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1. Abstract 

This paper addresses a multilevel decomposition procedure, for efficient design optimization of 
helicopter blades, with the coupling of aerodynamics, blade dynamics, aeroelasticity and structures. 
The multidisciplinary optimization problem is decomposed into three levels. The rotor is optimized 
for improved aerodynamic performance at the first leveL At the second level, the objective is to 
improve the dynamic and aeroelastic characteristics of the rotor with a constraint on the autorotational 
inertia. In the third level, the goal is to design a two celled isotropic box beam for minimum blade 
weight while ensuring that the blade structure maintains sufficient stiffness. Nonlinear chord and 
twist distributions are assumed. Interdisciplinary coupling is established through the use of optimal 
sensitivity derivatives. The Kreisselmcier Steinhauser function approach is used to formulate the 
optimization problem when multiple design objectives are involved. A nonlinear programming 
technique and an approximate analysis procedure are used for optimization. Results obtained show 
significant improvements in the rotor aerodynamic, dynamic and structural characteristics, when 
compared to a reference or baseline rotor. 
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2. Nomenclature 

chord, ft 
chord distribution parameters, ft 
3/rev radial shear, lb 
3/rev inplane shear, lb 
4/rev vertical shear, lb 
K-S function constraint vector 
constraint functions 
3/rev torsional moment, lb-ft 
3/rev flapping moment, lb-ft 
4/rev lagging moment, lb-ft 
nonstructural weight at jlh node, lb 
reference axes 
nondirnensional radial location 
autorotational inertia, lb-ft2 
thrust coefficient 
power coefficient 
lagging stiffness, lb-ft2 
flapping stiffness, lb-ft2 
objective functions 
values of Fk at the beginning of an iteration 
total number of constraints and objective functions 
number of constraints 
number of design variables 
number of objective functions 
number of blade segments 
number of box beam structural members 
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blade radius, ft 
thrust, lb 
total blade weight, lb 
real part of the jth stability root 

kth objective function tolerance 

design variable vector 

advance ratio 

K-S function multiplier 

blade twist, degrees 

blade twist parameters, degrees 

area-weighted solidity 

blade root centrifugal stress, lb/ft2 

minimum allowable damping of jth stability root 

rotor angular velocity, r.p.m. 

3. Introduction 

In recent years, optimization techniques have received wide attention in helicopter rotor blade 
design for addressing various design issues involving dynamics, aerodynamics, structures and 
aeroelasticity. Considerable research on aeroelastic optimization of metal rotor blad~s has been 
performed during the last decade as indicated by Friedmann [1]. Chattopadhyay and Walsh [2] 
addressed vibration reduction and minimum weight design of rotor blades with stress constraints. 
Recently, Chcpra and Ganguli [3] developed an aeroelastic optimization and sensitivity analysis 
procedure for composite hingeless rotors using an analytical approach. Most of these research efforts 
were based on a single discipline. 

Rotary wing aircraft design is truly multidisciplinary in nature and therefore an integration of the 
necessary disciplines is essential for an optimization procedure to be meaningful. Celi and Friedmann 
[ 4] addressed the coupling of dynamic and aeroelastic criteria, using quasi steady airloads, for blades 
with straight and swept tips. An integrated aerodynamic and dynamic optimization procedure was 
presented by Chattopadhyay et. a!. [5]. The integration of aerodynamic loads and dynamics was 
achieved by coupling the comprehensive helicopter analysis code CAMRAD [6] with the optimization 
algorithm CONMIN [7] and an approximate analysis technique. He and Peters (8] performed a 
combined structural, dynamic and aerodynamic optimization of rotor blades using a simple box beam 
model to represent the structural component in the blade. Chattopadhyay and McCarthy [9,10] 
develvped multicriteria optimization procedures for the design of helicopter rotor blades. The 
objectives were to reduce blade vibration with the coupling of blade dynamics, aerodynamics, 
aeroelasticity and structu··es. Very recently, multidisciplinary optimization efforts have also been 
initiated to investigate the design of high speed proprotors by Chattopadhyay et. al. [11, 12]. 

Since the validity of the designs obtained using optimization techniques depends strongly upon 
the accuracy of the analysis procedures used, it is essential to integrate sufficiently comprehensive 
analysis tools wit11in the closed loop optimization procedure. Such procedures are C.P.U. :Utensive 
and, hence, are computationally prohibitive in an optimization environment. Furthermore, since the 
problem becomes highly coupled and is associated with a large number of design variables, an "all-at
once" optimization procedure in which all the disciplines are coupled and optimization is performed 
based on criteria involving every discipline, can be inefficient and time consuming. Therefore, 
decomposition techniques are often used to simplify such complex optimization problems into a 
number of sub problems. Multilevel decomposition techniques have been applied to probiems 
involving a single discipline [ 13-16] and are finding applications in multidisciplinary design 
optimizati0n of fixed wing aircraft [17-20]. In this paper, such a procedure is used to address the 
complex helicopter rotor blade design problem. Typically, the number of levels is based on the 
number of disciplines involved. Individual optimization is performed at each level using analysis 
procedures pertaining to that level. Optimal sensitivity parameters are exchanged between the levels 
to provide the necessary coupling between the levels. An optimal design is obtained when each 
individual level is converged and overall convergence is achieved. Therefore, the speed of obtaining 
a fully converged result ciepends upon the strength of coupling between the various levels. A smart 
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decomposition procedure enables systematic decomposition in which the coupling between the levels 
are minimal. The following section presents a simple decomposition scheme for a generic problem. 

4. Multilevel Decomposition 

The multilevel decomposition procedure is illustrated through a three-level formulation. Each 
level is a multiobjective optimization problem characterized by a vector of objective functions, 
constraints and design variables. The formulation is outlined below. 

LEVEL 1 
1 

Minimize Fi ($1) i = 1, ... , NOBJ1 • 
I 5:: 0 subject to gk(~1) k = 1, ... , NC1 

NDV1 2* L ()Fj 1 ::; c~ 1, ... , NOBJ2 
o$1 L1$i J = J 

i=1 I 

1 • 
NDV oF~ 

c~ I. J .<1~1 5:: j = 1, ... , NOBJ3 
o$1 i J 

i=1 I 

1L 1 1U 
$i s $i ::; $i 1, ... , NDV1 = 

NDV1 2* 

$JL 
. La~- $Ju 1, ... , NDV2 ::; ~~ + _J_M! 5:: j = J ()~l I 

i=1 I 

NDV1 3* 

¢JL . I. Cl¢ $~u 1, ... , NDV3 ::; ~~ + _J_M! s J = 
J o$' I 

.I 
i=1 I 

where F1, p2 and p3 are the objective function vectors at levels 1, 2 and 3 respectively, g1, g2 and g3 

are the corresponding constraint vectors and ~ 1, $2 and ~3 are the corresponding design variable 

vectors. The quantities cJ and f.J represent tolerances on the changes in the jtl1 objective functions 
corresponding to levels 2 and 3, respectively. Superscripts L and U refer to lower and upper 

• • 
ClF~ ClF~ 

bounds, respectively and superscript * represents optimum values. The quantities, --\- and - 1-1 
Cl$i Cl$i 

are the optimal sensitivity derivatives of the objective functions used at levels 2 and 3, respectively, 
2* 3* 

with respect to the design variables at level 1. Finally, o¢j1 and Cl$j1 are the optimal sensitivity 
o$i o¢i 

derivatives of the design variables vectors at levels 2 and 3, respectively, with respect to the design 
variables at level 1. 

LEVEL2 
2 1* 2 

Fj ($ ' ~ ) j = 1, ... , NOBJ2 Minimize 

subject to 
2 1* 2 

gk($ , ~ ) s 0 k = 1, ... , NC2 
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' NDV2 0F~ 
E~ 1, ... , NOBJ3 :L J Ll.¢2 s j = 

o¢f ; J 

i=1 

2L 2 2U 
¢; s ¢; s ¢; = 1, ... , NDV2 

? • 

¢JL 
* NDV" il¢3 

¢JU 1, ... , NDV3 s ¢~ + :L _j LJ.¢f s J = 
J a¢7 1 

i=1 1 

• 
where ¢1* is the optimum design variable vector from level 1. This vector is kept fixed during 
optimization at level 2. The optimal sensitivity derivatives of the level 3 objective functions and 

* * 
d · · · h 1 1 2 d · · bl d d aF} d o¢} · 1 es1gn vanables w1t respect to eve es1gn vana es are enote - 2- an - 2-, respect1ve y. 

o¢; o¢; 

Level3 

Minimize j = 1, ... , NOBJ3 

subject to k = 1, ... , NC3 

j = 1, ... , NDV3 

where the optimum vectors from upper levels, ¢1* and ¢2*, are held constant. Iterations between the 
three levels are necessary to account for the coupling between the objective functions, constraints and 
design variables pertaining to the various levels. 

5. Problem Formulation 

The decomposition of the helicopter rotor blade optimization problem is described here. As 
mentioned earlier, a smart decomposition can decouple the problem efficiently and help achieve faster 
convergence. This can be accomplished through a knowledge of the design process and symhesis as 
well as the magnitudes of the optimal sensitivity derivatives. In the conventional design FOCess of an 
aircraft, the planform variables are prescribed by the aerodynamicist. The desired stiffnesses of the 
wing are prescribed by the dynamicist and the structural engineer designs the wing structure with 
sufficient stiffnesses. Based on the above concept, coupled with a knowledge of the cptimal 
sensitivity parameters, the rotor design problem is decomposed into three levels. 

Levell 
The rotor is optimized for improved aerodynamic performance at level 1 of the procedure. The 

total power coefficient, Cp, is the objective function. Level 1 design variables include spanwise 
variations of chord and twist distributions. A constraint is imposed on the rotor thrust coefficient, 
CT, to ensure the same lifting capability of the reference rotor. In order not to deviate too much from 
the baseline flight condition and also to ensure efficiency in hover a lower bound is imposed on the 

rotor solidity, cr. The constraints are formulated as follows 

(i) CT = CTref, 
(ii) 0' :2: O"min, 

where the subscript "ref'' stands for the reference, or baseline, rotor and the subscript "min" refers to 
the minimum allowable blade solidity. 
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Level2 
At level2, the objective is to improve the dynamic and aeroelastic characteristics of the rotor and 

control the vibratory and static stresses on the blade. For a four-bladed rotor in forward flight, the 
most critical vibratory hub loads occur at the fundan1ental blade passing frequency of 4/rev. This also 
includes contributions from the 3/rev and 5/rev loads as well [21]. However, the magnitudes of the 
5/rev loads are small compared to the 3/rev loads and are therefore ignored. The six critical vibratory 
loads are the 4/rev vertical shear (fz), the 4/rev lagging moment (mz), the 3/rev inplane shear (fx). the 
3/rev radial shear (fr), the 3/rev flapping moment (mx) and 3/rev torsional moment (me). In this 
problem, the 4/rev vertical shear, fz, and the 3/rev inplane shear, fx, are included as objective 
functions since their values were found to be more significant. A constraint is imposed on the 3/rev 
radial force, fr. The moments are not included to reduce the number of constraints. A lower bound is 
imposed on the autorotational inertia (AI) to ensure that the rotor has sufficient inertia to autorotate in 
the event of engine failure. Constraints are also imposed on the real part of the stability roots to 
maintain aeroelastic stability. These constraints assume the following form, 

(iii) 
(iv) 

(v) 

fr :s; fru, 
AI :2: AIL, 
CXk :s; -'\J, k = 1, 2, ... , K, 

where fru is the upper bound on the radial shear and the subscript AIL is the lower bound on the 

autorotational inertia. The quantity CXk represents the real part of the stability root, K denotes the total 

number of modes included and '\J denotes a minimum allowable blade damping which is a positive 
number. 

The design variables used in level 2 are discrete values of the flapping and lagging stiffnesses, 
Eizzj and Eixxi, respectively, at each segment (i = 1, ... , NSEG and NSEG is the total number of 
blade segments). Discrete values of the nonstrnctural weights (Fig. 1) located at the blade tip, w0 i, 
(i = 1, ... , NSEG) are also used as design variables. 

Level3 

z 
nonstructural weight 

honeycomb 

~----------------c~) -------------------+ 
Fig. 1 Two celled isotropic box beam 

At level 3, it is of interest to design the spar such that optimum structural stiffnesses from level2 
match the actual stiffnesses of the box beam. The appropriate objective function is the total blade 
weight which is to be minimized. The five independent wall thicknesses (Fig. 1), at each section tji 
(j = 1, ... , 5, Fig. 1), are used as design variables. 

To ensure that the actual flapping and lagging stiffnesses are close to the optimum stiffnesses, as 
determined in level2, these stiffnesses are constrained to be within a small tolerance of the optimum 
stiffnesses. An upper bound constraint ( O'max) is imposed on the blade centrifugal stress, at the root, 
Gr. The constraints are as follows. 

(vi) I Elxx - EixXopt I :s; e(Eixxopt) 

G7- 5 



(vii) I Eizz- EIZ«Jpt I :'> E(Eizl{Jpt) 

(viii) 0r ~ FS x 0max 

where Elxxopt and Elzzopt are the optimum stiffnesses obtained from level 2, E is the allowable 

tolerance on the deviations, FS is the factor of safety and 0max is the maximum allowable blade 
stress. 

6. Aerodynamic Model 

The rotor blade aerodynamic model is described in this section. The blade chord and twist 
distributions are modeled as nonlinear functions of the nondimensionalized radius, y. The chord, 
c(y), and twist distributions, 8()i), are defined to have the following span wise variations. 

c(ji) =co+ q(y- .75) + c2(y- .75)2 + c3(Y- .75)3 

8(y) = 81CY- .75) +82(5'- .75)
2 

+ 83(5'- .75)3 
(1) 

(2) 

where the coefficients c0 - c3 and 81 - 83 are the coefficients that define the chord and twist shapes, 
respectively. These disuibutions are chosen to closely model the properties of an existing blade [22]. 
The nonlinear distJibutions also allow the optimizer sufficient flexibility in the tlesign space, since 
these parameters are used as design variables. 

7. Structural Model 

The load carrying structural member in the rotor is modeled as a two cell isotropic box beam 
(Fig. 1) with five independent wall thicknesses which are assumed to vary spanwise. Spanwise 
nonstructurai tuning masses are located at 2.5 percent chord location. The bean1 is symmetrical about 
the x-axis and is assumed to carry all loads within the rotor. Outer dimensions of the box beam at a 
blade section are based on constant percentages of the chord at that particular section. Titanium is 
used as the blade material. 

Since the flapping and lagging stiffnesses are used as design variables in level 2, the remaining 
structural properties, as required by the code CAMRAD, are estimated based on these values. For 
example, the polar moment of inertia (Ie), the torsional rigidity (GJ), the shear center - center of 
gravity offset (xi) and the blade mass (m) are estimated based upon the current values of the flapping 
and lagging stiffnesses and the values of the respective stiffnesses from the last real analysis. All 
other physical blade properties are assumed to remain constant. From these values it is then possible 
to estimate the total blade weight (V{), the autorotational inertia (AI) and the centrifugal stress at the 

root ( <>r) 

8. Multiobjective Function Formulation 

Due to the fact that the optimization problem in level 2 involves more than one design objective, 
the Kreisselmeier-Steinhauser (K-S) function approach [23] is used. Using this approach, the 
problem with multiple objective functions and constraints is transformed into one with a composite 
function which comprises properly scaled objective functions and constraints. The optimization 
problem is reduced to an unconstrained minimization of the K-S function. The K-S function 
approach has been found to perform well in the nonlinear helicopter design problem [10]. The 
original objective functions are transformed into reduced objective functions which assume the 
following form. 

K = 1, 2, ... ,NOBJ, (3) 

where Fko represents the value of the original objective function, h, calculated at the beginning of 
each iteration. The quantity gmax is the value rof the largest constraint corresponding to the desigr, 

variable vector ¢ and is held constant during each iteration. These reduced objective functions au·e 
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analogous to the previous constraints. Therefore, a new constraint vector gm($), m = 1, 2, ... , M, 
is introduced, where M = NC + NOBJ. This constraint vector includes the original constraints of the 
problem as well as the constraints introduced through Eqn. 3. The new objective function is defined 
as follows. 

M 
F(<I>) = fmax +.!. L,ep(gm(<l>Hmax), (4) 

p 
m=l 

where fmax is the largest constraint corresponding to the new constraint vector, gm(~), and in general 

is not equal to gmax· The K-S multiplier p is analogous to a draw-down factor where p controls the 
distance from the surface of the K-S objective function to the surface of the maximum constraint 
function. When p is large, the K-S function closely follows the surface of the largest constraint 

function. When p is small, the K-S function includes contributions from all violated constraints. 

The design variable vector $ remains unchanged using this multiobjective function formulation 
technique. Further details are found in Ref. [10]. 

9. Analysis and Optimization 

The program CAMRAD is used for the blade dynamic, aerodynamic and aeroelastic stability 
analyses. The code uses lifting line theory, with corrections for yawed flow, to calculate the section 
loading based on the two-dimensional aerodynamic characteristics of the airfoil. At each cycle of the 
optimization procedure the blade is trimmed within CAMRAD so that the intermediate designs which 
represent feasible designs are trimmed configurations. A wind tunnel trim option is used and the 
rotor lift and drag, each normalized with respect to solidity and the flapping angle are trimmed using 
the collective pitch, the cyclic pitch and the shaft angle. Uniform inflow is assumed to reduce 
computational effort. 

The optimized rotor is trimmed to the same value of the thrust coefficient (CT) as the reference 
rotor using a variable trim procedure [10]. The blade response is calculated, in CAMRAD, using 
rotating free-vibration modes equivalent to a Galerkin analysis. Ten bending modes, of which seven 
are flapping dominated and three are lead-lag dominated, and three torsion modes are calculated. 
Main blade responses of up to 8/rev are included. Therefore, eight harmonics of the rotor revolution 
are retained in the airloads calculations. The vibratory shear forces and moments are calculated based 
upon the airloads information obtained from the aerodynamic analysis. The aeroelastic stability 
analysis is performed using Floquet theory for periodic state equations. Four bending degrees of 
freedom and one torsional degree of freedom are used for the stability analysis. 

The structural analysis of the rotor blade is performed using an in-house code [24]. The blade 
section properties are based on thin wall theory. The code models a simple two cell homogeneous 
box beam with one rectangular cell and one trapezoidal cell (Fig. 1). It is assumed that the flatwise, 
chord wise and torsional stiffnesses of the blade are provided solely by the box beam. 

The optimization algorithm used is CONMIN which is a nonlinear programming technique based 
upon the method of feasible directions. Since the use of exact analyses for the calculations of the 
objective functions and constraints during each iteration within CONMIN is computationally 
prohibitive, an approximate analysis technique, based on a two-point exponential approximation [25] 
is used. This technique assumes its name from the fact that the exponent used in the expansion is 
based on gradient information from the previous design point. Further details of the expansion 
technique can be found in Refs. [10,25]. 

10. Results 

The optimization procedure is applied to a reference blade of radius, R = 4.685 ft and rotational 
velocity, n = 639.5 r.p.m. which is operating in forward flight with an advance ratio, ~ = 0.3. The 
rotor is an existing advanced four-bladed articulated rotor. The blade is discretized into 10 segments 
(NSEG = 10). A summary of the flight conditions is presented in Table 1. The physical constraints 
imposed during optimzation include the blade solidly (a), the autorotational inertia (AI), the 

centrifugal stress at the blade root Car), the minimum allowable blade damping (u) and the 3/rev 

G7 -7 



inplane vibratory shear force (fr). A value of O"min = 0.100 is used as the lower bound on the solidity 
and the upper bound used on the autorotational inertia is 19.8 lb-ft2 which is based on an existing 
advanced rotor blade value [22]. A minimum allowable blade damping of u = 0.01 is used to 
ensure that the optimum blade retains some damping. The reference value of fr = l.lllb is used as 
the upper bound on the 3/rev inplane shear force. The root centrifugal stress is constrained to be 
below 12.5 x J06 lb/ft2, which is calculated using the allowable stress for titanium and a factor of 
safety, FS = 2. During the optimization procedure the constraints on the autorotational inertia and the 
centrifugal stress are always well satisfied, while the solidity becomes nearly active for the optimum 
blade. The 3/rev inplane shear force is reduced by 9.5 percent during the optimization procedure. 
Further details are seen in Table 2. 

A total of 7 aerodynamic design variables are used in level 1 to define the chord and twist 
distributions. In level 2, 30 design variables are used to define the discrete span wise variations of the 
flapping and lagging stiffnesses and the nonstructural weights. In level 3, the 5 individual wall 
thicknesses of the two celled isoptropic box beam lead to a total of 50 design variables along the 
span. Therefore, the entire multilevel decomposition optimization procedure consists of a total of 87 
design varibles. Global convergence is achieved in only 3 cycles, requiring 14 total cycles in Ievell, 
45 cycles in level 2 and only 12 cycles in level 3. 

Table 1 Summary of operating conditions 

Blade radius, R 
Rotor thrust, T 
Rotational velocity, Q 

Advance ratio, Jl 

4.685 ft 
277lb 
639.5 r.p.m. 

0.3 

The optimum results are presented in Tables 2 and 3 and Figs. 2 - 8. It is seen from Table 2 and 
Fig. 2 that there are significant reductions in the individual objective functions from all levels. The 
objective function in level 1, the coefficient of total power (Cp), is reduced by 19.8 percent. The 
4/rev vertical shear (fz), one of the objective functions in level 2, is reduced by 45.8 percent. The 
second objective function in level 2, the 3/rev inplane shear (fx) remains equal to the reference value. 
The large reduction in fz and no reduction in fx is possibly due to the fact that the K-S function 
envelope follows the fz surface more closely than fx due to the value of the K-S facto;·, p, selected for 
this problem. It must also be noted that the procedure does not guarantee a global optimum, therefore 
the solution obtained represents a local minimum. The total blade weight (JV), which is the objective 
function in level 3, is reduced by 3.7 percent. As shown in Table 2, the constraints for all three 
levels are well satisfied. 

The chord and twist distributions, which are defined by level! design variables, are presented in 
Figs. 3 and 4. From Fig. 3 it is seen that optimum blade has a nearly linear tapered planform, despite 
the fact that the assumed chord distribution is cubic. As a consequence, the blade solidity is reduced 
from reference to optimum blade. This also implies that the optimum rotor is operating at a slightly 
higher CT/0" value while maintaining the same rotor thrust as the reference rotor (Table 2). The 
optimum configuration is therefore tapered which represents a more aerodynamically efficient design 
with a more evenly distribuied load distribution. The twist distribution is shown in Fig. 4 where 
significant changes are observed. The reference rotor has a linear twist distribution with nearly 16° of 
total twist, from root to tip. The optimum rotor has a highly nonlinear distribution and the total twist 
is significantly reduced (approximately 6°, from root to tip). The overall reduction is blade twist is 
possibly an attempt to minimize the region of negative angles of attack in the rotor map, thereby 
improving aerodynamic efficiency. 
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Table 2 Summary of optimum results 

Bounds Reference Optimum 
lower u er 

Objective Functions 
Levell 

Cp 0.000470 0.000377 
Level2 

fz (lb) 0.204 0.111 
fx (lb) 1.41 1.41 

Level3 
w (lb) 5.95 5.73 

Constraints 
Levell 

() 0.100 0.116 0.104 
Level2 

fr 1.11 1.11 1.00 
AI (lb-ft2) 19.8 39.4 33.9 

Level3 
crr (x 106 lb/ft2) 12.5 1.51 1.51 

Trim, CT/CJ 0.0592 0.0659 

0 Reference 

Ill Optimum 

1.2 ~ 
0 

~ 
0 

1.0 00 
o\ 
~ 

' 
0.8 

~ 
00 
tri 

0.6 '"" ' 

0.4 

0.2 

0.0 
Cp fz fx w 

Fig. 2 Summary of optimum results 

The level 2 design variables are shown in Figs. 5-7. Both the lagging stiffness (Eixx) and the 
flapping stiffness (Eizz) have similar trends. Due to the optimal sensitivity derivatives there is a very 
strong dependence of the stiffnesses on the chord distribution determined in level l. This is due to 
the fact that as the chord changes, the dimensions of the box beam also change. Figure 5 depicts the 
lagging stiffness distribution where the similarities between the stiffness and chord distributions is 
observed. The nonlinearities in these distributions are possibly due to the optimizer's effort in 
altering the modes shapes (make them more orthogonal to the forcing function) to reduce vibration. 
The nonstructural weight (w0 ) distributions are presented in Fig. 7. When compared to the reference 
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rotor, there is an increase in the magnitudes of these weights from root to 3/4 span followed by a 
subsequent decrease. This trend represents a compromise between the optimizer's effort in altering 
the dynamic response while reducing the blade weighl Although the autorotational inertia is used as 
a constraint, this constraint is always well satisfied and therefore does not influence the nonstructural 
weight distribution significantly. 

0.6 Reference 

-e- Optimum 
0.5 

0.4 

"8 0.3 
0 .c 
u 

~ 
VJ 
01 
01 .... on 
01 

"0 
~ 

~ 

b 
CD 
..... ~ 
"' -~ ..... 
01 

"0 
Oil 

~ 

0.2 

0.1 

04--.~~--~~,--.~~--
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Non dimensional radius, y/R 

Fig. 3 Blade chord distributions 

12 Reference 

10 -e- Optimum 

8 

6 

4 

2 

0 

-2 

-4 4---.~---.--,.---~-,---,-._,...--..~ 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Non dimensional radius, y/R 

Fig. 4 Blade twist distributions 
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Fig. 5 Lagging stiffness distributions 

Reference 

-e- Optimum 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Nondimensional radius, y/R 

Fig. 6 Flapping stiffness distributions 

The design variables of level 3 are presented in Table 3 which shows the discrete span wise 
variance of the reference and optimum thicknesses for all five independent box beam wall 
thicknesses. The nonlinearities in the distributions are a result of the objective of level 3 which is to 
obtain a minimum weight structure that satisfies the stiffness distributions as predicted by level 2. 
Such a beam would be very impractical to build out of an isotropic material but the stiffness 
distributions can be easily achieved through composite tailoring. 

Finally, Fig. 8 shows the root-locus diagram, which are level 2 constraints, for the optimum and 
reference rotors. It is seen that aeroelastic stability is maintained after optimization arld that the blade 
has higher damping than the minimum prescribed value (u = 0.0 1). 
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tz 0.0570 
13 0.0602 

4 0.0423 
ts 0.0488 

Table 3 Box beam wall thicknesses 

Box Beam Wall Thicknesses (in) 
2 3 4 5 6 7 8 

0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 
0.0613 0.0621 0.0601 0.0621 0.0648 0.0633 0.0631 
0.0495 0.0611 0.0431 0.0699 0.1105 0.0668 0.0670 
0.0551 0.0631 0.0469 0.0658 0.0820 0.0642 0.0657 
0.0585 0.0530 0.0825 0.0511 0.0693 0.0940 0.0766 
0.0422 0.0608 0.0290 0.0728 0.1032 0.0783 0.0711 
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In summary, the multilevel procedure developed is more efficient in formulating and addressing 
multidisciplinary design optimization of rotary wing aircraft. The decomposition helps in 
understanding the coupling between the various disciplinary criteria and the design variable linkage. 
The design objectives and constraints are all satisfied in the example shown. The procedure provides 
important design trends. Actual numbers obtained are somewhat less important as they should be 
viewed within the context of the modeling assumptions used in the analysis. 

11. Concluding Remarks 

A multilevel, multidisciplinary decomposition procedure has been developed for the optimal 
design of helicopter rotor blades. Blade aerodynamic, dynamic, aeroelastic and structural design 
requirements have been coupled within a three level decomposition optimization procedure. In level 
1, the coefficient of total power is reduced using aerodynamic design variables. Level 2 comprises 
two objectives functions to be reduced, the 4/rev vertical shear and the 3/rev inplane shear. The two 
objective function problem is formulated using the Kreisselmeier-Steinhauser function approach. The 
design variables used are discrete span wise distributions of the flapping and lagging stiffnesses and 
nonstructural weights. At level 3, the objective is to obtain a minimum weight spar design to satisfy 
the stiffnesses predicted by level 2. The design variables are discrete span wise distributions of the 5 
independent box beam wall thicknesses. A nonlinear programming approach is used in conjunction 
with a hybrid approximation technique. The procedure yields significant design improvements. The 
following specific observations are made within the context of the modeling assumptions used. 

1. The multilevel decompostion optimization procedure yielded significant reductions in the 
objective functions in all three levels. The use of the decomposition technique allowed for more 
identifiable intrepretations of the results and its inclusion within the optimization procedure made 
the overall optimization problem more manageable. 

2. The coefficient of total power was significantly reduced due to the more optimal chord and twist 
distributions obtained in level 1. 

3. The stiffness and nonstructural weights distributions were altered to modify the mode shapes 
thereby reducing the blade vibration. The flapping and lagging stiffness distributions followed 
the chord distribution due to the use of optimal sensitivity derivatives, that linked the two levels. 

4. The optimum rotor configuration remained aeroelastically stable throughout the optimization 
procedure even though stiffness and mass distributions were significantly altered. 
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