45).  This method 
is applied in a straightforward manner to the circulation on the blade �b or �0. 
 2.) The general form of Eq. (19) is more accurate than the first method and is applicable for either: 1.)  forward 
problems and rotors with one or more blades or 2.) inverse problems and rotors with two or more blades.  It involves a 
more refined fit of the root correction function for individual harmonic numbers k.  In this solution methodology, one 
maps the circulation onto the x domain, where 21/ �� ��x , and then fits the circulation with a polynomial in x, Eq. 
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(20).  Then the correction functions follow from Eq. (19), with the coefficients from Eqs. (22) - (25).  The summation in 
Eq. (21) gives individual hk(μ) each of which is then used in either the forward correction, Eq. (6), or the inverse 
correction, Eq. (9). 
 3.) The boundary correction from Eqs. (26) - (30) can be blended with the hk(μ)––from the second approach––and 
this extends the applicability to rotors with any number of blades for either the forward or inverse problem.  This is an 
engineering approximation. 
 4.) The Galerkin procedure gives a highly accurate solution in terms of Legendre polynomials, Eqs. (10), (13), and 
(14).  Since this approach is virtually exact, it can be used either as the method of choice or as a benchmark for the other 
solutions. 
 Numerical results verify the accuracy and region of applicability for each method. 
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Figure 1. Optimum Circulation for 2-Bladed and 4-Bladed Rotors, Ref. 2 
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Figure 2. Optimum Circulation by Finite-State Methods, μ0 = 5 
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Figure 3. Correction Function for k = 1, 2, 3 by Goldstein Method 
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Figure 4. Convergence of Galerkin Method for k = 1 and k = 8, Goldstein Case 
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Figure 5. Approximations to Root Correction for Various Cases 
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Figure 5. (continued) 
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Figure 6. Boundary Terms in Root Correction 
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Appendices 
 
Appendix A: Goldstein Solution 
 In this Appendix, we summarize the numerical procedure outlined by Goldstein, which we use for comparisons 
with our numerical procedures.  Goldstein, Ref. 1, solved for 
b(μ) in closed form for the special conditions of: 1.) the 
inverse problem, 2.)  
(μ) = μ2/(1 + μ2), and 3.) cases of Q = 2 and Q = 4, while leaving a framework to solve for any Q.  
The Goldstein solution, although limited, provides a good benchmark to ensure that our numerical schemes are correct. 
 While Goldstein found a formal solution to the aforementioned differential equation, that solution is not amenable 
to numerical evaluation; and it is necessary to use three separate equations––in combination––to obtain an accurate 
solution for arbitrary values of k.  The formal solution can be found based on Goldstein’s Eq. (15) of Section 3.1 [p. 
444] where our k is denoted by � = 2m+1 in the Goldstein notation.  (Since Goldstein’s solution [p. 444] is restricted to 
the inverse problem for Q = 2, only odd integers occur for k, thus the 2m+1.)  Although this solution is in closed form 
in terms of Bessel functions, the issue yet arises as to how to evaluate those Bessel functions.  Goldstein uses Eq. (14) 
of Section 3.1 [p. 444] and Eq. (2) of Section 3.2 [p. 445] to compute the appropriate functions for Q = 2.  For Q =4, 
however, these series diverge; and so he uses Eq. (1) of Section 4.2 [p. 455].  In order to relate Goldstein’s results to the 
present work, note that hk(μ) of this paper corresponds to Fk(μ) in Goldstein's notation––with the formula for Fk found 
from Goldstein's Eq. (8) in Section 3.2 [p. 446]. 

Appendix B: Closed-Form Summation 
 Here we derive a closed-form expression for the following summation. 
 

(B1) � � �
�

� �
�

�,3,2,1
22

1
n pn

pS  

 
The key to finding this sum is to recognize that it is the solution to a dynamics problem.  To be precise, consider the 
following dynamic system driven by an impulse train: 
 

(B2) � ��
��

���
����

m
mtyp

d
yd ��

�
22

2

2
 

 
where �(�) is the Dirac delta function.  The periodic solution for y(�) is given in closed form as: 
 

(B3) � � � ��
��

��� �
�

n pn
iny 22

exp
2
1 �
�

�  

 
which further implies that 
 

(B4) � � �
��

��� �
�

n pn
y 22

102�  

 
This relation can be used to solve for the summation of interest. 
 

(B5) � � � � 2
1

22 2
101
p

y
pn

pS
n

��
�

� �
�

�
�  

 
 The next step is to solve Eq. (B2) directly for y(�) by noting that, between impulses, the solution must be of the 
form: 
 
(B6) � � � � � ���� pdpdy sinhcosh 21 ��  
 
The conditions on d1 and d2 are that y(�) be periodic with y(0) = y(2�) and that the slope must jump by negative unity 
across the impulse, dy/d� (0) = dy/d� (2�) -1.  From that, one can find the constants for the solution on 0 < t < 2�: 
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(B7) 
� �
� � p

d
pp
pd

2
1;

2sinh2
2cosh1

21 ��
�

�
�
�  

 
Since y(0) = d1, the summation over n =  1, 2, 3, . . � [in Eq. (B5)] follows immediately: 
 

(B8) � � � �� �
� � 2

1
22 2

1
2sinh
2cosh1

2
1

ppp
p

pn
pS

n
�

�
�

�
� �

�

� �
��  

 
For the degenerate case of the formula (i.e., p = 0), a limit can be taken in Eq. (B8) to show that  the summation reduces 
to  
 
(B9) � � 6/0 2��S  
 
which can be verified by the use of the Riemann zeta function, Ref. (6). 
 A corollary can be made to the above either for the sum of n= 1,3,5,… [which we will call So(p)] or for the sum of 
n = 2, 4, 6, . . � [which we will call Se(p)].  Consider Se(p) which is the sum over n = 2,4,6.  If we replace n by 2m in 
the series, it will change from the sum of n = 2, 4, 6 to a sum over m =1, 2, 3, . . �.  If we next factor out 4 from the 
denominator, then we immediately obtain: 
 

(B10) � � � �2/
4
1 pSpSe �  

 
Next, since Se(p) + So(p) = S(p), it follows that: 
 

(B11) � � � � � � � �
� �

� �
� �pp

p
pp
ppSpSpSo �

��
�
��

sinh
cosh1

42sinh
2cosh1

2
2/

4
1 �

�
�

���  

 
For the degenerate case (p = 0), Eq. (B11) implies that the odd terms in 1/n2 will sum to: 
 

(B12) � � � � � �
8

0
4
100

2�
��� SSSo

 

 
This is verified by the formula found in Ref. 7. 
  Thus, we have formulas for all three summations that can be used in the development of the root correction. 
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