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Over the last few years a large effort has been devoted at CIRA to the analysis of capabilities 
and limits of the FW-H formulations. Nevertheless following the trend of most research 
institutions and industries, a new code implementing the Kirchhoff formulation has been 
developed and tested. The possibility of using in parallel this new code with the one solving 
the Ffowcs Williams and Hawkings equation permits to increase the CIRA capabilities in the 
prediction of the acoustic disturbance. The main aim of this paper is to show the reliability 
of the new Kirchhoff solver in rotor and propeller noise predictions. 

1 INTRODUCTION 

Over the last decade rotorcraft and propeller­
driven aircraft are playing an increasingly impor­
tant role in the civil transportation market. The 
relevant features (wide manoeuvrability, limited 
take-off and landing spaces, narrow detectability) 
make the helicopter the most suitable tool for 
civil as well as military uses. The development 
of high-speed propellers able to produce the same 
jet thrust but with less fuel consumption and 
pollutant emission is making the propeller-driven 
aircraft a very competitive machine in the aviation 
market. To reduce, as required by the stringent 
certification rules, the enviromental impact of 
rotorcraft and propeller-driven aircraft, it is 
mandatory to improve the prediction methods 
used in the design phases and not be limited just to 
the study of the propulsion performances of these 
machines. The aeroacoustic analysis of helicopter 
blades and propellers represents nowadays one of 
the most active and useful research areas in the 
large field of the applied sciences. In order to man­
tain a high level of noise prediction capability and 
enhance the tools for the computational analysis 
of rotating blades, the need for an indipendent 
assessment of accuracy and efficiency of numerical 
codes for the prediction of rotor and propeller noise 
has been facing. This calls for the development 
of numerical tools based on alternative approaches. 

Two are the techniques mostly used in the nu­
merical prediction of noise generated by rotating 
blades. The first one is the Lighthill's analogy 

whose basic idea consists of the subdivision of the 
field in two domains: a near field describing the 
non linear generation of the noise and a far field 
where the linear propagation of the sound is com­
puted. The solution in the far field can be ob­
tained through the solution of an inhomogeneous 
wave equation with the right side term represent­
ing the aerodymanic disturbance. Exploiting the 
theory of generalized functions [1 J Ffowcs Williams 
and Hawkings in 1969 extended the acoustic anal­
ogy to the noise generated by bodies in arbitrary 
motion and derived a governing differential equa­
tion for the acoustic pressure [2]. A lots of efforts 
were devoted to the analytical treatment of this 
equation in order to have some integral expres­
sions suitable for a numerical manipulation, and 
several different solution forms, both in the time 
and frequency domain, have been proposed and 
implemented. In the FW-H equation the acous­
tic pressure is expressed as the sum of three con­
tributions called thickness, loading and quadrupole 
source terms. The first two terms can be found 
through an integration on the body surface, while 
the last one requires a time-demanding volume in­
tegration, even though its own contribution is sig­
nificant for only the high tip speed blades. Never­
theless the difficulties arising in the evaluation of 
the quadrupole term of the FW-H equation for the 
HSI noise prediction, pushed the research towards 
alternative methods. 

A more recent formulation for computing the 
aeroacoustic field is the Kirchhoff approach, which 
takes advantage of the mathematical similarities 
between the aeroacoustic and electromagnetic 
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equations. The Kirchhoff formula was first pub­
lished in 1882 and primarily used in the theory of 
diffraction of light and in other electromagnetic 
phenomena. The use of this formula for predicting 
the noise from high speed propellers and helicopter 
rotors was proposed by Hawkings who suggested 
to surround the rotating blade with a closed 
surface moving at the same forward velocity as the 
machine. Inside this surface, non linear aerody­
namic calculations are carried out giving the blade 
loads, the pressure and its spatial and temporal 
derivatives on the surface. Outside this surface a 
formula similar to the Kirchhoff one can be used 
to calculate the sound propagation in terms of the 
surface values. Then the Kirchhoff formulation 
has been extended by F. Farassat and M. Myers 
[3] to a deformable surface in arbitrary motion 
and has been successfully applied to both hover 
and forward flight conditions [4]-[10]. This method 
allows to compute the aeroacoustic field through 
the knowledge of the fluidodynamic quantities on 
a surface enclosing all the non linearities and noise 
sources, and which behaves as a source irradiating 
to the far field. The aerodynamic solution on 
the control surface can be obtained by a CFD 
method, while outside the acoustic pressure can 
be computed solving the wave equation. 

2 THEORETICAL BACKGROUND 

The theoretical basis for the analysis of sound 
generated by a body moving in a fluid is rep­
resented by the Ffowcs Williams-Hawkings and 
Kirchhoff equations. They can be derived from the 
basic conservation laws of mass and momentum 
taking into account the effect of the body by 
means of an appropriate surface which represents 
a discontinuity for the flow variables. In the FW-H 
approach the discontinuity surface is assumed to 
be coincident with the body where a condition 
of non penetration is imposed. In the Kirchhoff 
formulation some simplifying hypoteses are in­
troduced to derive the solving formula, while no 
limitations are imposed on the location of the 
control surface. 

In order to retrieve the Kirchhoff formula let us 
consider a body moving in a fluid and a closed 
surface S of arbitrary shape and motion described 
by the equation f(x, t) = 0 with [\7 fl = 1 for 
f = 0. If the surface is far enough from the body, 
the fluid outside S can be considered to be invis­
cid, the disturbances small and the fluctuations 
of pressure and density connected by the relation 

p' = p- p0 = c2(p- Po) . With these hypoteses, 
the classical wave equation is obtained, which for 
the pressure disturbance is written as: 

o 2p' = ~ ~' - \72p' = o (1) 

The solution of the equation (1) can be found by 
means of the Green function for the wave equation 
in unbounded space [11]. 

The general Kirchhoff formula used in the nu­
merical applications is the following [3] : 

{{ [ E, Ezp l 4'Trp(x,t)=}}
8 

r(l-Mr) + r 2 (1-Mr) r~S (2) 

where 

E,= (M~ -l)Pn + MnMt · \l2p- c- 1 MnP 

+ c(l ~ Mr) [(nr- Mn- nM)P+ (cos II- Mnl'P] 

+ c(l-1Mr)2 [Mr(cosll- M,.,)p] (3) 

and 

If the control surface is assumed to be stationary, 
the (2) assumes the following form : 

4'Trp(x,t)={{ [E.. ar- ~ ap + ..!:._ ar ap]ds 
Jls r 2 an ran cr an at r• 

(5) 

Surrounding the body with a closed surface, it 
is possible, knowing on f = 0 the fluid pressure 
and its time history, to compute the acoustic 
disturbance in points located outside the control 
surface. 
The position of the Kirchhoff surface must be 
treated carefully, since a correct estimation of the 
pressure signal requires that all the non linearities 
and noise sources of the flow are included in the 
region f < 0. If the control surface is located 
too near to the body, some noise sources can be 
neglected and the pressure signal can be underesti­
mated; but, on the other hand, a too large surface 
could introduce a numerical dissipation due to the 
unaccuracy of the aerodynamic data far from the 
body. 

Two approaches are used in the Kirchhoff 
method. In the first one the body is surrounded 
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Figure 1: Kirchhoff stationary surface 

Figure 2: Kirchhoff rotating surface 

with a stationary surface which must be chosen 
large enough to enclose the region of non linear 
behaviour since the linear wave equation is as­
sumed to be valid outside the surface. As control 
surface is generally used a cylinder with the axis 
matching with the rotational axis of the body 
and the radius along the span direction (fig.l). 
Although the control surface, from a theoretical 
point of view should be closed, the contribution of 
the two base-surfaces can be neglected depending 
on the extension of the computing grid along 
the normal direction. A second approach uses a 
surface rotating with the same angular velocity 
of the body and moving at the same forward 
velocity. Usually a cylindrical surface with the axis 
along the span direction is assumed (fig.2). The 
same considerations, concerning the size and the 
location of the surface for the stationary Kirchhoff 
method are considered to be valid, but in this 
case only the contribution of the root base can 
be neglected because a significant contribution 
to the noise signal arises from the base end surface. 

3 NUMERICAL RESULTS 

A new code implementing both the rotating 

and fixed Kirchhoff surface method has been 
developed and tested. In order to validate the 
code, some particular set of aerodynamic data 
(kindly provided by DLR) and the corresponding 
available experimental data have been used [7]. 
Three test cases concerning the untwisted UH-lH 
hovering blade at Mtip of 0.85, 0.90 and 0.95 have 
been carried out. The Kirchhoff fixed surface 
approach has been adopted for all the test cases, 
while the rotating surface method has been only 
used at the lowest rotational velocity. At the two 
higher Mach numbers, the computations by means 
of the rotating Kirchhoff approach, have been 
limited inside the sonic circle. In all the test cases 
the observer is located in the rotor plane on the 
span axis at a distance from the rotor hub of 3.09 
radii. 

3.1 STATIONARY FORMULATION 

The height of the cylinder, used as control 
surface in the stationaty formulation, has been 
chosen to be 2 * Rtip in order to not account for the 
contribution of the base surfaces. It is the same 
for all the three cases considered and 100 points in 
the vertical direction are used. The radius and the 
azimuthal discretization, on the contrary, change 
according to the tip Mach number of the blade. 
At the tip Mach number of 0.85, the cylinder has 
a radius of 1.2 * Rtip and an azimuthal step of one 
degree has been used, while at Mtip = 0.90 and 
Mtip = 0.95, a radius of 1.4 * Rtip and 980 points, 
strechted around the plane y = 0 corresponding 
to the initial position of the blade, have been 
employed. 

In order to get the flow pressure on the Kirchhoff 
surface nodes, a geometric interpolation of the 
aerodynamic grid is required. This process is 
performed in a module which, for each Kirchhoff 
surface point, determines the cell including the 
point itself. Then, a trilinear interpolation between 
the eight points of the aerodynamic cell is carried 
out (a sketch of the Kirchhoff cylinder and a plane 
of the aerodynamic grid is shown in fig.3). 
This procedure takes much CPU time introducing 

numerical errors and is the weak point of the 
stationary surface approach. On the other hand, 
being the surface points fixed, no particular diffi­
culties arise increasing the body velocity, and this 
method can be successfully used for the evaluation 
of the acoustic pressure of flows even at critical 
delocalized conditions. 
The results of the interpolation in the rotor plane 
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Figure 3: Z-constant plane of Euler grid and Kirchhoff 
cylinder 

are presented in the figg.4 - 6. Increasing the Mach 
number the negative peak of the input aeroacous­
tic pressure becomes larger mainly turning from 
Mtiv = 0.90 to M"v = 0.95. 

The aeroacustic pressure at Mtip = 0.85, 
obtained by means of the Kirchhoff method, is 
plotted togheter with the experimental results in 
the fig. 7. The agreement is good for both the 
resulting waveform and the acoustic pressure peak 
values. 
The variation of the acoustic signal with the 
integration surface radius is presented in fig.8. The 
surface radius has a little influence just on the neg­
ative peak of the signal. At a radius of 1.1 • Rtip, 
the surface is located too near to the blade and 
some non linear terms are neglected resulting in a 
peak value lower than the experimental one. The 
best result is achieved at a radius of 1.2 * Rtip, 

while the accounting for a larger radius of the 
Kirchhoff cylinder provides a progressive decrease 
of the pressure disturbance. 

The aeroa.coustic signal, computed at Mtip = 

0.90 by means of the Kirchhooff stationary surface 
formulation, is shown in fig.9 together with the ex­
perimental data. The asymmetrical shape of the 
signature, due to the shock delocalization is well 
predicted, while the peak is underestimated. Nev­
ertheless this behaviour is probably due to some 
unaccuracies in the aerodynamic data. In fact 
the same test case tested by different authors ei­
ther through the Kirchhoff method [7, 10[, and the 
Ffowcs Willimas-Hawkings [13] equation exhibits 
the same underprediction. 

The variation in half a revolution period of the 
three integral (5) kernels is presented in fig.lO. The 
term proportional to the pressure is negligible with 
respect to the other terms and to make it visible 
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Figure 4: Input pressure distribution on the Kirchhoff 
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.. 
eo. 

500~---------------,--, 

01----------/. 
-500 

:s -1000 
n. 
d. 

-1500 

-2000 

-2500ol---;~o.'<c5---:--Az~irric'iu1'h-ao-g-le-2!,----...,2"'.5---,3t-' 

Figure 5: Input pressure distribution on the Kirchhoff 
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Figure 7: Aeroacoustic Pressure at Mtip = 0.85 
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Figure 8: Pressure signal as a function of the radial 
position of the Kirchhoff surface at Mtip = 0.85 

in the figure is multiplied by a factor 10. The 
two terms connected with the pressure derivatives 
sum, each contributing half of the acoustic distur­
bance in the vicinity of the signal, while they cancel 
away from the region of impulsive noise. This phe­
nomenon, although present at Mtip = 0.85, is much 
more evident in this case than in the previous one 
due to the highly impulsive character of the result­
ing waveform. 

The acoustic pressure signal as a function of the 
radial position of the Kirchhoff surface is shown 
in fig.1L Using a surface radius of 1.1 * Rtip, 

the resulting signal has a symmetrical shape and 
exhibits a step in the recompression region. This 
particular behaviour is due to the absence of 
the supersonic non linear sources contribution. 
Looking at the same test case carried out through 
the FW-H approach [12, 13], it is possible to split 
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Figure 9: Aeroacoustic pressure at Mt1p = 0.90 
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fixed surface approach at Mtip = 0.90 
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the total signal in its components (linear, non 
linear subsonic, and non linear supersonic). The 
supersonic non linear terms are out of phase and 
have a larger negative peak value with respect to 
the non linear subsonic noise component. The 
adding of the supersonic contribution provides a 
time shift and an increase of the negative peak 
of the resulting quadrupole source term. Thus 
a signal obtained using a surface located in the 
nearby of the sonic circle, built up only of the 
linear and quadrupole subsonic components, 
provides an underprediction of the negative peak 
value and a not correct evaluation of the resulting 
noise waveform. 

The aeroacoustic pressure computed at Mtip = 
0.95 together with the experimental results is pre­
sented in the fig.12 : the agreement is very good. 
This result has been obtained without any particu­
lar difficulty with respect to the case of Mtip = 0.85 
where the delocalization phenomenon does not oc­
cur. A finer grid on the Kirchhoff cylinder has been 
required but the corresponding increase of CPU 
time is acceptable. No problems arise in the eval­
uation of high speed flow in delocalized conditions 
by means of the Kirchhoff stationary formulation, 
while the methods based on the FW-H equation 
require the computation of the non linear terms 
which introduces considerable drawbacks. 

The same behaviour, concerning the integral 
terms of the equation (5), as in the case of Mtip = 
0.85 and Mtip = 0.90, can be retrieved looking 
at fig.13 where the variation of the pressure and 
pressure derivatives terms of the Kirchhoff station­
ary formula in half a blade revolution period is re­
ported. 

A study of the influence of different radial posi­
tions of the Kirchhoff surface is presented in fig.14. 
Using a cylinder with a radius of 1.1 • Rtip, a large 
overprediction of both negative and positive peaks 
values occurs. This should be due to the fact that, 
being the control surface located just after the 
sonic circle, not all the supersonic noise sources 
are taken into account. At this Mach number the 
effect of the supersonic non linear noise sources, is 
to provide a time shift and, unlike at Mtip = 0.90, 
only a slight increase in the negative peak value of 
the quadrupole term [12, 13]. Thus, the sum of the 
linear and subsonic non linear terms yields a signal 
with larger peak values with respect to the signal 
computed considering all the noise sources. The 
acoustic pressure time history computed moving 
the Kirchhoff surface further from the sonic circle, 
agrees much better with the experimental data, 
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Kirchhoff rotating surface 

Figure 15: Kirchhoff surface directly extracted from 
the aerodynamic mesh with a constant vertical index 

Kirchhoff rotating surface 

Blade 

Figure 16: Kirchhoff surface directly extracted from 
the aerodynamic mesh with a constant span index 

although some little variations in the predicted 
negative peak values arise by accounting for 
different cylindrical integration surfaces. 

3.2 ROTATING FORMULATION 

In the rotating formulation, the Kirchhoff surface 
can be directly extracted from the aerodynamic 
mesh. The blade is surrounded by a surface (shown 
in fig.l5), which corresponds to a constant verti­
cal index of the aerodynamic mesh and is closed 
through an end-base surface (fig.l6). 

In order to better evaluate the sensitivity of the 
Kirchhoff approach to the size and location of the 
control surface, and to better compute the pressure 
normal derivative, a cylindrical surface (fig.2) has 
been extracted from the aerodynamic mesh. The 
cylinder, with the axis perpendicular to the rotor 
hub, has an height of 1.15 • Rtip and has been dis­
cretized with a costant step of one degree in the 
azimuthal direction, and 50 equally spaced span­
wise stations. The end base surface has the same 
number of azimuthal points, and is built up of 50 
circles with radii decreasing. 

The points of the control surface move at 
the same velocity as the blade. In this manner 
the method does not require any interpolation 
process of the aerodynamic data, but an important 
constraint is introduced. In fact, the equation (2) 
becomes singular when the velocity of the points of 
the Kirchhoff surface approaches the sound speed. 
This forces to locate the surface inside the sonic 
circle so that it bas not been possible to perform 
a correct evaluation of the pressure disturbance at 
Mtip = 0.90, and Mtip = 0.95 because they would 
have required some computations in the supersonic 
region. 

The aeroacoustic signals at Mtip = 0.85 , com­
puted using surfaces with constant vertical indices 
and 51 stations along the span, are shown in fig.l7. 

Moving far from the blade, the computed values 
become closer to the experimental results, but tbe 
oscillations of the signals at the highest k indices, 
indicate that some points of the closure end surface 
have velocities approaching or exceeding the sound 
speed. This forced to decrease the number of the 
spanwise stations. 

Figure 18 shows the acoustic pressure calculated 
by considering the closer end surface having a j in­
dex of 49. By considering a surface further from 
the sonic circle allows to avoid partially the oscilla­
tions but an underprediction of the negative peak 
value occurs. 

Carrying the computation out, with a cylindrical 
surface (fig.2), yields as result the acoustic distur­
bance signal presented in fig.l9 

The agreement with the experimental data is 
very good and also the pressure signal amplitude is 
well predicted likely because the cylindrical surface 
considered is more extended in the span direction 
than the surface directly extracted from the aero­
dynamic grid. A decreasing in the amplitude of 
the computed aeroacoustic signal, in fact, occurs 
considering a cylindrical surface with a height of 
1.1 • Rtip, as shown in fig.20. 

The acoustic pressure computed by accounting 
for a different radius of the cylindrical surface, 
each proportional to the blade chord (constant), 
is shown in fig.21. The size of the control surface 
has influence either on the peak and on the shape 
of the pressure signal, as can also be noted from 
figures 17 and 18. 

From a theoretical point of view the Kirchhoff 
surface has to be closed because it must divide the 
space surrounding the body in an inner non linear 
region and in an outer region where the fluid is 
assumed to be linear. The contribution of a root 

AC05- 7 



50 

0 

• -50 ~ 
~ , 
" " ~ -100 

0 

'g , 
-150 0 

0 

"' 
-200 

-
2

8'bo35 

UH-1 H Hovering blade - Mtip-0.85- Rotating Fonnulation 

0.004 

.:: ... ··· 
!/ 

\, ~\ .{~:" 
\\ \·.:~// 

\·· 
'~/ 

\ _, 
'..· 

0.0045 0.005 
Time 

0.0055 0.006 
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Figure 18: Comparison of aeroacoustic pressure com­
puted at Mtip = 0.85 using k-constant layers of the 
aerodynamic mesh - 49 span stations -

base surface is negligible at all, while an end-base 
surface must be considered because it provides an 
important part of the signal. 

Figg.22 and 23 present the acoustic pressure 
coming from the lateral and from the end-base 
surfaces respectively. As expected increasing the 
radius of the cylindrical surface, the contribution 
of the lateral part decreases because the surface 
moves away from the blade, while the contribution 
of the base becomes more important being more 
layers of the aerodynamic grid taken into account. 

At a tip Mach numbers of0.90 and 0.95, the com­
putation has been performed considering a cylin­
drical surface, extracted through an interpolation 
from the aerodynamic mesh, with a height slightly 
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Figure 19: Aeroacoustic pressure at Mtiv = 0.85 
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Figure 20: Aeroacoustic pressure at Mtiv = 0.85 as a 
function of the height of the Kirchhoff surface 
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Figure 21: Aeroacoustic pressure at Mtip = 0.85 as a 
function of the radius of the Kirchhoff surface 
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Figure 22: Aeroacoustic pressure at Mup = 0.85 -
Lateral surface contribution 
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Figure 23: Aeroacoustic pressure at Mtip = 0.85- Base 
end surface contribution 

less than the sonic circle. 
The result obtained at Mtip = 0.90 is shown, 

together with the experimental results in fig.24 
The same underprediction of the signal nega­

tive peak has been found in the analysis performed 
through the stationary surface formulation; there­
fore the amplitude of the pressure disturbance is 
well predicted even limiting the computation in­
side the sonic circle. The limited spatial integra­
tion, however, accounts for the discrepancy in the 
signal shape and depends on having missed the su­
personic non linear noise sources in the integration. 

Fig.25 shows the pressure signal computed at 
Mtip = 0.95 by limiting the integration inside 
the sonic circle : there is a bad prediction of 
both the amplitude and the signal shape. The 
overprediction of the negative peak value means 
that the non linear supersonic noise sources oppose 
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Figure 24: Aeroacoustic pressure at Mttp = 0.90 -
limiting the integration inside the sonic circle 
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Figure 25: Aeroacoustic pressure at Mtip 0.95 ~ 

limiting the integration inside the sonic circle 

to the contribution of the subsonic component. 

4 CONCLUSIONS 

In order to increase the CIRA capabilities in the 
prediction of the acoustic pressure, and following 
the trend of most research institutions and indus­
tries, a code implementing the aeroacoustic Kirch­
hoff formulation has been developed and validated. 
Three test cases, concerning a hovering blade of the 
UH-lH rotor in non lifting conditions at tip Mach 
number of 0.85, 0.90, and 0.95, have been carried 
out, obtaining a good agreement with the corre­
sponding available experimental data. 

The code will be extended and tested in case of 
an unsteady aerodynamic input (helicopter rotor in 
forward flight) and the reliability of the new Kirch­
hoff code in the prediction of the propellers noise 
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will be checked. 
The problem of the Doppler singularity present 

in the equation (2) will be dealt with. The use 
of the supersonic Kirchhoff formula [15] seems to 
be a very hard task. This is due either to the 
behaviour of the acoustic surface in supersonic 
motion ( problem faced at CIRA [14] ), and to the 
difficult implementation of the integrand terms. 
The possibilty of using alternative approaches [10], 
suitable for an integration on a supersonic domain, 
is being investigated. 
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