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The BO105 IBC demonstrator of EUROCOPTER Deutschland (ECD) has shown the successful application of
2/rev blade root actuation for significant blade vortex interaction (BVI) noise reduction during flight tests. In
order to evaluate and assess advanced BVI noise control concepts, plant models are required for a
sophisticated controller design. However, modelling the dynamic behaviour of the plant based on extensive
CFD calculations is practically not feasible. Due to their special capabilities with respect to non-linear
behaviour, the selection of neural networks for this kind of modelling task is a reasonable alternative.

The paper focuses on the application of neural networks for BVI system identification purposes, presenting an
overview of combined research activities by the “Institut für Statik und Dynamik der Luft- und
Raumfahrtkonstruktionen (ISD)” and ECD. Two methodologies are outlined to achieve this goal:

On the one hand a black box approach is used, whereby neural networks are trained to reproduce the pressure
output of a specific Kulite that was gathered during the open loop flight test campaign in 1998. Based on the
assumption of plant periodicity, a system identification approach is discussed using series of small neural
networks for the representation of one rotor revolution. The clustered networks show good mapping ability
concerning the interpolation of pressure data for various IBC phase angles.

On the other hand, a grey box approach comprises physical knowledge about the mechanism of BVI, including
a simplified model of the tip vortex convection similar to prescribed wake models. The above mentioned blade
pressure data is filtered to extract the position and strength of interactions. Several neural network modules
map different aspects of the vortex wake and are adapted to predict the occurring BVI events as a whole. Each
of these neural modules do thereby keep their physical interpretation.

The current state of the results is presented and discussed. The identified neural plant models have the
potential to be efficiently applied for real time applications i.e. in-flight BVI control.

Nomenclature
BVI Blade Vortex Interaction
CFD Computational Fluid Dynamic
ECD Eurocopter Deutschland
DNW Deutsch-Niederländischer Windkanal
IBC Individual Blade Control
ISD Institut für Statik und Dynamik der Luft- und

Raumfahrtkonstruktionen
NN Neural Network
TPP Tip Path Plane

A higher harmonic amplitude
Ã time-variant harmonic amplitude
CW wavelet coefficient
a, c, h parameter of Mangler inflow
C, H parameter of IBC inflow
f wavelet frequency
kx longitudinal inflow gradient
m adjacent harmonics
N number of rotor blades
pi pressure sample
r radial coordinate
R blade radius
rev rotor revolution
s (flight) state
t time
u system input
x, y, z TPP coordinate system

αTPP TPP angle of attack
∆cp BVI pressure rise
ϕ IBC phase shift
λ rotor inflow ratio
λ i induced inflow ratio
λ i0 mean induced inflow ratio
µ advance ratio
µz axial advance ratio
Ω rotor rotational frequency
θIBC local IBC pitch input
ψ rotor azimuth

Indices
n multiple of rotor frequency Ω (n/rev)
w vortex wake
wa wake age
w0 vortex at origin

1 Introduction
Exterior helicopter noise is one of the most stringent
challenges for helicopter designers today. It
significantly limits the operational envelope of
helicopters for various applications e.g. for
commuter services in the vicinity of densely
populated areas. One of the most annoying noise
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phenomena is blade vortex interaction (BVI) noise,
typically occurring during descent flight and thereby
increasing the noise emission on ground due to the
low altitude before landing. Numerous efforts have
been undertaken in order to reduce BVI noise
emission by adequate design of the main rotor
blades. Nevertheless, rotor blade design is a multi-
objective optimisation and optimised blade designs
must not show deficiencies in other fields e.g.
performance or control loads leading to severe
boundary conditions with respect to design issues.
Taking into account today’s technology, the potential
of BVI noise reduction by passive means seems not
to meet the requirements for a wide-spread use of
helicopters in urban areas.

A promising alternative approach for significant BVI
noise reduction is found in the application of active
rotor control technologies. Both wind tunnel and
flight test campaigns have demonstrated the
effectiveness of applying higher harmonic blade
pitch variations under flight conditions with high BVI
occurrence. Regarding these test campaigns the
higher harmonic pitch input was realised either by
actuating the swashplate in the fixed frame with
multiples of the main rotor rotational frequency or by
hydraulic actuators replacing the pitch links in the
rotating system. While the harmonic actuation of the
swashplate – often designated as higher harmonic
control (HHC) – is limited to i ⋅ N/rev and
i ⋅ (N ± 1)/rev, i = 1,2,3,… for a N-bladed rotor
system due to the limited degrees of freedom
offered by the swashplate system, the individual
blade control (IBC) allows the independent control of
each blade. Due to blade pitch variations, both
systems affect BVI noise characteristics mainly by
modifying the inflow conditions in the vicinity of the
rotor disk.

In 1991, a dynamically scaled model of the four
bladed BO105 main rotor was tested in the German-
Dutch wind tunnel DNW as cooperative research
effort on HHC by the “Deutsches Zentrum für Luft-
und Raumfahrttechnik” (DLR), the NASA Langley
research centre, Eurocopter Germany (formerly
MBB) and Eurocopter (formerly Aerospatiale)
(Ref 1). The experimental activities revealed that the
BVI noise level can be reduced significantly by HHC
input but the most beneficial HHC settings also lead
to an increase of vibrations.

In 1990 and 1991, first flight tests on a BO105
helicopter equipped with blade root actuation
showed some promising results regarding BVI by
IBC, although for safety reasons pitch control
authority was limited. In order to examine the full
potential of IBC, a full scale BO105 main rotor
incorporating an improved IBC system was tested in
1993 and 1994 in the 40 by 80 ft NASA Ames wind
tunnel (Ref 2). Extensive tests in single frequency
mode (defined by amplitude, frequency and phase
angle) demonstrated the effectiveness of 2/rev and
3/rev IBC inputs. Furthermore, side effects of 2/rev
IBC on vibration were found to be not as severe as

obtained by the application of 3/rev pitch control.
Nevertheless, the phase angle of optimal BVI noise
suppression depends on the flight conditions. As a
consequence of that - an optimised IBC input for
one flight condition may lead to an increase of BVI
noise for another flight condition - effective BVI
noise reduction by IBC requires the usage of a
closed loop system.

In 1998, flight tests of the IBC equipped BO105
helicopter were performed by Eurocopter
Deutschland in order to confirm the wind tunnel test
results (Ref 3). Main differences between wind
tunnel tests and flight tests are seen in the presence
of tail rotor and engine noise regarding the flight
tests, in the trim conditions leading to different hub
moments and in the weather conditions providing a
realistic scenario. Although the flight tests were
performed in the open loop mode (mostly 2/rev), the
test campaign represents a major step towards BVI
closed loop control due to the complex data
acquisition systems on ground and on board
answering questions regarding the appropriate
sensor system for feedback control. The
neighbourhood noise was measured by a ground-
based microphone array consisting of 11 ground
microphones arranged up to 300 m on both sides of
the flight path and 3 microphones on tripods
according to ICAO noise certification rules. The
helicopter was equipped with five pressure
transducers on the leading edge of one main rotor
blade in order to detect impulsive pressure changes
due to BVI. Furthermore, microphones were
installed on both sides on the helicopter landing
skids. Good correlations were obtained between
noise reduction measured simultaneously by ground
microphones and by skid microphones.
Furthermore, the blade pressure data shows the
avoidance of pressure peaks related to BVI in
consistency to the microphone measurements by
selecting appropriate IBC inputs.

The IBC flight test campaign was continued with the
application of BVI closed loop control (Ref 4). The
investigated noise control concept is based on BVI
index minimisation by applying 2/rev IBC input. Due
to the optimisation of the IBC phase by the “Golden
Section Rule” (a gradient free procedure for
searching minima), only a very limited knowledge of
the helicopter BVI noise characteristics is required
for the design of the controller. Two different
controllers were applied, the first one only
controlling the IBC phase by fixed IBC amplitude
and the second one controlling both IBC phase and
amplitude. Both controllers showed adequate results
in BVI noise reduction during standard descent flight
conditions in consistency with the open loop flight
test campaigns performed earlier. Nevertheless,
transient manoeuvres showed that the application of
the Golden Section Rule slows down controller
response. Although a certain potential of improving
the two controllers is identified by optimising
controller parameters, other concepts are analysed
at Eurocopter Deutschland, promising good
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performance under transient conditions by inclusion
of additional knowledge into the controller with
respect to helicopter BVI noise characteristics.

From a control point of view, the dynamic plant
model required for sophisticated controller design is
of high non-linearity since a high frequency
phenomenon – the BVI noise as system output
higher than 20/rev – should be controlled by low
frequency input – 2/rev IBC or similar. A theoretical
derivation of an adequate dynamic plant model
seems practically not feasible with today’s
knowledge. Therefore, system identification
methods are analysed for generating BVI plant
models based on flight test data. Due to their special
capabilities with respect to non-linear behaviour,
neural networks appear to be a very attractive
alternative for this kind of purpose.

2 Neural Networks for Modelling
Neural networks (NN) allow a data driven design of
linear and non-linear mappings represented by
means of many input and output data samples.
Especially in the case of an unknown analytical
relation between inputs and outputs, i.e. a missing
mathematical description of the system behaviour,
experimental data is often the only source of
knowledge. Providing representative data samples,
neural networks show the potential to adapt to the
underlying function. Considering the large amount of
in-flight measurements, neural networks seem to be
well suited for the identification of the BVI system. In
addition, they perform a highly parallel and therefore
fast computation which is demanded when using
them as a real time plant model.

Basically, neural networks consist of small
computational units called neurons, which form a
network using weighted connections between
different layers. By selecting an appropriate
activation function within the neurons, neural
networks can perform linear as well as non-linear
mappings (Ref 5). The weights of the network
connections are free parameters which are adapted
during the learning process so that the output error
is minimized. Different learning algorithms are
available in standard software packages, such as
MATLAB (Ref 6), which has been used in this work.

The behaviour of neural networks can be influenced
by means of different network topologies. Two main
types can be distinguished, feed forward and
recurrent networks. Recurrent networks allow
backward connections (loops), being dynamic
systems they may become unstable, while feed
forward networks are static systems and can be
proven to be unconditionally stable. Nevertheless, it
is possible to perform dynamic mappings with feed
forward networks as well, providing time delayed
inputs according to the order of the dynamic system
(Ref 7).

Since no general rules for choosing an appropriate
network architecture exist, the design of a neural
model is an iterative procedure finding a trade-off
between the network structure i.e. activation
function, number and size of layers and the mapping
quality. However, certain limits on the choice of an
appropriate topology, size and generalisation
properties of an non-linear feed forward NN do exist
based on proven engineering principles (Ref 8).

In the following chapters, two different approaches
for BVI system identification are presented. While
the black box approach is based only on the flight
test database, a more sophisticated grey box
approach additionally incorporates physical
knowledge in the identified BVI plant model.

3 Black Box Approach
During the IBC flight test campaign in 1998 with
focus on 2/rev open loop mode, a large amount of
experimental data was acquired. On the leading
edge of one main rotor blade five pressure probes
(Kulite elements) with different radial positions
measured the local blade pressure occurring during
flight. The acquired pressure signals show the
appearance of BVI by a series of high frequency
pressure peaks on the advancing and retreating
rotor side in dependence of the flight state and of
the IBC input. Thus, the occurrence of BVI can be
identified optically or by means of an appropriate
index number. Therefore, the pressure signals
represent a suitable medium for system
identification regarding the BVI phenomenon.

The pressure signals were processed with a
sampling rate of 512 per revolution, meaning that
every revolution of the rotor blade is discretised with
360°/512 = 0,703° rotor azimuth increments. For the
flight conditions, performed during the flight tests
with emphasis on a 6° descent at 60 KTAS, the
pressure value of one sample position pi is assumed
to be constant leading to a periodic discrete function

512 , 1, 2,3...i i revp p rev+ ⋅= = (3.1)

Disturbances due to turbulence, pilot inputs etc. are
not taken into account at the moment by using
selected rotor revolutions as representatives. Thus,
for the investigated flight state, the pressure value at
a selected sample position depends only on the
control input u

( )i ip p u= (3.2)

If adequate data for additional flight states s is
provided, this functionality can be expanded to

( , )i ip p u s= (3.3)

Regarding this fact it sounds reasonable to select a
cluster of 512 small feed forward neural networks,
one network for each sample position, as can be
seen in Fig 1. Each network is trained separately
with the matching data at that position. The output of
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the networks has to be regarded consecutively to
obtain a discrete pressure signal covering one main
rotor revolution.

3.1 Training Data
The acquired data consists of pressure signals for
different IBC phases ϕ. Due to efficiency reasons an
amplitude A of 1° was applied during the flight test
campaign. The resulting local IBC pitch input is
defined by

)cos( ϕθ −Ω= tAIBC (3.4)

According to the flight tests the different phases for
the model inputs are selected from 0° up to 330° in
30° steps including an additional reference case
without any IBC input. Thus, 13 different IBC cases
are available in total for the investigated flight
attitude.

The training by backpropagation of the feed forward
networks is done by presenting an input value and a
matching output value. The system input u is
determined to be of the form A⋅sinϕ and A⋅cosϕ.
Thus, the following definition seems to be adequate
for a periodic structure of the system input









=

)cos(
)sin(

ϕ
ϕ

A
A

u (3.5)

For constant IBC phase and amplitude the model
input u is constant and the same for all 512
networks (Fig 1). As output data the matching flight
test pressure data is taken. For these investigations
the pressure transducer on 87% radial station is
used. The signals of the other radial stations show
similar behaviour. The training samples are provided
to the networks in matrix form, i.e. batch training is
applied.

Fig 1: Cluster of 512 networks producing the
pressure output of one rotor revolution.

3.2 Network Structure
For the limiting amount of 13 different training cases
only small neural networks with a few free
parameters (weights) lead to adequate results.
Investigations with different kinds of networks have

demonstrated that networks with two layers show
appropriate performance. Although one neuron in
the output layer is obligatory because of the single
output, the number of neurons in the first layer can
be different from the number of inputs. Two and
three neurons in the first layer (see Fig 2) proved to
be a good solution but also larger networks have
been investigated. The non-linear behaviour of the
neural network is totally contained in the first layer
using a non-linear, sigmoid activation function. The
output layer as linear function maps the value into
the physical space.

Fig 2: Feed forward networks with 2 (a) and 3 (b)
hidden neurons.

The used algorithm for training was the well known
Levenberg-Marquardt (Ref 6) algorithm. Additionally
the Bayesian Framework Regularization (Ref 6) was
applied in order to prevent overfitting.

3.3 Results
The trained cluster of networks is able to reproduce
the pressure signal adequately for the case without
IBC, as shown in Fig 3, although the pressure signal
is highly non-linear.

Fig 3: Pressure signal without IBC input (blue:
network output, red: flight test data), marked
with a red circle is the BVI phenomenon,
marked with a blue circle are local peaks.

Compared is a pressure signal of test flight data
(training target) to the network output. As expected
for this flight case, the BVI phenomenon in the form
of pressure peaks occurs on the advancing side and
can be clearly identified between samples 64 and
128. The result shows good overall behaviour. The

a) 2x1 Neurons b) 3x1 Neurons

NN512

NN2

NN1 p1

p2

p512

A⋅sinϕ
A⋅cosϕ

A⋅sinϕ
A⋅cosϕ

A⋅sinϕ
A⋅cosϕ

BVI

local peaks
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local spikes in the signal (see Fig 3 between sample
256 and 320) can be explained with the missing
information flow between the sample positions as
discussed later.

Fig 4 shows the results of a flight state with IBC
enabled using 60° phase. The output shows a
similar behaviour as in Fig 3. Local spikes are still
present but on different sample positions. The
previously perceivable BVI between samples 64 and
128 does no longer occur due to IBC inputs.

Fig 4: Pressure signal with IBC input ϕ = 60° (blue:
network output, red: flight test data).

To show the ability to interpolate between learned
IBC cases, intermediate cases are simulated and
compared to the nearest available flight data cases.
Fig 5 depicts the simulated 75° IBC case together
with the 60° and the 90° phase. The network
delivers an output that is settled in between the
original data.

Fig 5: Pressure signal with IBC input ϕ = 75° (blue:
network output, green: flight test data ϕ = 60°,
red: flight test data ϕ = 90°).

The output for this interpolated case is consistent
with Fig 3 and Fig 4. Concerning the general

behaviour and occasional spikes the signal lies in
between the neighbour signals ϕ = 60° and 90°.

Regarding these results it can be recognised that
the network output has a more rough character
including spikes. This can be explained by the fact
that no information is exchanged or no information
flow takes place between the networks. Every
network is trained and simulated autonomously
without regard to its neighbours. Thus, no inherent
smoothing mechanism is acting in azimuth direction.

3.4 Merging of Networks
To overcome the problem of missing information
flow between the small networks, a modification of
the neural network structure was performed by
merging the small networks into bigger ones. Step
by step two adjacent networks were united resulting
in one network with the same input vector, but the
number of outputs is doubled representing
consecutive samples. For 512 samples per
revolution, this procedure can be applied nine times
finally resulting in a single network with 512 outputs
representing the entire rotor revolution. This
procedure is shown in Fig 6 a) to c).

Fig 6: Three different network clusters:
a) 512 networks, b) 256 networks each with 2
outputs, c) one network with 512 outputs

Using one neuron in the output layer for every
output, the network becomes large and thus, time to
perform training increases exponentially. For the
IBC case ϕ = 60° the output of this network is shown
in Fig 7. The pressure signal is visibly more smooth
but it is possible that BVI, resulting in pressure
peaks, is not reproduced properly any more.
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Fig 7: Pressure signal with IBC phase ϕ = 60° (blue:
network output, red: flight test data).

3.5 BVI Index
To analyse the quality of the networks, an objective
comparison of BVI resulting from the predicted and
the measured pressure signals has to be performed.
Therefore, a BVI index according to (Ref 9) is used
to evaluate the occurring interactions. It is defined
as the integral of the coefficients CW resulting from
a wavelet analysis

( )
2 2 2

1 1 1

1BVIX , ,
r f

r f

CW f r d df dr
f r

ψ

ψ

ψ ψ
ψ

=
∆ ∆ ∆ ∫ ∫ ∫ (3.6)

The BVI index is implemented in discrete form
replacing the integral by finite sums over the
azimuth ψ, the wavelet frequency f and the rotor
radius r. Fig 8 shows how the BVI index is affected
by the size of the networks for the 90° IBC case.

Fig 8: Variation of BVI index for different network
sizes, IBC input ϕ = 90° (solid: based on test
flight data, dashed: based on network output).

The BVI indices calculated from the outputs of the
different sized clusters of networks are smaller than
the index from the flight test data. The rough
character of the small networks does not result in a
high BVI index. The expected suppression of BVI in
the bigger networks can be seen in Fig 8 beginning
from 64 single networks per cluster and getting
stronger.

3.6 Transient Simulation
To evaluate the generalisation of the network
outputs for embedding the neural plant model into a
controller design, a procedure is implemented to
simulate the different kinds of network clusters with
time dependent input data. As representative case
the simulation of a rising amplitude is discussed.
The inputs A⋅sinϕ and A⋅cosϕ are arranged with an
amplitude changing from zero to one in several
revolutions rev

( )sin
( )

( ) cos

A t
u t

A t

ψ
ψ

 
=  
  

(3.7)

( ) , 1 , 0 512
512
iA t A A i rev
rev

= ⋅ = ° < < ⋅
⋅

(3.8)

The pressure signal is changing continuously from
one IBC state to the other (Fig 9). Although no
pressure signals are available for such IBC inputs,
the simulation results depict a smooth and
reasonable change. Additionally, the BVI index,
separately calculated for each rotor revolution, is
shown below the respective interval. It shows a
constant change from one case to the other as well.
As expected, the BVI index is decreased by
engaging IBC control, visible by the disappearance
of the peaks on the advancing side.

Fig 9: Simulation of increasing IBC amplitude
(above: network output, below: BVI index).

3.7 Discussion
The investigated networks are capable of depicting
the complex rotor system behaviour in terms of
highly non-linear pressure signals for enabled and
disabled IBC input. Due to implemented stationary
behaviour, the results are bound to the investigated
flight state of 6° descent angle and 60 KTAS.
Nevertheless, the extension and generalisation of
the neural plant model and its properties in different
directions is possible. By adding more network
inputs like roll and pitch attitudes as well as flight

number of networks

measured
predicted
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and descent variables, the system can be extended
to other steady flight conditions (see Fig 10).
Additionally, including the derivatives of these inputs
allows the consideration of unsteady flight
manoeuvres in the neural plant models.

Fig 10: Extended neural network with additional
inputs.

If necessary even pressure data of previous rotor
revolutions can be added to the input vector in order
to consider dynamic wake effects, resulting in an
NNARX model (Neural Nonlinear AutoRegressive
model with eXogenous Input). The investigations of
all these approaches require appropriate training
data for the set up of the neural networks and are
therefore related to the availability of additional flight
test data foreseen in the future.

4 Grey Box Approach
The intention of the grey box approach is to map the
complex non-linear BVI plant by keeping its physical
interpretability, allowing much easier localisation of
mapping difficulties and failures. Additionally,
existing knowledge about the BVI phenomenon can
be used to provide a basic behaviour which
supports the training process or just simplifies the
complexity of the network functions, because only
the unknown or uncertain parts of an existing model
have to be taken into account. If the basic dynamic
behaviour can be approximately described by a
simplified model, the network component just has to
learn the difference between measured data and
model output preserving the dynamic functionality.
In this case, less data samples are required for
training.

For the grey box approach the idea of a convection
model similar to prescribed vortex wake models is
followed. These models prescribe the location of the
blade tip vortices as a function of the wake age.
From the predicted locations of the tip vortices, i.e.
the parallelism of interaction as well as vertical miss
distance, a BVI-Index will be derived, which is a
measure for the generated noise.

In fact prescribed vortex wake models have been
developed to enable predictions of the inflow
through the rotor disk, however, these simple
models which approximately describe the rotor wake
geometry and the convection of the tip vortices are
useful to introduce basic physical knowledge about
BVI.

Beside models like “Rigid Wake” (trailed vortices are
represented by skewed helical filaments) or “UTRC

Generalized Wake” (by Egolf & Landgrebe), the
“Beddoes’ Generalized Wake Model” is of interest,
since the trajectories of tip vortices are estimated
with an assumption of the inflow distribution across
the disk. The vertical displacement of the vortices is
given by an integration of the inflow ratio over the
wake age. This approach presents the use of a
further kind of model, the inflow model. A basic
inflow model was first suggested by Glauert (1926),
followed by several variations (e.g. by Payne,
Drees, White & Blake, Pitt & Peters, Howlett,
Coleman) concerning the coefficients which
describe the longitudinal an lateral distribution of the
inflow (Ref 10).

A more sophisticated inflow model was developed
by Mangler & Squire (1950, Ref 11). It uses the
incompressible linearized Euler equation to relate
the pressure field across the disk to an inflow
distribution (Ref 10). This model was already
involved in van der Wall’s work to predict the effect
of active blade control on the vortex convection
(Ref 12) and showed that it can yield an
approximate description of the tip vortex locations
near the rotor disk. Compared to free wake
simulations (with CAMRAD II, Ref 13, including the
CHARM Plugin, Ref 14) and measured BVI
locations, the predictions based on Mangler’s inflow
tend to lie in a similar region. For this reason the
Mangler model is used as a basic model for the
neural approach.

The neural convection model is divided in two main
components (Fig 11), the planar and the vertical
model. While the planar model describes the
movements of the vortices in the plane of the blade
tips (TPP), the vertical model maps the deflections
perpendicular to it. Both are further divided into
different modules explained in detail in sections 4.2
and 4.3.

Fig 11: Two main components of the convection
model, the planar model at the top, the
vertical model below.

To adapt these components according to the in-
flight measurements, the training data has to be
prepared. This process is described in the following
section.
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4.1 Data Preparation
Modelling the vortex convection for the prediction of
BVI noise, the point of interest is the position of the
tip vortices in relation to the rotor blades. This
information must be given by the training data but
could not be measured directly in-flight. Additionally,
regarding the experimental data, the existence of a
tip vortex appears only in case of interactions with
the blades. Therefore the measured blade pressure
values are pre-processed to obtain the values
needed for model training.

First, the model input values are extracted for each
flight test series. In fact the nominal flight attitude
was a 6° descent flight with an advance ratio of
0.15, deviations from this reference path occurred
and are regarded as variable inputs. Second, the
model output values, i.e. the locations of BVI events
are computed in several steps.

The high frequent pressure coefficient fluctuations
resulting from BVI are extracted by means of a
wavelet filter (see Fig 12). Basically, the wavelet
transformation serves as a high pass filter, but
additionally enables the use of the wavelet
coefficients to obtain information about the strength
of interactions which could be included in a BVI
index.

Fig 12: Fluctuations of the blade pressure coefficient
(histories over several revolutions) resulting
from BVI on the advancing side at a radius
r/R = 0,6. The pressure rise ∆cp for the
interactions at 50° azimuth is marked.

The positions of interactions in the TPP can easily
be found on the advancing side between a local
maximum and minimum pressure coefficient (Fig
12), vice versa on the retreating side. The vertical
distance of the vortices can only be estimated,
which can be ascribed to two major problems. On
the one hand, the vortex circulation strength is
unknown and assumed to be approximately
constant for the presented approach. On the other
hand, observing only one interaction, it is not
possible to decide whether the vortex was located
above or below the rotor blade. Both cases lead to
the same induced pressure jump.

According to investigations of Kitaplioglu,
Caradonna and Burley a relation between the
nominal vortex miss-distance and the BVI pressure
rise ∆cp was found for vortices with positive and

negative circulation (Fig 13, Ref 15). The authors
assume that the dotted curve for the positive vortex
generator incidence (+12°) is probably erroneous.
For that reason it is not taken into account.

Fig 13: BVI pressure rise as a function of nominal
vortex miss-distance (Ref 15) for different
sense of vortex rotation.

For the estimation of the vortex distance based on
the blade pressure data a function similar to the
solid line in Fig 13 is used. However, the maximum
pressure rise has to be modified, so that reasonable
miss-distances occur. To accomplish this fact, the
maximum pressure rise in the function is normalized
with the maximum pressure rise in the
measurements. Of course the vortex strength
influences the height of the  pressure jump, whereby
an error is made in assuming constant vorticity.

To decide whether the vortex was above or under
the TPP it is helpful to know that in the considered
descent flight case the vortices first drift above, later
below the TPP hitting the blades in the BVI relevant
azimuth by about 40° to 80° (see Fig 14). Another
important hint is that variations in the strength of
interaction observed over many revolutions correlate
for vortices on the same side of the TPP in contrast
to vortices on different sides.

Based on this background a set of training data
samples is extracted from the measurements of the
different test series. The distributed locations found
in one test series (Fig 14) are averaged over several
revolutions resulting in vortex locations exemplarily
shown in Fig 15.

Fig 14: Estimated vertical vortex distances based on
measurements at r/R = 0,6 over the rotor
azimuth
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Fig 15: Estimated vortex locations based on
measured interactions. The section with the
TPP is marked.

At the moment only the advancing side as the main
source of BVI noise is considered in the learning
process, but no limitations exist to extend the
models to the retreating side as well.

4.2 Planar Convection Model
For the planar convection model the following
assumptions are made. The vortices are of constant
strength and do not influence each other. They drift
in x-direction according to the advance ratio µ, the
lateral drift is neglected. Deviations resulting from
the mentioned assumptions could be corrected by
means of additional neural modules.

Basically the convection of the vortices is given
similar to the prescribed wake models by the
following equations
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cos)

i) s n
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w w
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w
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w

x
r NN
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R
y

y
R

ψ µψ µψψ

ψ ψ

= + = +

= =
(4.1)

The vortices originate at the positions xw0, yw0,
respectively rw0, ψw0 and drift with increasing wake
age ψwa in x-direction. The main simplification is
made in assuming that the vortex origin lies at a
constant radius at the blade tip, because in the
interesting regions from 90° to 270° azimuth they
originate at varying radii just inboard the tip. For that
reason a neural network module (Fig 16, marked
with red letters in equation 4.1) maps the blade
azimuth to the radius rw0, and a lateral position yw0 to
xw0 respectively. Thereby, the vortex generation
radius is corrected so that the average of the
measured positions can be predicted more exactly.
The vortex origin surely depends on further
variables like the pilot’s and IBC inputs or flight
attitudes, but this is not taken into account at the
moment.

The NN has radial basis activation functions in the
hidden layer and a linear output neuron. This
network structure already shows good performance
with about 10 radial basis neurons. Thus the

capability to consider further influences (inputs) is
given and will be incorporated in the future.

Fig 16: Neural network module to correct the vortex
origin. Possible additional inputs are marked
with the dashed arrow.

Two further neural correction modules have been
investigated. The first one is an additional drift
module (marked with red letters) for accounting
unequal convection speeds according to the
following equation
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ψ
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(4.2)

The improvements offered by this component are
quite small and can be neglected, additionally the
computation of the vertical convection thereby would
lead to a complicated integration over the inflow.

Fig 17: Feed forward network to map the dynamic
variations of the azimuth of  interactions.

The second correction module is a feed-forward
network (Fig 17) to map the dynamic variations in
the azimuth of the interactions observed over many
revolutions. Primary investigations have shown that
for an exemplary interaction the current and delayed
flight attitudes can be mapped to the difference of
the estimated (by Eq 4.1) and the measured
interaction azimuth. The training process of this
dynamic mapping requires data samples over a long
time range i.e. many revolutions. For this reason a
detailed validation of the neural model is the subject
of current investigations.

4.3 Vertical Convection Model
As mentioned above, the vertical drift of the vortices
can approximately be computed by an integration of
the inflow distribution λ over the wake age according
to the equation
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The entire inflow can be composed of two
components, the downwash according to the flight
attitude without active rotor control and the
additional downwash resulting from the 2/rev IBC
inputs (Fig 18). Furthermore the superposition is
possible after the integration as well.

Fig 18: Two components of the vertical convection.

Since the training data samples are an estimation of
the vortex positions, the z-component as a result
from the integration should be used as model
output. Assuming a constant convection speed in x-
direction and no lateral drift, the integration over x
instead of ψwa is possible. The resulting z-
component for each x,y-coordinate in the TPP
represents a 3D-surface on which the vortices drift.

For some simple induced downwash models the
integration over x results in the following functional
dependencies for the vertical deflections
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The consideration of the functional dependencies is
important for choosing the appropriate network
topology. As can be seen, the integration starts at
the vortex origin xw0, resulting from the planar
convection model. Since the Glauert downwash
shows no variation in y, Drees allows lateral
inequality and Beddoes indicates the vortex roll up.
All are scaled with the induced inflow ratio and the
advance ratio. The increasing inflow in longitudinal
direction is described by kx and depends on the
flight attitude as well.

Except for Beddoes’ model, these drift surfaces
show no sufficient local characteristic so that the
vortex convection could only be coarsely described
in contrast to the surface based on the Mangler
inflow model
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Thereby the shape of the drift surface is given by
the form functions hn scaled with the constant
factors cn and the factors an, which depend on the
rotor inclination αTPP. The form functions hn are
polynomials in x, xw0 and y and are derived in
(Ref 12). Even if the Fourier series has infinite
addends, n greater than 4 to 6 does not influence
the surface significantly and is neglected here.

For adjusting the model to the prepared data
samples a radial basis network is trained, which on
the one hand maps the drift surface similar to
Mangler and on the other hand adapts to the
measured data in the BVI relevant region. To
account for the influence of the flight attitude, the
rotor inclination αTPP is used as another input along
with the longitudinal and lateral position

0 ( , , ,...)i i
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z
NN x y
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Of course further inputs can be applied, such as the
vortex origin x0, which is assumed to be constant for
certain azimuths so far (see section 4.2).

The additional downwash resulting from the 2/rev
IBC inputs is at present described by a model
derived by van der Wall (Ref 12)
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The order of the induced radial velocity distribution
is defined by Cj. The inflow λ in by means of IBC is
derived from the blade element theory and
explained in detail in (Ref 12). The second part of
the equations accounts for the m adjacent
harmonics, which are excited by the 2/rev IBC
inputs with the amplitude A2, the phase angle ϕ and
the phase shift ψAi2. The magnitude of the excited
amplitudes is defined by Ai2. Presently no adjacent
harmonics are considered because their influence is
quite small and this model should be seen as an
initial best guess for the network adaption.

Similar to the Mangler model, H2Cj and H2Sj are form
functions in x, xw0 and y that define the shape of the
drift surface. Due to the fact that dynamic inputs are
higher harmonics of the rotor rotational frequency,
the resulting additional inflow can be seen as
periodical stationary waves over the rotor plane.

Additional simulations with the comprehensive rotor
code CAMRAD II including the CHARM free wake
model as plug-in (Ref 13, 14) support the
investigation of the IBC influence on the vortex
trajectories. They show similar results to the above
mentioned model.

The two components of the vertical convection
model are illustrated in Fig 19. Both depend on the
flight attitude. The adaption of the neural model for
the IBC influence with the measured data is subject

induced inflow

Mangler

vortex trajectories

integration
over wake age

induced inflow

2/rev IBC

-1
-0.5

0
0.5

1

-1
-0.5

0

0.5

1
-4

-2

0

2

4

6

8

-1

-0.5

0

0.5

1

-1

-0. 5

0

0.5

1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

xy

λ i

69-10



of the current work. Results from the neural model
for the descent (reference) flight are presented in
the following section.

Fig 19: Neural network modules to describe the
vertical convection.

4.4 Results and Discussion
In the case of the planar convection model the
estimation of the BVI locations can be essentially
improved by means of the network module which
corrects the vortex origin, as compared in Fig 20.
Thereby only one test series is considered.

Fig 20: Comparison of the planar convection model
without (above) and with (below) NNw0
correction. Measured locations are marked
by ‘o’, model outputs by ‘+’.

Taking several test series with slightly different flight
paths into account, small variations of the measured
locations arise since only a mean position can be
mapped without further inputs. For this reason future
work will incorporate this subject, particularly when
larger variations from the reference flight path are
considered. These variations have to be
distinguished from smaller dynamic variations
observed over several rotor revolutions. Therefore
the neural network module NNflightdyn will be used.

The vertical model for the descent flight without IBC
according to equation 4.6 is a neural network with

radial basis activation functions in the hidden layer
and one linear output neuron. At first, only one test
series and thus no influence of the flight attitude are
considered (Fig 21). The appropriate radial basis
network has 22 hidden neurons.

Fig 21: The neural model (green line) in comparison
to it’s Mangler basis (blue line) and the
estimations from the measured locations
(red +). The vertical distance is plotted over
the rotor azimuth (advancing side) for the radii
with the Kulites

The network shows good adaptability towards the
training data samples without losing the basic
shape. In Fig 21 just the sections with the radial
positions where the measurements were made are
presented. The mapping quality can be tested with
input data from regions which are not covered by
the training data. The neural model output over the
whole input range is illustrated in Fig 22, once again
compared with the prediction based on Mangler’s
inflow and the prepared measurements. It shows
that plausible network outputs are not restricted to
the area defined by the measured data only,
because the data used for the training process was
supported by the existing Mangler model.

Fig 22: The neural model (green mesh) in
comparison to its Mangler basis (blue mesh)
and the estimations from the measured
locations (red)

Further on, the neural model was adapted to several
test series with slightly different flight attitudes,
which is considered by the inclination of the TPP as
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an additional network input. Again, the network
adapts quite well and indicates remarkable
sensitivity concerning the additional input (Fig 23).
The number of neurons in the hidden layer of the
radial basis network increases to 32. Of course, it is
imaginable that further dependencies exist, which
need to be thoroughly investigated in the future.
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Fig 23: Sections of the drift surfaces for different
αTPP, one colour for each test series. Neural
model outputs (solid lines) are compared with
the estimations from the measurements(+).

The main information extracted from these results is
the location of the section of the drift surface with
the TPP. In combination with the planar model
output, enough clues should be available from there
to derive BVI noise indices which could serve as a
feedback for the noise controller.

5 Summary
The aim of the neural network approaches is to
identify the non-linear dynamic BVI system for the
use as a plant model in a future real time BVI noise
controller. Due to the extensive flight test data and
the non-linear behaviour, a data driven design with
neural networks is convenient.

The black box approach maps the measured blade
pressure values for a steady descent with different
IBC inputs. The derived BVI index evaluates the
predicted pressure signals concerning the occurring
interactions. Different network structures are
investigated and are able to reproduce the
measurements very well.

The alternative grey box approach maps the
estimated vortex locations depending on the flight
attitude and is divided in several components. The
networks show good adaptability towards the
prepared data samples, though further model
dependencies have to be investigated. The intention
of this kind of modelling is not, to achieve the
accuracy of specific BVI codes, but to predict the
approximate influence of IBC inputs on BVI as a
basis for control design.

Both approaches emphasise the generalisation
capability of the neural models to reasonably predict
the plant behaviour in input regions not explicitly
included in the training process.

Based on the identified neural plant models a closed
loop BVI controller will be designed. Due to the non-
linearity of the BVI system a neural controller design
is considered, even though a conventional approach
becomes possible as well.
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