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ABSTRACT

This paper seeks to develop methods for the task of validating a
complex non-linear model of helicopter dynamics against measured flight
—data. The approach adopted here is to regard both the helicopter and
the non~linear model as sources of data, and to measure the
correspondence between them using a series of simplified descriptions,
linearised for each flight condition. The aim is to achieve matching
trends in parameter estimates for both these scurces of data, as a
justification for a validated model.

In order to obtain satisfactory parameter estimates for the matching
of predicted and estimated trends, practical problems asscciated with
the application of system-identification techniques to helicopters have
to be overcome. These include difficulties caused by ithe 111-
conditioning of the information matrix, which can result from
correlations in the helicopter flight-data., In addition, for the use of
a six-degrees—of-freedom model in the estimation, where the real system
is of a higher order, there is a requirement to diminish or exclude the
higher-order effects from the estimastion. This may be achieved by the
use of a restricted frequency range for the estimation, and by the
incorporation of time delays into the model; both these are facilitated
by the formulation of the estimation problem in the frequency domain,.

Use is made of real flight-data obtained from flight trials with a
Puma helicopter at RAE Bedford, for 60 and 100 knots nominal trim
speeds., The simulated data are ocbtained from +the HELISTAE model
developed at RAE Bedford, and the estimation softwars was developed by
the current author at Glasgow University,

SOMENCLATURE
A, B H state matriz, control dispersion mairix, measurement iransition
mtrix,

Arr, Aerm. . Br partition matrices of the SDOF model relating fuselage
and rotor effects,

aii elements of second order flapping equation.

Aty elements of first order flapping equation.

b vector of constant biases im measurements,

o) general control.

G correction term for transform of time derivative,

g gradient vector (output-errory.

J cost functian.

j complex number such that j= = -1

k vector of trim constanis for measuremsnts.
Loy L. oo rolling moment derivatives,

M information matrix

Mo, Moy pltching moment derivatives.

Noy New o yawing moment derivatives.

P number of parameters estimated.

pit),qt), r{t)  angular rates.

R theoretical ratio of parameter estimates.

5 diagomal matrix of eigenvalues or singular values,
S error covariance matrix,

t time
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ulgry,vity, wit)  aircraft translational velocity components.

Vi eigenvectors.

V  orthogonal matrix of eigenvectors.

v(t, ¥l measurement noise - time domain and frequency domain,

" X matrix of independent-variable values arranged in columns (equation-
error method).

By, udt), w®iE, ),z state, control, extended «control and
measurement vectors (time domain).
LCwy, Ulw?, I* (w) , Z{w) state, control, extended control and measurement

vectors (frequency domain).

i, Xr  rTOtor state vector and fuselage state vector.

¥ dependent variable (equation-error methad).

alt), Bt incidence and flank angles.

BayBicyBia coning, longitudinal and lateral cyclic flapping angles.
8,48  vector of unkown parameter estlimates and increments,

g, 408 linearly transformed vector of unknown parameter estimates and
increments.

o, M=, e, 2=  collective, loagitudinal-cyclic, lateral-cylic and tail-
rotor controls.

Ag.(rD vector Ag with all but the first r elements set %o zero.

g {w) putput—-error vector,

T time delay.

w  angular frequency.

W1, Wz angular frequency range used in estimation,

xi eigenvalues.

£ 1T transpose.

£ 1 inverse,

O transpose of complex conjugate.

2 INTROQDUCTION

Interest in <the use 0of frequency-domain methods for aircraft
parameter identification, in particular helicopter parameter
identification, bhas increased during the last few years (e.g. refs,
6,12,17-19,21)., Until recently, most published accounts were concerned
with time-domain methods that used a reduced-order model representing
six degrees-of~freedom rigid-body motion (refs. 4,13-16). A drawback
with the time-domain approach is that the extension of the models used
in the identification to include rotor degrees-of-freedom, results in a
system of significantly higher order, and introduces severe difficulties
in terms of the time-domain methods of identification.

In contrast, frequency-domain evaluation methods offer attractive
passibilities in overcoming socme of the problems associated with a
direct use of the time domain in the estimation, The ability to define a
frequency range over which the estimation is fo be carried out is
advantageous from the point of view of obtaining a reduced-order model
valid over a certain frequency range, and in ocbtaining a reduction in
the amount of data used in the estimation. In addition, the ability to
estimate pure delays is facilitated by the formulation of the estimation
problem in the frequency domain; the significance of this, and a
demonstration of the improved model~—fits and parameter estimates
obtained as a result, will be shown in this paper,.
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The problems associated with helicopter parameter estimation are
much greater than in the fixed-wing case. This is partly because of the
increased complexity of the system (more degrees of freedom). Also the
lengths of the records available for estimstion are limited by the
inherent instability of the helicopter, and the measurement sigrals may
be heavily contaminated with noise because of +the high-vibration
envircnment. Difficulties are experienced 1n the application of
parameter-estimation techniques when a high degree of correlation
between the response variables exists; this is very much a problem with
helicopter parameter estimation, and one which is addressed in this
. paper, through an investigation into the use of rank-deficient solutions

_ for the output-error method.

The validation of theoretical helicopter flight-mechanics models is
the primary motivation for the use of system identification techniques,
The analyst is interested in both the estimated values themselves and
the observed trends in the values for changes in the initial steady-
state flight <conditions about which the 1linear model is being
considered. At the most basic level, the tendency of an important
parameter to increase or decrease in value for changes in the nominal
flight cordition, is considered, and is compared with the direction of
change {(i.e. increase or decrease) predicted by the thecretical model,
Next, the estimated values of the stability and control derivatives, for
each of the flight conditions considered, can be compared directly with
their theoretical counterparts; and when satisfactory agreement between
theary and reality is obtained at this level, then some degree of
validation of the theoretical model will have been obtained.

This paper seeks to build on the experience and confidence gained in
the application of frequency-domain estimation technigques, and seeks o
move towards the goal discussed in the previcus paragraph. Use is made
of real flight-data sets generated from lateral control inputs, and also
of data generated from simulation nodels.

£2) THE ESTIMATION SCHEME

The estimation scheme used for the helicopter-system-identification
work carried out at Glasgow University is shown in figure 1. There are
three distinct steps in the estimation.

(1) A frequency-domain equation-error estimation, using singular-
value decomposition, to obtain initial parameter estimates, and to
determine insignificant parameters for exclusicon from the estimation in
the next stage. This step is implemented in a FORTRAN 77 program -
SINGVAL, developed at Glasgow University.

(2) A frequency-domain output-error estimation implemented in a
FORTRAN 77 program -~ OUTHOD, developed at Glasgow University; special
features of this program include the ability to estimate delays in the
controls and measurements, the ability to define relationships between
different parts of +the model structure during estimation, and the
facility for rank-deficient solutions. The iterative optimization
technique used is Gauss-Newton, with an additional scalar line-search
improvement.

(3 A time-domain output-error estimation to obltain estimates of
the zero offsets <{(including constant measurement biases), and initial
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state conditions. The stability and control derivatives, and the
estimated delays, are fixed during this estimation at the values
estimated in stage 2. Time-domain verification of the model estimated in
the frequency domain, is also provided at this stage, and is implemented
in a FORTRAN 77 program - OFBIT, developed at Glasgow University.

Thearetical wvalues are provided by the helicopter flight-mechanics
simulation package HELISTAB (ref. 9), where the user specifies details
of the required model, such as: flight condition, altitude conditions,
degrees of freedom, etc.. In addition, the package can be used to
generate simulated time responses on which an identification can be
carried out; this 1is a useful feature for validating estimation
techniques and software.

£3> APPLICATION TO FLIGHT DATA
£3.1> LATRERAL STATE BQUATION USED IN ESTIMATION.

Consider +the application of the estimation techniques to the
estimation of lateral/directional parameters, The model used is as shown
in 3.1, where the four lateral quantities: (%), p{(2), #{&) and rtd
constitute the state vector z(t). Longitudinal measurements: o(t) and
q(t), are incorporated together with the <ontrol input which is in use:
c(tl, into an extended deterministic control vector: u*{t,v) =
Caled),qit), e(t-THT,

X)) = & 2(8) + B u*t,m 3.0

The contreol c(i-r) represents either the lateral cyclic or pedal input,
and a delay term 1 has been included,

The measured variables are related to the state variables by the
following linearised equation, where K and L represent zero offsets and
constant biases respectively, and v{t) is the measurement noise.

z{t) = Hgty + K+ b0 + vt 3.2

Transforming into the frequency domain, and excluding «=0 from the range
"of frequencies used, results in the model.

jol{@) + Glw) = A L(w) + B U* (W 3.3
Zw) = B X(w) + Ylw) wz0 3.4)

Gw) in (3.3) is a correction term for the Fourier transform of a time-
derived quantity which 1is =not periodic within +the data window
considered. It arises from the approximation of the Fourier integral by
the discrete Fourier transform (refs. 12,19,6),

Using +the above model, estimates of the lateral stability and
control derivatives, and +the lateral-longitudinal cross-coupling
derivatives, can be obtained by estimating elements of the A and B
matrices. The maximum-likelihood cost function used for the estimation
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has the form (ref, 21):

Wz
J = T{elw)*S e lw) + logel S1) 3.5
[}

Bere ¢c{w) represents the difference between the observations and the
model output in the frequency domain, S5 is the error covariance matrix,
and wi-wz 1S the range of frequencies used in the estimation. It is
assumed that there is no process noise on the model,

<3.2) REVIEY OF BARLIER RESULTS AND PROBLENS

Some previously published studies on helicopter parameter estimation
have focused attention on some recurring themes in the results obtained.
In reference 1, Padfield and DuVal, using the equation-error approach,
present results, using flight data from a Puma helicopter with a nominal
trim speed of 100 knots. These results illustrate a commen failing in
the use of six-degrees-of-freedom (6DOF) rigid-body models: that is the
underestimation of primary rate damping derivatives such as pitch
damping M5 and roll damping Lo, The authors of reference 1 point to
similar results obtained by other researchers such as Molusis (refs. 2 &
3) and show that whilst some improvement is observed when the frequency
content of the data is reduced, lessening the effects of the high-
frequency rotor mndes, the estimates are still unsatisfactory, These
derivatives produce dominant effects about all axes, and should be
predicted by relatively simple theory. A large underestimation of these
important derivatives will consequently lead to a corruption of the
estimates of other parameters in the model. It is therefore vital for
the successful estimation of mnodels from helicopter flight-data that
large discrepancies between theory and predictions for these important
parameters, be overcome.

It is thought that the main reason for the poor estimates of these
parameters 1is connected with the quasi~static assumption about the
bebaviour of the main and tail rotors, inherent in a 6DOF rigid-body
representation of the helicaopter. It is assumed that the rotor can be
tilted and instantaneously reaches a new trim position. In reality,
however, there are some short term transient effects which manifest
themselves in the rigid-body neasurements through coupling, and this
contamination results in a degradation of the estimates. The problem
could conceivably be overcome by using longer data records in the
estimation; Thowever, practical difficulties assoclated with the
stability of the helicapter prevent this.

One apparert solution to the problem would seem to be the inclusion
of rotor states (e.g. for rotor flapping) 1in the model, This would
require more measurements to be made, and more parameters to be
identified, resulting in additional complexity in the estimation. An
alternative route used by the current author, and one which particlarly
lends itself to the frequency-domain output—error approach (ref. D) is
the use of delays in the controls to account for higher—order rotar
effects in the estimation of 6DOF rigid-body models. In the application
of this approach to the identification of longitudinal derivatives from
flight-data, some success in obitaining improved model fits and parameter
estimates, in particular for the pitching-moment damping X5 and control
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sensitivity M.1=s have been obtained, The results are presented in
reference 6,

Whilst the use of delays in some of the cantrols to account for
higher-order effects with small time constants, leading to significantly
improved model fits, was implemented on an empirical basis, it was
subsequently found that Isermann <(ref. 7) had suggested a similar
simplification for reducing the number of parameters to be identified in
single~input single-ocutput transfer functions. This is consistent with
the approach described before, since the modes associated primarily with
main rotor/tail rotor states have time constants that are smaller in
comparison to those of the rigid-body modes. The usefulness of delays in
accounting for higher-order effects will be demonstrated later using
simulated data generated from a 9SDOF model that includes cening and
flapping modes, Components of the identified delay could alseo result
from a pure transport delay (ref, 18), and relative phase shifts present
in the measurements.

In addition to the problem of the underestimation of the roll
damping L., Padfield and DuVal's results obtained using the equation-
error approach, show that the accompanying estimate of the derivative L.
was very high compared to theory. This anomaly has also been aobserved by
the current author, for a range of flight conditions between 60 and 100
knots in level flight, using the equation-errur approach.

If we comsider the response (shown for the lateral variables as part
of figures 7,8 and 9) to a pedal doublet input {(shown in figure 27, for
a Puma helicopter £flying at a nominal trim level of 100 knots, in
straight and level flight, altitude 6000 ft., it can be seen that there
is a strong correlation between the roll and yaw rate responses. It can
therefore be expected <that difficulties in estimating some of the
parameters associated with these variables will occur. The damped
sinusoidal roll and yaw rate responses which are almost n radians out of
rhase with each other, and are assoclated with a 'Dutch-Roll' type mode,

The consequence of using non-orthogonal, indeed almost perfectly
linearly dependent, respunses in the sstimation, can be understood when
an attempt is made to formally invert the information matrix M, whether
in the context of the equatiomn-error approach:

g =[X"X17X"Y = ' X7Y 3.9

or in the context of the equation for update increments in the lterative
putput-error technique:

08 = H'g 3.7

It should be stressed that the above equatioms are not, of course,
solved in practice by pre-multipication of the inverse. The inverse of
the information metrix is a measure of the confidence in the estimates
obtained, and because of the ill-conditioning of the matrix, numerical
difficulties will be encountered in the practical implementation of any
estimation algorithm. The information matrix will never be exactly
singular, because round-off and other numerical errors prevent this from
happening. Instead, all the eigenvalues of the information matrix will
be non-zero, with the difference %between the smallest and largest
eigenvalues being many orders of magnitude.

7.8.6



APPROACH

The use of singular-value decompesition in orthogonalising the

independent-variable responses, for the equation-error approach, has
been demonstrated and discussed by the current author using real flight-
data in a previous paper {(ref. 6). The use of a subset of the most
significant orthogonalised independent variables, meant in effect that
the most insignificant eigenvalues were removed from the information
matrix, and this was shown to result in improved estimates in some
cases.
_ The information matrix used in the iterative estimation technique,
- gilven by (3.7), can alsgo be calculated with the most insignificant
eigenvalues removed; this results in what is known as a rank-deficient
solution (ref. 85,

In order to achieve rank-deficient solutions, consider a singular-
value decomposition of the information matrix X, where for the special
case of a pxp square symmetrical matrix (where p is the number of
parameters requiring update increments), this corresponds to the
eigenvalue-factorisation result often given in texts on linear algebra
{e.g. ref. 20). This expression is given in (3.8); the diagonal matrix S
(=Diag{x:)) will have the eigenvalues (i,e. the singular values) of M in
descending order of magnitude down the 1leading diagomal, and the
orthogonal matrix V will be composed of the eigenvectors V: arranged in
columns.

M = ¥svT (3.8

Applying the above result to (3.7) we have:
VsSyVTag = ~g 3.9

4 Sad. = -V'g (3.10

The diagonal nature of S allows (3.10) to be solved easily for the
linearly-transformed set of parameter update increments.

Ay = (=VTg)i/hs 3.10

By setting the most insignificant elements of the linearly-transformed
update 1increment vector A¢ f{correspunding to small eigenvalues of M) to
zero, and using the inverse of the linear +transform to obtain the
increments in terms of the original set of variables:

a8 = Vagir

where Ag(r> = (d1,8=,05,...8+,0,0,007 (3.125
we may obtain rank-deficient update increments.

For the symmefrical matrix ¥ we can formally write the following
expression for the inverse of a rank-deficient M:

p-r

M=% = B a7 (V¥ ™ 3.13
i=1
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where r is the number of eigenvalues removed from the information matrix
¥. Whilst the above expression should not be used in calculating a rank
-deficient M, it highlights the fact that the smallest eigenvalues are
associated with directions in the parameter space that have the most
uncertainty associated with them,.

Before results obtained in applying this technique for the
identification of lateral derivatives are presented, it is worth noting
that in addition to the problems resulting from linear dependence, the
information matrix will also be 'near singular’ if omne, or more, of the
parameters to be estimated are weakly defined. In terms of the cost-
function surface defined in the parameter space, this means that in the
vicinity of the minimum, the surface is relatively flat in at least one
direction; a relatively insignificant change in the cost-fumnction value
would occur for a relatively large change in the parameter values. For an
iterative estimation scheme, using a rank-deficient information matrix,
the final estimate of a weakly-defined parameter may depend very much on
the initial guess. Consequently, weak or insignificant parameters should
be excluded from the estimation at the outset; insight into the system,
or significance measures (ref. 6) avallable at the equation-error stage
cah be used as a basis for judgement. In reference 11, the authors warn
against the routine, or blind use of rank-deficiency in overcoming
problems of uniqueness in the solution.

(3.4) APPLICATION TO REAL FLIGHT DATA -~ PUMA 100 KROTS

Consider the pedal-doublet run described earler. The full-rank, and
rank-deficient results, obtained using the frequency-domain output-error
estimation technique described in references 5 and 6, are shown in
Tables 1 a2 & b). The results are alsu represented graphically for the
important lateral derivatives, the delay, and the cost-function value in
figure 3, Full-rank solutions with, and without, a delay in the control
are also presented for comparison.

In total, 12 parameters were estimated for each of the rank-
deficient solutions. The number of time-domain points input %o the
estimation program, and transformed into the frequency domain was
1700, sampled at 64 Hz., meking a record of length 26.5625 seconds. The
frequency rTange used in the estimation was 0.03765%5 - 0.48%4 Hz.,
corresponding to 13 caomplex-valued frequency-domain points, and was
chosen on the basis of magnitude plots of the Fourier +transforms,
obtained at the equation-error stage. Initial guesses for the parameters
were also obtalned at the equation-error stage, except for the delay
which had an initial guess of zero.

The inclusion and estimation of a delay in the control, results in a
substantially lawer cost value at convergence., Figures 4 & 5 show the
frequency-domain fits obtained for f{hese two cases. The improvement
gbtained as a result of +the delay is particularly wisible for
frequencies on either side of the peak at about 0.22 Hz. In general, the
agreement between measured and predicted frequency-domain responses is
very good, especially the rolling and yawing moment fits. The delay
itself is estimated to be about 0.2 seconds, and has a relatively small
error bound.
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In the case of the rolling-moment parameters, the inclusion of a
delay results in estimates that are in much better agreement with
theory, than the case without the delay. As the rank of the solution is
decreased to 9, there is a noticeable change in the estimates of L. and
Lert L+ agrees very well with theory, whilst the L. estimate is much
closer to theory than the higher-rank cases. The roll damping L. 1is
-lower than the theoretical predicticn, but it 1is larger than
corresponding estimates obtained from +the equation-error approach
(values of -0.9 and 0,86 for Lo and L. respectively’. The incorporation
-of a delay in the control has thus increased the estimate of L.. The
combination of the use of the output-error technique, the incorporation
and estimation of a delay in the conirol, and the use of rank-deficiency
. in the information matrix - ia particular for an information matrix of
"rank 9 - has led to rolling moment parameter estimates that are in
generally good agreement with theary.

Consider now the yawing-moment derivatives: the rank-9 estimate of
N is in excellent agreement with theory., No differs somewhat from
theory, but is estimated with a relatively small error bound. N, is
estimated to be larger than the theoretical predictiom, but is still of
comparable magnitude. The pedal control semsitivity to yaw N is
smaller than theory suggests; however, the estimate obtained from the
rank-3 solution is the closest to theory. The fregquency-domain fits
obtained at convergence for the rank-9 solution are shown in figure 6.
It can be seen that they are very similar to those for the full-rank
case with delay presented in figure 5.

Following a frequency-domain estimation of the stability and control
derivatives, the next stage in the identification scheme is to perform a
time-domain output-error estimation to obtain estimates of the zero-
offsets, constant biases i1in the measurements, and initial state
conditions, with a view to obtaining a time-domain verification of the
madel identified 1in the frequency domain. This was done for the
.estimated model obtained in the following three cases: 1) full rank with
no delay in the control 2) full rank with delay in the control and 3
rank-9 solution with delay in the contrul., The time-domain verification
results following from the time-domain estimation are shown in figures 7
toe 9. First comparing figures 7 and 8 for the full-rank solutions: it
can be seen that for the roll rate channel in particular, the inclusion
of the delay leads to a much tighter fit over the first few seconds of
data, when the control input is applied; the rank-9 sclution alsoc shows
this, and in comparison to the full rank case in figure 8, the time-
domain fit is only slightly degraded towards the end of the time record.

The preference for the rank-9 solution was based on comparisons of
the predicted thecretical values with corresponding estimates., It is
accepted that all the parameter estimates obtalned from flight data need
not equal the theoretical wvalues, since the purpose of system
identification in the current context is both to confirm some aspects of
the theoretical model, and to update others., However, as was mentioned
earlier, important primary effects should be able to be predicted by
relatively simple theory, and so the estimates of parameters strongly
influencing these effects may be used as an indicator of how good the
model is, alongwith the time-domain reconstructions and predictions of
the model.

In going from rank 9 fto rank 8 there is a substantial degradation in
the estimates of most of the important parameters, such as: Lep, L. and
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.. Figure 10 shows for one iteration of the frequency-domain output-
error method a typical reduction ian cost-function value (normalised %o
the {full-rank case) that would be oabtained as +the rank of the
information matrix is increased from 1 up fto the full-rank case. There
is clearly a distinction between the rank-9, and rank-8 and lower-rank
cost-reductions, whereas the rank-9 reduction is of comparable magnitude
te the higher-rank cost-reductiomns. This observation seems to reflect
the degradation observed in the parameter estimates for ranks lower than
9.

As described earlier, longitudinal measurements were included 1Iin an
extended deterministic control vector for the four-state lateral model
used in the estimation, with the significant cross coupling terms
identified as elements of the control dispersion matrix B, Table 1 W
shows the values of the estimated lateral-lorgitudinal cross-coupling
terms, In regard to the agreement with theary for these parameters, it
can be seen that whilst there is not even any approximate matching,
there is some evidence that rank-deficiency produces estimates which are
at least of the correct order of magnitude. It can be appreciated that
the degree of coupling-intensity between lateral and longitudinal
states, in +the 6D0OF wmodei, will determine +the ease with which
satisfactory estimates of these parameters can be cbtained. As pointed
out earlier, the use of rank-deficiency 1in situations where the
information matrix is 'mear singular’ because of the presence of one or
more weakly defined parameters, can result in situations where the
estimates of the weak parameters are dependent on initial guesses.
Indeed, for the current data set, there was found to be some evidence
that for the cross-coupling terms, the rank-deficient solutions were
dependent on the initial guesses, although estimates of the expected
order of magnitude were still found, & contributory factor to the
disagreement between estimates and theory for the cross-coupling terms
could also be due fo the fact +that 1n directly incorporating
longitudinal measurements into the extended control vector, the offsets
relative to the centre of gravity of the corresponding measurement
devices were not taken into consideration, In the case o©of +the
measurements that relate to the states in the linear model, offsets are
accounted for through the measurement +transition matrix H given in
equations 3.2 and 3.4. For the extended control wvector, this would
require extra measurements to be included in the control vector, and

-extra parameters to be estimated in the B matrix,

It should also be noted that the use of nolsy measurements - such
as o{t) and q{t) - as deterministic pseudo-controls is a possible source
of error in the estimates, where in the estimation algorithm there is
the inherent assumption that these are noise free, It is assumed that
there is no process noise on the model. Larger models incorporating all
longitudinal and lateral states would avoid the problem of noise on the
controls, but would mean the estimation of a larger number of
parameters, and would require the use data sets gensrated from control
inputs that excite hoth the longitudinal and lateral modes: such data
was not available for the current investigation,

£3.5) LATERAL CYCLIC INPUT - 60 KNOTS

Consider now the results obtaired for a lateral-cyclic doublet
input, for a Puma helicopter flying at z nominal trim level of 60 Knots,
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in straight and level flight, altitude 1000 £t, .The input is shown in
figure 11, and the lateral response variables are shown as part of
figure 14. The length of record available for estimaticn is much shorter
than in the previous case, with 800 points transformed into the
frequency domain, sampled at 64 Hz., meking a record of length 12.5
“seconds. The frequency range used in the estimation was 0.08 fto 0.56
Hz., correspunding %to 7 complex-valued frequency-domain points,

The important lateral stability derivatives obtained from the
frequency-domain ocutput-error estimation are shown in figure 12 a»,
together with the estimates obtained from the previous 100-knots case,
. in order to clearly visualise any trends that may be apparent in the

- estimated wvalues. Theoretical HELISTAB values are also shown for

couparison, Error bounds are shown only for the rank-9 case in order to
avoid the figure becoming too cluttered; the error bounds for the other
cases are of a similar magnitude.

Concentrating first omn the rolling-noment parameters, 1t can be
observed that in the case of L. the substantial improvement in the
estimate that was obtained in the 100-knots case, as a result of using
rank-deficiency, 1s not repeated for the &0-knots case; the lower-rank
solutions are, however, smaller than the full-rank case. Once again, the
estimate of L. is improved by rank-deficiency, with the rank-~10 and
rank-9 estimates in excellent agreement with theory. The rank-10 and
rank-9 estimates of L., whilst as with the 100-knots case are lower than
theory, are consistent with the magnitude order predicted by theory.

For the yawing-moment derivatives, there is close agreement with
theory for estimates of N., with the rank-10 and rarnk-9 solutions. A
value higher than the theoretical prediction is obtained once again for
¥o, though the value obtained for all the ranks is on the whole larger
than the 100 knots-case, and this trend is predicted by theory. The Nv
estimate is in excellent agreement with theory for the rank-10 case.

In figure 12 b) are shown estimates of the lateral-cyclic control
sensitivity with respect to rall rate; the estimated delay in the
control; and the final cost-function value at convergence. The rank-10
and rank-9 estimates of the control sensitivity are identical within the
range of error. The estimated delay is not as large for the lateral-
cyclic input as it was for the pedal input, and is not estimated with
the same degree of confidence, although it is of a magnitude comparable
%0 the time constant of the main-rotor longitudinal and lateral cyclic
flapping modes.

It appears that for the lateral-cyclic case at 60 knots, the rank-10
solution gives +the most satisfactory agreement with theory., The
frequency-domain fits obtained at convergence for the rank-10 solution
are shown in figure 13, In figure 14, the time-domain reconstruction is
shown for the rank-10 estimates, following a time~domain output-error
estimation of the zero offsets, and initial state conditions,

(3.6) TAIL-ROTOR - 60 KNOTS

Data obtained for a pedal-doublet input, for a Puma helicopter
flying at a nominal trim level of 60 knots, in straight and level
flight, altitude 1000 ft., was also analysed. The input is shown in
figure 15, As with the 60-knots 1lateral-cyclic case, the length of
record available for use was 12.5 seconds; this is considerably shorter
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than the 26.5 seconds of data available far the 100-knots tail-rotor
case. The megnitude of the doublet input, however, in this case is
larger than the 100-knots case: the result being that the corresponding
excursions from the nominal trim levels are large. This is not geood for
the estimation of a linearised model, and highlights an important point
cancerning control-input design: attention should be addressed not only
to the shape or frequency content of any applied input signal, but also
to 1ts amplitude and the magnitudes of the excursions likely to be
produced.

The frequency range used in the estimation was the same as the
lateral-cyclic case - 0.08 to 0.%6 Hz.,, corresponding to 7 complex-
valued frequency-domain points. Estimates of the important lateral
stability derivatives obtained from the frequency-domain ocutput-error
estimation are shown in figure 16, The full-rank case failed +to
converge, but by turaning to rank-deficient solutions, convergence was
obtained for the output-error method.

The results shown in figure 16 also include the estimates obtained
for a full-rank solution when the L. parameter is considered to be
linearly related to Ls; the L. parameter is estimated freely and the L.
estimate is constrained using the theoretical HELISTAB ratio aof the two
parameters:

Ly =R . Le 3.14)

The result is that there are 11 free parameters to be estimated,
and one additional related parameter which 1s updated at each iteration;
the sensitivities are calculated within the output-error algorithm
taking the defined relation into comsideration. The ability to define
relations between sets of parameters, 1is cne of the features of the
estimation program OUTHOD.

It can be seen that the cost-value obtained for the case with the
relation between Lo and L. is almost identical to the rank-11 cost-value
obtained at convergence. In addition, the parameter estimates shown are
identical, within +the bounds of accuracy. For +the rolling-moment
parameters, there is good agreement with theory for L., Lg, and L., in
both cases. In reality, the correlation is not usually between pairs of
parameters, but may involve a large number of unknown parameters, and so
the technique of {fixing relationships between parameters 1is not a
practical solution to the problem of correlations between parameters.
The example shown, however, does perhaps reinforce earlier statements
about likely problems in the estimation caused by strong correlations
between the roll and yaw responses. The fact that for the resulis
presented in the two previous cases, solutions of rank 9 and rank 10
respectively, gave the best estimates, where the full-rank case was of
rark 12, does indicate that tThe existing correlations were indeed
between more than simply L. and L..

If we consider the yawing-moment parameters, it is seen that they
are not estimated very well for the rank-11, and full-rank case with the
defined relationship (i.e., rank il1), but require lower-rank solutions in
order to approach the indicated theoretical values. On the whole, the
estimated delay value is very similar to that obtained for the 100-knots
tail-rotor case.

Comparing the cost-function values given in figures 16 and 12 b), it
can be seen that for the 60-knots cases, they are, for all the rank-
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deficient solutions presented, much greater for the pedal input than for
the lateral-cyclic input. This is reflected in the better parameter
astimates obtained in the latter case. It should be noted that the
larger the cost value obtained at convergence, the poorer is the fit,
and that comparisons of this type are valid here because the same number
of freguency-domain points were used in the estimation process in both
cases, 1t is felt that the large amplitude of the pedal input, and as a
result, the less satisfactory adherence to the linear-model assumption
of the responses are to blame for this.

4) INVESTIGATION INTQ THE USE OF TIME DELAYS USING 'HELISTAB'

HELISTAB (ref. 9} is a simulation flight-mechanics package developed
at R.,A.E Bedford, and which 1is ocurrently installed at Glasgow
University. It has options for a range of different rotor degrees-of-
freedom, but the gquasi-static rigid-body 6DOF model was used to supply
the theoretical estimates presented in this paper for comparison with
estimates from flight-data. The modifications required 1n the
theoretical rigid-body 6DOF stability and control derivatives resulting
from the neglect of the higher-order rotor dynamics (i.e. the quasi-
static assumption) are discussed in reference 10,

The unforced tip-path plane motion of the rotor (without in-plane
degrees of freedom) can be described by:

Ir = Arm Xr 4.0

which in detail is:

ﬁ; 11,1z sy Qra,8ts, 216 go I

RBie &=1,8zz, =23, 4za, 8zs,8z2s| | bic

ETm = last, sz, &35, Asa, s, das 313

Eo A4ty Qaz,8am, 8aq,8as, Qas Bo (4.23
ﬁ1c ast, asz, A5, 854, a5, s8] | $ic

Bis e, 861, 8ax, 85a, A6, 2a6s| | Bis

where Bo, Bie, and 8ia are the coning, and longitudinal and lateral
. cyclic flapping angles.

The simplest approximation to the flapping motion is a 9 DOF model
(6 rigid body + 3 flapping) obtained Dby setting the second-time
derivatives of <the left-hand side of (4.2 to zero; a procedure
analagous to the setting of the rotor-state time derivatives to zero, to
obtain expressions for the quasi-static rigid-body derivatives. The
first-order approximation will finally have the form:

§o a*i1,a8%' 1=, Be
Bic] = ja*z1,8%z=,8 2z B¢ 4.2
Bis 2%=1,8"32,8 g Bi1=

where the elements of the first-order flapping equation a*:; contain
contributions from other elements in the matrix in 4.2), after a
rearrangment of terms.
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The full 9DOF model is described by:

Icl = |Are Aew ’xpl + |Be| W 4.8
i= Are Are XF:_ + |Bm
where Ir = {u,w,q,0,v,p, 4,007
Ir = Bo,Bre,brad”
¥ = {no,mrs, Me, =27
ber,... Bm are partitions of the stability and contrel matrices

relating fuselage and rotor effects.

Consider a 1linear model of the form given in (4.4) with data
generated using the program HELISTAB. The flight condition used was for
level flight of 80 knots. The eigenvalues of the 11 x 11 system are
given in Table 2.

The wmodes with small time constants (i.e, 1, 243, and 4) are
associated mainly with the rotor-flapping states. HMode 1 is
predominantly a coning mode, whilst modes 2&3 are associated with
longitudinal and lateral cyclic flapping. Mode 4 has a relatively small
eigenvalue in comparison to modes 1, 2&3.

Consider now the use of a reduced-order 6DOF model, having a time
delay included 1in an active control, as an approximation to a 9DOF
system. Stability and control derivatives were fixed at the quasi-static
6DOF values in a frequency-domain output-error estimation rum, with the
only free parameter in the estimation %being the time delay. The
simulated data used for the estimation run were generated from a 9 DOF
systen of the form given in (4.4).

The frequency range used in the estimation was 0 -~ 0.5 Hz., covering
the range of the rigld-body modes. With this experiment, some indication
of the requirement for a time delay in obtaining an improved model fit,
for the reduced-order model can be established.

Consider first the application of longitudinal-cyclic doublets. The
estimated delay as a function of sampling interval, is shown in figure
17 . For the one particular sampling interval of 0.015 seconds
{approximately equal to the sampling iaterval of 0.01562%5 seconds for
the flight-data), the estimated delay for each of the controls when a
DFYLR '3211' input sequence is applied to that control alcmne, is shown.

As the results show, a positive time delay is stromgly identified
for the longitudinal-cyclic and 1lateral-cyclic i1nputs. For the
longitudinal-cyclic doublet inputs, it is shown that as the sampling
interval was increased, the estimated time delay decreased. This is
because increasing the sampling interval effectively filters out the
higher-order rotor effects., If the points in figure 17, representing the
doublet inputs, are extrapolated to zero time delay, the corresponding
sampling interval is very near to the time constant of 0.11 seconds for
the longitudinal and lateral cyclic flapping modes - 2&3, given in Table
2.

The frequency-domain predictions, cbtained from the rigid-body 6DOF
model with time delay, for the data generated from the 9DOF model, for
the same longitudinal-cyclic doublet input, are shown in figure 18. The
corresponding comparisons of time-domain predictions for the 6DCF model,
without and with the time delay, are shown in figures 19 a) and B . It
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can be seen in this example, that a much closer match with the 9DOF data
is obtained using the 6DOF model, when the time delay is included.

In the case of the collective input, the small value estimated for
the delay, is probably connected with the coning mode (mode 1 in Table
2) which, in comparison to the longitudinal and lateral cyclic flapping
modes, has a very small time constant., For the tail-rotor control there
are no dynamics modelled in the HELISTAB program: the small delay
estimated {(less than the sampling interval) 1s the result of numerical
noise. Results using real flight-data, some of which were discussed in
datail earlier in this paper, have demonstrated the importance of having
a delay associated with this control. For the longitudinal-cyclic '3211°
input, the estimated delay is almost identical to that obtained for the
doublet input,

These results have indicated that the inclusion of time delays, in
some of the controls, is a very useful feature for the estimation of
lower-order models, where the sampling interval 1is significaptly less
than the time constants of the important modes not included in the
model; it is also much more satisfactory than increasing the sampling
interval to a larger value,

£5) CORCLUSIONS

For the results presented in this paper, a number of observations
can be made. Firstly, for the successful estimation of a rigid-body
model, which excludes rotor degrees—of-freedcm, the use of a frequency-
domain output-error estimation technique has been shown to be a feasible
and practical approach. Results for the estimation, from real flight-
data, of lateral derivatives have been presented here; previous results
for longitudinal derivatives were presented in reference 6. Secondly,
sone previously reported problems in the identification of lateral
stability derivatives, assoclated with strong correlations between some
agf the response variables in the 'Dutch-roll' +type mode, have been
tackled using using rank~deficient versions of the information matrix.
This bas been shawn to lead to marked improvements in the estimates of
important lateral derivatives. The practical implementation of rank-
deficiency, using a singular-value decomposition of the information
matrix, in the output-error estimation method, has been discussed. The
analogy which exists with the singular-value decomposition approach used
in the equatiop-error method has been indicated. In additiom, problens
associated with the inclusion in the model for estimation of weakly
defined parameters, when rank-deficient solutions are used, bhave been
discussed.

Using both real flight-data, and simulated data generated from a
9DOF model, the improvement obtained in the model fits and parameter
estimates by including a delay in the control to account for higher-—
aorder effecits, where contamination of the data records used in the
estimation of & reduced-order 6DOF model has a significantly degrading
effect on the estimates, has been demonstrated.

Results were presented for 60 and 100 knots nominal £light
conditions, and close agreement with thedry was found for estimates of
some of the important lateral parameters. Where the agreement with
theory was not so close in the cases of No and L., the estimated error
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bounds did, however, indicate a high degree of confidence in the
estimated parameter values; also, 1n going from the 60 knots to 100
knots case, the predicted ftrend was for ¥- to decrease, and L. to
increase, in magnitude, and this was found also in the estimation
results for the selected rank-deficient solutions., The predicted and
astimated trends in the case of L. were in good agreement with theory,
for the selected rank-deficient seolutions; here the corresponding
parameter values for the 60 and 100 knots cases matched well with
theory. For a more thorough examination of predicted and estimated
trends, it is felt that more high quality data would need %o be
available over a wider range of flight conditions; this is seen as an
important future research task,

The results also brought out the importance of applying small-
amplitude test input signals at the data collection stage in order to
produce responses for which a linear model 1is a reasonable
approximation, and which produce longer +time records available for
egtimation; the most successful estimation was performed on the longest
data record.
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Iable 1a). Frequency-domain output-error estimates.
Padal doublet input, Puma, 100 Xa, rua R1Z201L.
Lateral derivatives (uncoupled).

Parameter Full rank Full rank Rank 1!  Rank 10 Rank 9 Rank B Theary
No delay ODelay

Lv ~0,0H12  -0,0138 -0, 0188 -0, 0226 -0,0228  -0.0212 ~0.022
{0,00123% (0,00H4) (D NOIEY  (0,0018) (D, H0076) (0,00071)

Lo -1.317 -1,539 -1,408 -1,524 -1,4%1 -1,212 -2,05
(3,14) {0,14) nan (0,19) (0.042) (D, 041)

Le 1,237 1,097 0,748 {3,563 0,444 0,965 0,294
{0,13) (0.1 {0.18) (0,099} (0,044 (0,039

Lrp (,0455 ,0325 ,0229 D.0195 0.0174 0,0248
(0.0041) (0, 0044) (0,004} (0,0052) (0,0052) (0,0050)

N 0006765  0.0088%  0,00867  0,00822  0.00841  0,00728  0,00605
{0,00056) (0,00060) <0,00063) (0 00067) £0,00081) (0,00045)

Ne -(,353 -0,227 -0}, 254 -0, 281 -0, 293 -(.353 -y, 0009
(3.081) (5,066} (0,088} (0,074) (3,086) (0,047}

. -}, 494 -0, 500 -0,518 -0, 565 -( 528 -0.671 -0, 528
(6,082 (0,082} (0,067} (0,087) (0,088} {0.017)

New  ~0,0264 =0,0212 =D 0319 -0.0326 -0,0326 -0, 01 -0 043
(D,0015) (0, 0014) (0,0014) {0, 0018) (0,00156) (0.0014)

TiNe) ¥ 0,204 0,204 0,226 3,210 0,223 ¥

€0,031) {0,031} (931 {3,029 (0,03
fost -160.6 -178.9 -164.9 -153,7 ~152,1 ~148 .4 ¥
value

Table 1b).. Lateral/longitudinal cross-coupling derivatives.

be  =3,954 =370 1,989 -0,839  ~0,5941 ~0.200  =-0,0458
(9.31) (0.28) (0.17) (4,10} (0,622  (0.010)

La 2,737 2,822 RN 0,400 0,106 0.354 0,839
(0.32) (0,30 (9,18) OREY (0,023 (0,019

No  -0,0468 -0.304 -0,210 -0,308 -0,183  -0.400  -0,328
{0,12) (0,12} (0,132 SUR L] (0,089)  (0,027)

i astimated le error bound.
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Table 2. 9 DOF Eigenvalues.
HELISTAB Puma model,

HODE TIME CONSTANT (s) REAL PART

i * BR = v I I 3 W o N e B O R

0.033 -30,292
0,109 -9,190
0.103 -9.,130
0.478 -2,094
-0,961
-0,961
-0,138
-2,138
-0,00644
=),00644
=0, 102

%FLIGHT DATA

One eguation at

EQUATION-ERROR ESTIMATION
C(FREQUENCY DOMAIND:

g time estimated

!

l

yEstimates used to
initiate next stage

OUTPUT~ERROR ESTIMATION
CFREQUENCY DOMAIND:

State-spece model estimated

|

!
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3,000
5,224
-5.224
0.000
0.724
-0.724
0.97%
=0,979
0,245
~0,245
.000
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MODULYS

30,232

14,571

19,571
2,094
1,203
1,203
3,983
0,989
0.2454
0,2454
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