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EXPERIENCE WITH A NEW APPROACH TO ROTOR AEROELASTICITY 

by 

M.H. Patel and G.T.S. Done 
The City University, London, U.K. 

Abstract 

Experience with an alternative procedure for computing the 
aeroelastic stability of a helicopter rotor system is described. 
The method has already been presented at a previous European 
Rotorcraft Forum, and is aimed at generating the coefficients of 
the aeroelastic equations of motion automatically on the computer. 
The main objective of the current work is to validate the associated 
computer program using three practical examples provided by Westland 
Helicopters Ltd. These examples are graded such that different 
aspects of the program are tested. The validation exercise is 
completed by comparing the results obtained by the new method with 
those previously obtained using conventional techniques, and 
providing explanation for discrepancies where they occur. 

1. Introduction 

A technique for obtaining the matrix coefficients of the 
aeroelastic equations of motion of a helicopter rotor system which 
saves time by avoiding the need for extensive algebraic derivation 
and manipulation has been described, and the philosophy and general 
method outlined, by Gibbons and Done. 1 It relies on a computer 
program which contains, in effect, a description of the mathematical 
model of the system through the transformation matrices that 
identify in space any material point on the helicopter, and which, 
in addition to integrations, performs numerically all differentiations 
including those required in the Lagrange equations formulation. In 
Ref. 1, expressions are given for the matrix coefficients of the 
aeroelastic equations of motion; these are integrals (over a surface 
or a volume) of the dot product of two (3 x 1) vectors, the components 
of which are themselves partial differentials of various order with 
respect to generalised co-ordinates and/or time. These are 
reproduced for convenience in Appendix A.l. Then, once the form of 
the transformations required to express the displacement of a point 
in blade axes in terms of space fixed axes has been defined, as in 
Appendix A.2, the integrations required can be simplified in nature, 
depending on the coefficient type involved. A very simple example 
of a rigid blade having flap, lag and pitch freedoms was studied in 
Ref. 1, primarily to test the accuracy that would be expected from 
the various orders of numerical differentiation formulae. The 
equations of motion themselves are implied from the computed 
coefficients and apply to perturbation co-ordinates linearised about 
an equilibrium state. 

This approach appears quite similar to that of Lytwyn, 2 but 
contrasts with that of Nagabhushanam et al 3 which uses a symbolic 
processor for algebraic manipulation to obtain the equations of 
motion in explicit and fully non-linear form directly from the 
computer. 
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It is probably fair to say that none of these computer based 
methods is intended particularly to lead to an increased under
standing of the various factors that are important in helicopter 
aeroelasticity. This can be gained by study of the wealth of 
previously published work, comprehensively reviewed by Friedmann.'' 5 

However, any technique which reduces the time spent in designing an 
aeroelastically satisfactory rotor system is of interest to industry, 
and thus it was that a series of validation exercises was drawn up, 
so that industry would feel confident in using the computer program 
on new rotor designs. 

A significant advantage of the current approach is that no 
ordinary procedure for dealing with small order terms is necessary. 
All terms, large or small, are inherently maintained in what is 
effectively the computer's formulation. This is particularly 
advantageous with the newer forms of rotor system in which the amount 
of coupling present between separate blade motions may be relatively 
large. 

The three verification exercises are based on three distinct 
problems, all previously analysed conventionally by Westland 
Helicopters Ltd. (WHL). These are conveniently described as: 

(a) Sea King tail rotor 
(b) Lynx rotating blade 
(c) Lynx ground resonance. 

These cases test various aspects of the computer program, as 
indicated in Table 1.1. 

Table 1.1: Aspects of the computer program tested b 
an c 

Case 
Aspect 

(a) (b) 

Strip theory aerodynamics I 

Steady-state solution I 
Blade coupling effects I 
(apart from oa and a2) 
Non-fixed rotor axis 
Gravity terms 
Blade flexural modes I 
Blade twist/pitch modes I 

b) 

(c) 

I 

I 
I 

I 

In each case, the computer program was arranged to follow as 
closely as possible the analysis procedure previously adopted by WHL; 
i.e. the initial data, the order of the various transformations and 
the general mathematical modelling were maintained. The results are 
presented in the following Sections and the reasons for discrepancies 
where they occur, are provided. 
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2. First verification exercise - Sea King tail rotor 

The Sea King tail rotor model comprises a rigid blade rotating 
about a fixed axis and having three degrees of freedom, flap, lag and 
pitch. The axes of these freedoms pass through the rotation axis. 

The results apply for the case of zero blade section e.g. off
set, rotation speed n = 132.2 rad/s and steady-state values of 
B = 0.0881 rad (flap up), ~ = -0.0206 rad (backward lag) and 
e0 = 0.436 rad (applied pitcR nose up). These steady-state values 
wgre obtained using the program in which the structural stiffnesses 
are as grovided by WHL and with a pitch-flap mechanical coupling of 
03 = 45 • The original WHL values were 0.0871 rad and -0.0203 rad 
for flap and lag respectively. 

The verification exercise consisted of producing the mass
dependent and aerodynamic coefficient matrices for the given steady
state condition, comparing with the previous Westland results, and 
examining and explaining discrepancies. It is not considered 
relevant in a paper of this nature to reproduce all the matrices 
which were computed. Instead, only those which highlight the 
reasons for discrepancies are shown. The first of these is the 
mass-dependent stiffness matrix (centrifugal effects) which is shown 
below in Table 2.1 for two cases, the suffices i = 1, 2 applying as 
follows: 

1 - computer program results 
2 - Westland results as provided. 

Table 2. 1 : Mass-de~endent stiffness matrices 

(E_ is a stiffness matrix, and suffix 'm' refers to mass contribution.) 

~~., . l" .5 
1. 071 

·0 644~ 
10 3 1. 071 -3.183 -0.0525 

-0.6446 -0.0525 0.594 

R = l"· 7 

-0.3054 ·0.651~ ~m2 
10 3 -0.3054 0 -0.0529 

-0.6519 -0.0529 0.601 

The 12 term shows a significant discrepancy. This was found to be 
due to the omission of an apparently second order small term from 
the WHL analysis. This extra term is: 

Q2 I 0 ~0 (-B0cosB0 - sinS
0 

+ ~~sinB0cosB0 + ~B~sinB0 ) (2.1) 

where I is the blade flapping inertia. When introduced, the 
result 0becomes 1.069 x 10 3 which agrees with the computer program 
result. For the 22 term, there is a similar omitted term which is: 

Q2I0 (-1 + cosB
0 

- ~S~cosS0 - t ~~cos 2 B0 ) 
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g1v1ng a value of -3.198 x 103
, which agrees reasonably well with 

the program result in Eml· 

The fact that the direct lag stiffness term is negative is 
due to the lagging transformation following after the flap 
transformation, leading to lagging effectively taking place in a 
plane tilted at the flap angle, rather than in a cone. The 
tendency is for the blade to lag back to a zero flap angle position, 
thus providing a destabilising effect. Reversing the order of the 
flap and lag transformations would lead to different coefficients. 

The aerodynamic damping and stiffness matrices were computed, 
and again it is in the stiffness terms that the more noticeable 
discrepancies occur. The matrices are shown below in Table 2.2. 

Table 2.2: Aerodynamic stiffness matrices 

(Suffix 'a' refers to aerodynamic contribution.) 

)!,, " t5.73 1. 382 -15.74~ 
10" -3.426 0.0252 3.279 

0 0 0 

1\,, " t'· 112 
1. 2771 -l5.82j 

1 o" -3.258 -0.2721 3.194 
0 0 0 

The reason for the discrepancy in the 22 term was found to be due to 
the omission of one of the transformations in the Westland analysis. 
so that the aerodynamic forces were not quite resolved correctly, 
the effect being most noticeable in this term. Other differences 
are due to the fact that no approximations are made for trigonometric 
functions of small angles in the computer program. 

The discrepancies found in all the matrices are not significant 
in practical terms; an eigenvalue analysis of the resultant equations 
derived by the two techniques showed negligible difference. 

3. Second verification exercise - Lynx rotating blade 

This exercise concerns only the natural frequencies and normal 
mode shapes of a Lynx blade, rotating about a fixed axis. Aero
dynamic forces are excluded. The objective was to provide the 
program with the set of six frequencies and mode shapes previously 
computed by Westland as input information, and test if the data were 
correctly returned on output. 

The original results for the blade had been computed using a 
transfer matrix method based on over 900spanwise points along the 
blade axis. The modal data were then interpolated to provide 
results (deflections, slopes and curvatures) at 25 evenly spaced 
points. The mass, inertia and stiffness d1stributions were 
provided at their original unevenly spaced data points, as well as 
at the 25 interpolated points. The sectional inertias and 
stiffnesses were given in flatwise and edgewise directions. In 
addition, torsional stiffness and pitch control stiffness and 
geometry were provided. 
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In the event, it transpired that the discrepancies that arose 
were largely due to the fact that the interpolated results provided 
by WHL already embodied a small but significant loss of accuracy due 
to the numerical process of reducing the data by interpolation. 
Much effort went into trying to minimise this drawback. Because it 
was considered that using the physical data points (i.e. points 
where there are significant mass or stiffness changes) for the 
computer program integration points (rather than the arbitrary equi
spaced points), the modal deflections and slopes are interpolated 
back on to 30 selected physical data points. The very rapid 
changes of stiffness along the blade (see Fig. 1) make straight
forward interpolation unsuitable for curvatures, so the results in 
this case are obtained by interpolating the product of flexural 
rigidity (EI) and curvature, and subsequently dividing by the local 
EI. 

u 
Axis 

Radial l:>i:sfance -
7lp 

Fig. 1: Flatwise flexural rigidity variation along blade span 

The geometry of the blade pitch control is shown in Fig. 2 
and is such that flap and pitch are coupled. However, it may be 
seen that there is a bending moment discontinuity at the connection 
of the pitch control horn with the blade, and thus the interpolation 
for curvatures is not carried across this point. This is important 
in computing structural stiffness contributions involving flatwise 
bending. The blade rate of twist (leading to torsional stiffness 
contributions) is discontinuous here anyway, since the pitch 
feathering bearing separates the blade structure at this point. 

The blade axis is offset from a radial axis and is pre-coned; 
additionally the blade has built-in twist and the sectional centre 
of mass is variably offset from the blade axis. Colle&tive pitch 
is0applied so that the nominal blade pitch runs from 18 inboard to 
12 nose up at the tip. The rotation speed is 34.17 rad/s. 
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Blade. 
fealherin:; 
C!xis 

Rcror / :n.. 
c.xis 

ccnfrcl jack. shffness 

Blade 

Fig. 2: Blade pitch control geometry 

The results for the six eigenvalues, or rotating natural 
frequencies, are compared in Table 3.1. 

Table 3.1: Natural frequencies (based on blade rotation speed 
~ = 34.17 rad/s) 

Approximate Frequency (per rotor revolution) 
Mode description Westland Program 

1 1st 1 ag 0.647 0.647 

2 1st flap 1.109 1.1 07 
3 2nd flap 2.690 2.701 

4 1st pitch/twist 3.875 3.911 
5 2nd lag 4.296 4.292 
6 3rd flap 4.939 4.984 

Also shown, in Table 3.2, is the modal matrix returned by the 
computer program. A column in this matrix indicates the proportion 
of the original six mode shapes present in a computed mode shape. 
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Ideally, if there were no loss of accuracy, this matrix would be the 
unit matrix. The deviation from unity indicates the loss of 
accuracy. 

Table 3.2: Modal matrix 

0.999 0.004 0.007 0.001 -0.023 0 --
-0.003 1 -0.022 0.021 -0.002 -0.025 
-0.002 0.002 0.999 0.087 0.009 -0.016 
0 0 -0.004 0.987 0.007 0.004 
0 0 -0.009 -0.054 0.999 -0.056 
0.001 0 0.004 -0.012 0.042 0.998 

Considering the loss of accuracy that is inherent in the 
previously mentioned interpolation of input data, the results in 
Tables 3.1 and 3.2 are within acceptable bounds. It may be 
observed, however, that the fourth mode which is mainly blade pitch 
and twist is the least easy to reproduce. The reason for this is 
that the contributions to the kinetic and potential energies from 
flap and lag, despite the fact that geometrically the role of these 
motions is small, remain dominant so that any inaccuracies that are 
present tend to increase the apparent couplings between this mode 
and adjacent modes. 

The mode shapes are shown in Figs. 3 to 8. Each Figure 
provides the variation of flap and lag displacement radially and 
also the variation of local pitch angle. Flapping up, lagging 
forwards and pitching nose up are taken as positive. Where a 
component of the overall deformation is insignificant, it is shown 
multiplied by 10 in a Figure, so that a sensible comparison between 
the computer program results and the initial mode shape data may be 
made. The results compare well on the whole with the least good 
reproduction occurring for the pitch/twist contribution of the 
mainly second lag and third flap modes of Figs. 7 and 8. 

The effect previously noted in this Section of the initial 
interpolation of input data was confirmed by carrying out the 
exercise described for both 25 and 30 integration points, based on 
selected physical data points. For 25 points, the mean of the 
moduli of all the off-diagonal terms in the modal matrix is 0.034; 
for 30 points (i.e. for the matrix shown in Table 3.2), this figure 
decreased to 0.014. 
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1-o 

Pifc.h unirs : 
o/lnch l-Ip del'.t 

Fig. 3: Fundamental lag mode 

1-o 

--·----
Ptt-ch X 10 

Fig. 4: Fundamental flap mode 

----- --------
Pitch X (-1) 

Fig. 5: Second flap mode 
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J·o· 

-- Pro:Jre..vr 

---- WHL 

Fig. 6: Fundamental pitch/twist mode 

D•B 

Fig. 7: Second 
lag mode 

0·6 

0 

------ --- ----

Fig. 8: Third flap mode 
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4. Third verification exercise - Lynx ground resonance 

This exercise is aimed at determining the validity of the 
program when fuselage and undercarriage effects are incorporated. 
The major difference between this exercise and the previous two is 
that the rotor axis is not fixed; because of the fuselage freedoms 
it is able to rotate and translate. The computer program is used 
to produce coefficient matrices at a particular time instant, and a 
Coleman transformation applied to provide a set of constant 
coefficient matrices. The eigenvalues of the associated equations 
of motion are then computed for a particular rotor angular speed. 

The fuselage is assumed to be a rigid body having five 
degrees of freedom, made up of the three translation freedoms and 
two rotations (roll and pitch). Yaw is excluded. 

The fuselage-undercarriage effects are based on the actual 
test results in which the rotor system had been replaced by an 
equivalent mass at the hub. The mode shapes yielded by the tests 
are used to determine the fuselage damping and stiffness terms. 
The drive shaft is tilted forwards relative to the aircraft vertical 
axis and two degrees of freedom, a pure flap and a pure lag with 
previously determined mode shapes, are allowed for each of the four 
main rotor blades giving 13 dof's in all. In order to conform to 
the WHL analysis, the blade mass is assumed to be concentrated along 
a single curve. As such an assumption is equivalent to setting the 
sectional edgewise and lagwise radii of gyration and the e.g. offsets 
to be zero, the differentials of many matrices for the mass 
contributions are not required, thereby reducing the computation time. 
This time was further reduced by limiting the number of integration 
points to 25 over the radius. 

The results for the eigenvalues, at a rotor angular speed of 
34.17 rad/s, are shown in Table 4.1. 

Table 4.1: Real and imaginary parts of eigenvalues, ground resonance 
problem 

Previous WHL results Computer program results 

Real Imaginary Real I magi nary 

-2.401 0 -2.40 0 
-0.329 1. 043 -0.310 1. 031 
0.0014 1.911 0.0019 1. 919 

-0.1788 2. 19 -0.176 2.184 
-0.0251 3.519 -0.0230 3. 514 
-0.0252 3.522 -0.0231 3.515 
-2.523 5.457 -2.52 5.42 
-2.521 5.458 -2.53 5.43 
-0.0193 9.335 -0.0183 9.33 
-2.517 10.901 -2.521 10.87 
-1.203 23.97 -1.203 23.97 
-1.276 25.468 -1.271 25.41 
-1.432 27.65 -1.435 27.65 
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It may be seen that there are no significant differences 
between the two sets of results. 

Because the eigenvalues provide only an overall indication of 
the degree of verification provided, a detailed comparison of the 
coefficient matrices at the particular time instant t; 0 (i.e. 
before applying the Coleman transformation) has also been conducted. 
The mode numbering system in the tables of results is as follows in 
Table 4.2. 

Table 4.2: Mode numbering system 

Mode No. Component Description 

1 Fuselage Fore & aft translation 
2 II Sideways translation 
3 II Heave 
4 II Roll 
5 II Pitch 

6 Blade 1 Flap 
7 II 2 II 

8 II 3 II 

9 II 4 II 

10 Blade 1 Lag 
11 II 2 II 

12 II 3 II 

13 II 4 II 

At the time instant taken, blade 1 is pointing forwards, blade 
2 to port, 3 backwards and blade 4 to starboard. 

As an example of how the comparison of matrix coefficients was 
conducted, separate contributions of part of the stiffness matrix are 
shown in Tables 4.3 and 4.4. The first Table shows the mass 
contribution (i.e. centrifugal effects) and the second shows the 
contribution from aerodynamic forces. The total stiffness matrix 
is given by summing these two contributions with the structural 
stiffness (no contribution in the particular sub-matrix represented 
by the Tables) and the gravitational stiffness terms. 

Numbers appear in pairs in the Tables, the upper coming from 
the computer program and the lower from the previous WHL computations. 
Similar results for zero blade pre-cone and zero rotor axis tilt were 
obtained, thereby allowing explanations for noticeable differences in 
pairs of numbers to be found. For example, the 3-6 and 3-8 terms in 
Table 4.3 (at the time instant under consideration, fore and aft 
pointing blades flapping coupling with fuselage heave) in the latter 
case are zero, identifying the reason for the discrepancies as being 
due to 1 ack of second order rotor ti 1t effects in the WHL analysis. 
In Table 4.4 there are significant discrepancies in the 4-11 and 4-13 
terms, and the 5-10 and 5-12 terms (sideways pointing blades lagging 
coupling with fuselage roll, and fore and aft pointing blades lagging 
coupling with fuselage pitch, respectively). The coupling terms for 
the individual blade aerodynamic flapping stiffness due to lag (terms 
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Table 4.3: Mass contributions to stiffness sub-matrix 

Blade Flap Blade Lag 

Mode 6 7 8 9 10 11 I 12 I 13 
No. 

1 1398 -1398 33678: -33678 
1371 -1371 I 33610\ -33610 

"' 2 1400 I -1400 -33740 I 33740 E 
0 1371 

I 
-1371 -3361 o I I 33610 -o 

"' "' 
I 

, 
s... 3 -85.1 85.1 -2050! 2050 u... I 

"' 0 0 -2043 2043 
0) ! 
"' ~ 512610 0.018 

~ 

"' 4 -5126101147930 1-147930 0 
"' 510530,-0.166 -0.277 "' -510530!146640 1-146640 u... 

' 
5 -513580 0 ;513580 0 i 1477401 -147740 

-510590 -59.3 1510470 -58. 1 
i 

l46640i -146640 l 

Table 4.4: Aerodynamic contributions to stiffness sub-matrix 

Blade Flap Blade Lag 

Mode 6 7 8 9 10 11 12 13 
No. 

1 1782 17.52 -1763 0.91 -138.9 82.6 276 .o 54.8 
1809 13.26 -1800 -4.51 -148.8 98.0 314.5 65.0 

"' 2 -8.32 1776 8.32 -1776 -13.9 -208.1 13.9 208.1 E 
0 -8.88 1806 8.88 -1805 -15.0 -231.7 15.0 231.7 -o 
"' ~ 3 43.4 150.9 259.3 151.8 1142 1128 lll6 1130 u... 

"' 47.0 156.0 267.0 157.0 1364 1353 1344 1356 
0) 

"' ~ 4 -1831 -5398 1805 5372 -21125 19335 21002 -19458 "' "' -1837 -5460 1819 5440 -21210 23222 21190 -23247 "' u... 

5 5405 -1786 -5335 1856 -19170 -20842 19690 21340 
5550 -1811 -5430 1845 -22920 -20890 23548 21510 

6-10, 7-11, etc., not shown in Table 4.4) are similar in magnitude and 
difference, being 17460 and 20,950 respectively. All these terms 
disappear for zero blade pre-cone and rotor tilt, which implies 
inappropriate treatment of small order steady-state angles in the WHL 
analysis, rather similar to that for the Sea King tail rotor example 
in Section 2. In order to keep these numbers in perspective, it 
should be noted that the overall direct stiffness coefficients 
associated with the degrees of freedom involved above are of 
magnitude 106

• 
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The rest of the stiffness matrix, the damping matrix 
(containing aerodynamic, mass and structural contributions) and 
inertia matrix exhibited no significant differences requiring 
explanation. 

5. Discussions and conclusions 

The main conclusion from the three verification exercises 
described in the foregoing Section was that confidence had been 
established in the computer program, and the outcome is that the 
program is now mounted and running at WHL, Yeovil. As an example 
of the computing time taken, the complete set of matrices for the 
Lynx ground resonance case took 2~ minutes to produce on the 
Westland computer, compared with 1 s to produce the same matrices 
conventionally from analytic expressions. 

The main difficulties encountered were in interpreting the 
models presented in exactly the same manner they had been interpreted 
by Westland, in ensuring that the large volume of data had been 
correctly transcribed, and in dealing with data which was, in effect, 
only an imperfect subset of the original data (as in the case of the 
Lynx rotating blade example). It should be observed that these 
difficulties arise as a result of performing a verification exercise, 
and are not inherent in the method itself. 

The advantage of not requiring to define an ordering scheme is 
well highlighted by the first and third examples when the method is 
compared with a derivation based on a paper analysis, in which an 
ordering scheme is necessary to minimise the workload on the analyst. 
Another advantage, of course, is that the overall time taken from 
model definition to final result is much shorter. The main 
disadvantage is that insight and "feel" for important parameters are 
lost. Furthermore, changes to one or two parameters would, at 
present, involve re-running the whole, or major parts of the program. 
Although only simple aerodynamic modelling was used in the present 
examples, more complicated models which cannot be easily expressed 
analytically may be accommodated without too much extra difficulty. 
For the test cases considered a linearised analysis is adequate, but 
it is felt that the current technique may hold significant advantages 
when applied to future systems. 

When comparing the present method with one based on algebraic 
or symbolic computing (as in Ref. 3), the situation is somewhat 
different. In this case, an ordering procedure is not strictly 
necessary, although, if it is absent, the computing time could be 
considerable and the equations produced in algebraic form would be 
too involved for sensible inspection as they stand. Substitution 
of the data into the equations leads to numbers which are no more or 
less informative than the numbers provided by the current approach. 
However, changes in parameters (the basic model remaining effectively 
the same) can be more happily countenanced. Until the same model, 
or a very similar model, is treated by both methods, though, it will 
remain difficult to form precise comparisons. 

The current programme of verification concerns axial flow 
situations. Future work will cover forward flight and improved 
models for various aspects such as aerodynamics and blade pitch 
control. 
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Appendix A.l: Expressions for matrix coefficients 

The full derivation for the expressions which 
~iven in Ref. 1. The coefficients are the elements 
LP], [Q] and [RJ in the equations of motion: 

[PJ\i.. + [OJi + [Rh = Q. 

appear below is 
of the matrices 

(A.l.l) 

in which Q. is a vector of generalised co-ordinates representing 
perturbations from some steady-state situation. The matrix 
coefficients are: 

.. (A.l.2) 

.. (A.1.3) 
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.• (A.1.4) 

/

aR 
- a~ . 

in which R is the position vector of a point in the helicopter with 
reference"'to space fixed or inertial axes, F is the aerodynamic 
force vector per unit area referred to the same axes, u is strain 
energy, dm is an elemental mass, dS an elemental area and dV an 
elemental volume. The integral signs are symbolic, the integration 
being as indicated by dm, dS or dV and over an appropriate extent, 
e.g. the total number of blades, the blade lifting surface, the 
fuselage, etc. The dot products ensure that the integrals are of 
scalar quantities. Structural damping is introduced into[~ 
separately. 

To evaluate the integrals, .E. and..f have to be expressed in 
terms of local co-ordinates by means of a set of transformations (see 
Appendix A.2); the differentials are performed numerically for a 
given time instant and the integrations (also numerical) are arranged 
so that, for a blade, they utilise blade properties expressed along a 
blade axis. The general scheme is explained in Ref. 1. 

Appendix A.2: Formulation of transformation from local to fixed axes 

Figs. 9(a) and (b) show the various deformations and axes that 
enable the transformation from local co-ordinates based on moving 
axes to co-ordinates based on fixed or inertial axes to be made. 
The flap, lag and twist deformations are expressed in terms of 
assumed modes, each of these being associated with a generalised 
co-ordinate, q.. The assumed modes may be experimentally obtained 
or previously 1 calculated, or based on some simple algebraic form, 
e.g. polynomial, trigonometric etc. Thus: 

f S (s) = s s + fso(s) + 2: f Si ( s )qi 0 i 

f<; ( s) = <; s 
0 + fr;0 (s) + 2: f<;i(s)qi 

i 
.. (A.2.1) 

es(s) = e0 (s) + e0 s(s) + ~ f8i(s)qi 
1 

~ 

in which fs(s), f (s) andes(s) are the flap, lag and pitch 
deflections at a ~tation distance s along the blade axis, s0 is the 
coning angle, r;

0 
the steady lag, and 8

0 
the combined built-1n twist 
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5
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(:: E (X10 , !Jto' Cto) - b/ade f,.xed 

Fig. 9(a): Transformations to hub-fixed axes 

Fig. 9(b): Transformations to space-fixed axes 
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and applied pitch. The sectional steady-state values are given by 
fS

0
(s), f~0 (s) and 8

0
s(s), and the contributions from each mode qi 

are fSi(s;, f~i(s) and f6i(s). Any mechanical pitch/flap or pitch/ 
lag coupling terms (i.e. due to o3 and a2) would appear in the 
expression for es(s). Differentiation of fs(s) and f~(s) with 
respect to s provides expressions for local flap and lag angles, 
S(s) and ~(s) respectively. Further angles, necessary to formulate 

,rotation transformation matrices are T = nt (instantaneous angle of 
rotation of the datum blade about the rotor axis), n (rotor axis 
tilt), and~. w, y (fuselage roll, pitch and yaw). 

It can be shown that a point at X1o = {xlo, Y1o, Z1o} on a 
blade (local blade axes with x10 = D, see Fig. 9(a)) may be expressed 
in terms of axes attached to the rotor hub as 

!h - {xs, Ys, zs} 

= [A1Jr1 o + 1l1 .• (A.2.2) 

where [A1] = [T TJ [T SJ [T ~J [T 6] 

[B1] = [TT](r:s + [T sl!:s) 

s 
rs = -~ f~(s) 2 ds 

0 

f ~ ( s) 

D 

s 
!.s = s - ~ J S (s )2 ds 

0 

Yo 

Z0 +fs(s) 

in which Y and Z define the built-in blade axis offset. A 
rotational 0 tran~formation matrix is denoted [T(an le~; the angle 
indicates the angle between the axes concerned. Agtypical matrix is, 
for examp 1 e: 

0 

cos8( s) 

sin8(s) 

0 

-sine(s) 

cos0(s) 

The diagonal positioning of the 'one' depends upon the axes about 
which the rotational transformation is taking place. 
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For axes fixed in space: 

Io = {xo' Yo• zo} 

= [A}t)o +..!?. .. (A.2.3) 

where [AJ = [Ty] [Tl/J] [TcpJ [Tn] [A1] 

~ = [T) [Tl/JJ[TcpJ ( [\J.!21 +Lac) + ..t:f 

in which r c defines the co-ordinates of the aircraft centre of mass, 
and Lf = 1&xf' qyf' qzf} is a vector of the fuselage translational 
displacements (see Fig. 9(b)). 
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