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Abstract: A mathematical model of 2-D dynamic stall is established by identifying stall 
onset as a Hopf bifurcation. It evolves from a first generation model which has been the 
object of a recent publication and from a careful analysis of fluid flow mechanisms involved 
in dynamic stall phenomena. Lift and moment coefficients are shown to be governed re­
spectively by a system of nonlinear ordinary differential equations. The new model gives an 
insight into the physics of dynamic stall phenomena. The predictions of the model are in 
good agreement with experimental results in the case of the NACA 0012 airfoil, and are an 
improvement over those of the ONERA model. 

1 Introduction 

It is well known that prediction of helicopter rotor loads requires a better under­
standing of airfoil stall flutter on the retreating blade. Many investigations have been made 
on dynamic stall phenomena over the past 25 years: extensive wind and water tunnel tests 
of oscillating airfoils [1, 2], computational fluid dynamics simulation [3]. Reviews of dy­
namic stall phenomena [4, 5, 6] point out that they remain unsolved, particularly in their 
3-D aspects. A mathematical model for airfoil unsteady aerodynamic behavior is needed for 
engineering rotor airload predictions. Such a model has to fullfil various requirements: to 
be sufficiently accurate for the prediction of aerodynamic coefficients, to be written in an 
analytical form compatible for coupling with the structural equations of an airfoil section, to 
have economical computational demands and to be rationally based. Various mathematical 
models were proposed and have met some limited success: Boeing Vertol model [7], Lockheed 
model [8], ONERA model [9], Leishman-Beddoes model [10] and other models reported in a 
review by McCroskey [6]. 

The mathematical model of 2-D dynamic stall elaborated at ONERA [9] is referred 
to as the ONERA model [11]. This model is written in terms of ordinary differential equa­
tions with the values of its coefficients deduced from a synthesis of experimental results. It 
provides predictions of aerodynamic coefficients comparable with those of other models [12]. 
However, for the next step of modeling 3-D dynamic stall, there is a need for an improved 
rationally based model. 

Our approach relies on an analysis of fluid flow mechanisms involved in dynamic stall 
phenomena. Two distinct flow phenomena which are stall delay and vortex-shedding are re­
sponsible for dynamic stall behavior. The vortex shedding phenomenon is not well modeled 
by the existing mathematical models. To provide a consistent formulation and theoretical 
method of modeling this nonlinear aspect of dynamic stall, we have based our approach on 
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the body of theory known as bifurcation theory. Particularly, we have made use of the results 
of analytical studies by Tobak et al. [13] who ha.ve identified stall onset as a Hopf bifurcation. 
A bifurcation of an aerodynamic system is defined as a replacement of an unstable equilib­
rium flow by a new stable equilibrium flow when the value of a parameter of the system 
reaches a critical value. In the case of a Hopf bifurcation, a time-invariant equilibrium flow 
is replaced by a periodic time-varying equilibrium flow. It is assumed to occur for the flow 
past an airfoil when the angle of attack exceeds a critical value. A model of 2-D dynamic 
stall has been established according to this theoretical postulate [14]. It is improved in this 
study, based on a careful analysis of fluid flow mechanisms which will be exposed in the next 
paragril ph. 

2 Modeling dynamic stall on the basis of bifurcation 
theory 

Let us first take up the issue of aerodynamic bifurcation for a static airfoil. The flow 
past the airfoil remains stationary when the value of the angle of attack a is low. When the 
value of a is increased incrementally, separation of the flow occurs at a critical value a" and 
vortex-shedding begins. Figure 1 shows the unsteady flow structure about a N ACA 0012 
airfoil visualized in a water tunnel: vortices are shed from both the leading and trailing edges 
of the airfoil. 

The analysis will be based on the behavior of the lift coefficient CL, it could be done 
in a similar way by considering the other aerodynamic coefficients CM and CD· Typical ex­
perimental values of the lift coefficient are reported in figure 2: the values are well determined 
for a < acr but are inherently scattered within some finite bounds for a :::: acr· According to 
Tobak et al. [13], onset of vortex-shedding is associated to a Hopf bifurcation. Experimental 
results suggest that it is a supercritical bifurcation, as in the case of the flow past a cylinder. 
No :ther aerodynamic bifurcation is assumed to occur over the remaining range of angle 
of , Lack. Based on this theoretical postulate, the lift coefficient can be decomposed into 
steady and unsteady components, denoted CL, and CLu respectively: 

(1) 

where CLu is characterized by an amplitude CL, a frequency equal to the vortex-shedding 
frequency called the Strouhal frequency w5 and a phase ¢. Typical values of CL, and CL, 
are shown in figure 2. 

When the airfoil experiences an unsteady motion, some new features of stall phenom­
ena appear and constitute the so-called " dynamic stall phenomena". Consider for instance 
an airfoil undergoing a ramp pitch motion a((), depicted in figure 3a/ : the angle of attack 
a increases linearly with time~, reaches the critical value acr at time~= r 1 , attains amax at 
~ = r2 and is held at this value for ~ > r2• Typical experimental values of the lift coefficient 
recorded during the ramp motion a< are shown in figure 3b/. CL can be decomposed into the 
steady component CL, and the unsteady component CLu· It appears that during the time 
interval [r1 , r 1 + rd], CL, overshoots its maximum static value and tends toward a value repre­
sentative of the attached flow condition (cf. Fig. 3bj). The dynamic stall delay phenvnenon 
of airfoils experiencing unsteady motion has challenged aerodynamicists for many years. The 
fluid flow mechanisms involved in the stall delay phenomenon have been analysed to a great 
extent by Ericsson and Reding [8]. There are 2 fluid flow effects: "time lag effects" which 
have a quasi-steady nature and "boundary layer impro•iement effects". The latter provide 
the most important contribution to stall delay and are induced by the airfoil motion. In a 
reference frame attached to the airfoil, the typical instantaneous velocity profile u near the 
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airfoil leading edge is depicted in figure 4. The velocity profile may be viewed, according 
to Tobak et al. [13], as having 2 components. The first profile u, corresponds to the time­
invariant profile which exists if the airfoil remains static. The second profile tt; represents 
the velocity induced by the airfoil motion. For a pitch rate a > 0, the airfoil motion induces 
a positive contribution and therefore stall is delayed to values of angle of attack beyond the 
static stall value a'". For a pitch rate a < 0, the induced contribution is negative and stall 
appears at lower values of angle of attack. 

After a time delay rd (cf. Fig. 3), periodic vortex-shedding begins. The unsteady 
component CLu grows until the flow attains a periodic time-varying equilibrium state. Al­
though it is largely recognized that the vortex-shedding phenomenon dominates the behavior 
of separated flow, few models have incorporated the periodic character of vortex-shedding. 
Results depicted in Fig.3, representative of experiments by Jumper et al. [15] and Lorber et 
al. [16], constitute evidence of multiple vortex shedding and its periodic occurrence. Scrutiny 
of experimental results on oscillating airfoils, published by the group of McCroskey [2], reveals 
the existence of well defined oscillations on the aerodynamic coefficients loops of CL( a), CM( a 
and CD(a). 

Within our theoretical framework, let us examine an important characteristic of the 
dynamic stall phenomenon which is the non-repeatability of measurements of the aerody­
namic coefficients. This characteristic was revealed by the early investigations of Liiva et al. 
[1] but wasn't explained. According to Tobak et al. [17], the determination of the periodic 
time-varying component CLu requires specification of all the 3 values of amplitude, frequency 
and phase. The phase value depends on the initial conditions of the flow. Available evidence 
[16, 18] shows that this dependence is very sensitive. Under these conditions, repeatable 
measurements could be obtained in low level turbulence tunnels if sufficient time is left be­
tween 2 runs: one has to wait for complete decays of the unsteady flow regime and of the flow 
perturbations generated by the strong dynamic stall vortex. Fig. 5 illustrates the case when 
insufficient time is left between the 2 consecutive runs: as the initial flow conditions at the 
second run differ from those of the first run, the lift coefficient CL has different phase values 
in the 2 runs and therefore its measurement is non-repeatable. However, measurements of CL 
are reproducible within a phase shift, in agreement with experiments [16, 18]. Examination 
of flow visualizations about oscillating airfoils [19] shows evidence that flow perturbations, 
generated by the dynamic stall vortex from an oscillatory cycle in pitch motion, subsist at 
the beginning of the succeeding cycle. 

Due to the character of non-repeatablity affecting dynamic stall measurements, it is 
of standard practice in experimental procedure to do averaging over about 50 cycles. Some 
experimentalists [16, 20] warned that the averaging procedure smooths out the undulatory 
structure of aerodynamic coefficient measurements. As far as the undulatory behavior is be­
lieved to originate from spurious noise, the averaging procedure does not raise any criticism. 
However, a recent computational fluid dynamics simulation made by Geissler and Vollmers [3] 
reveals a pronounced oscillatory structure on the aerodynamic coefficient loops of C L( a) and 
CM(a) which are unmatched with the available experimental results averaged over numerous 
cycles. Another CFD simulation, done by Isogai [21], also provides evidence of oscillations 
of non negligible amplitudes. Examination of his computed isovorticity curves reveals that 
each oscillation on the aerodynamic coefficients loops is associated with a vortex shed from 
the airfoil leading edge. Recently, Panda and Zaman [22] have found experimentally the 
existence of oscillations on CL( a) loops and have shown that it is related to vortices shed 
from the airfoil. 

The Hopf bifurcation based approach appears to be in agreement with experimental 
results and CFD simulations. The modeling approach furthermore offers the capability of 
providing predictions about the nature of driven separated flows: these predictions have to be 
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checked. Anticipating the next parat:raph, the separated flow may be modeled as a nonlinear 
oscillator of frequency w5 . Thus, the aerodynamic system (airfoil - flow) may be modeled 
as a coupled system of an oscillator of frequency k ( the driving reduced frequency) with an 
oscillator of frequency w 5 . One should expect very diverse features for the flow behavior, as 
in the case of a cylinder [23] and in particular, a lock-in regime for some range of external 
frequency and amplitude. 

3 Establishment of the mathematical model 

3.1 Formulation of the modeling approach 

With the knowledge of the fluid flow mechanisms involved in dynamic stall phe­
nomena, various authors have derived semi-empirical mathematical models suited for rotor 
airload predictions [7, 8, 10, 11] Despite considerable progress made during this last decade, 
CFD simulation of dynamic stall will not be possible for some time in engineering rotor air­
loads analyses. Mathematical models are de facto practical engineering tools, although they 
are still imperfect. In particular, they don't incorporate the vortex-shedding phenomenon 
in a convenient way. To remedy this, a mathematical model has been recently established 
by the author [14]. The modeling effort has been focussed on the periodic vortex-shedding 
phenomenon and has ignored the delayed separation phenomenon. The model is updated 
in this paper to incorporate this aspect of flow phenomena. The key features of the model 
will be explained below, the details of its development appear in the publication referred to 
above. 

The motion of the airfoil in a reference frame attached to the airfoil is completely 
determined by two variables: the angle of attack a and the pitch rate e = q (0: pitch 
angle), or else the angle of attack and the plunging rate h. Therefore, the model inherently 
requires · '<perimental results in pitch and plunge motions as input, unless CFD results be­
come ava1lable. The model is established by combining the indicia! response approach, the 
amplitude equations approach and physical reasoning. The indicia! response approach has 
been developed only for steady flow. This approach doesn't take into account the Hopf bifur­
cation. The amplitude equations approach has been developed in a generic way to apprehend 
the occurrence of Hopf bifurcation. The equations derived according to the second approach 
are not specific for the description of the flow about an airfoil. Physical assumptions are 
necessary to complete the elaboration of the model. 

3.2 Modeling steady flow 

The indicia! response approach was derived rigorously from incompressible Navier­
Stokes equations for steady flow which is characterized by a time-invariant equilibrium state 
[24]. The approach was developed for the modeling of the aerodynamic contribution to the 
equation governing the motion of an elastically mounted cylinder immersed in a uniform 
oncoming stream. The result was extended to the case of an airfoil [14]. The lift coefficient 
is shown to be governed by: 

where Cf~uil is the equilibrium value of the lift coefficient which coincides with its static value; 
b, g1, g2, g3 and g4 are constants. 

C23-4 



The same approach applied to the determination of the moment coefficient will give: 

3.3 Modeling nominally attached flow 

Equations (2) and (3) can still be used to describe nominaly attached flow which 
results from the stall delay phenomenon. "Boundary layer improvement effects" are taken 
into account by using appropriate values for the equilibrium aerodynamic coefficients Cf;uil 
and c~:il. They are chosen according to the model of Leishman-Beddoes. When the airfoil 
is static, the coefficient c;,;uil is given by: 

(4) 

where C'l, is a constant and the separation point f is defined as: 

(5) 

where s1 and s2 are constants and a 1 is nearly equal to a,r. When the airfoil undergoes an 
unsteady motion, f is replaced by j' which is governed by: 

(6) 

where Tf is a constant. In fact, the authors of the model referred to used 2 different values 
for Tf according to the values of j'. 

To incorporate "time lag effects", instead of solving another ordinary differential 
equation as in the Leishman-Beddoes model [10], we prefer using the method of Ericsson and 
Reding [8] which consists in replacing the value of o:(t) by a shifted value: 

o:(t)--+ a(t- r) (7) 

where r is a constant. It can be shown that the 2 methods of incorporating time lag effects 
are equivalent as a first approximation. 

The same procedure is adopted for the determination of the moment coefficient. 

3.4 Modeling unsteady flow 

When the airfoil experiences an unsteady motion, stall occurs when a exceeds a 
critical value a;!;.(k) which can be significantly greater than O:or· The value of o:;!;.(k) takes 
into account stall delay phenomena. When o: decreases after exceeding at,., the flow reattaches 
to the airfoil at a critical value o:;:;.(k) which can be significantly lower than a,r. The values 
of at,.(k) and a;:-r(k) can be deduced from the following relation: 

' f = 0.7 (8) 

according to the Leishman-Beddoes model. In a first generation model [14] it is assumed that 
at,.(k) and a;:;.(k) are equal to O:cr respectively. One has 2 regimes for CL"' corresponding to 
growth and decay regimes of the periodic time-varying equilibrium state respectively. It is 
shown [14] that CLu obeys to a Van-der-Pol- Duffing type equation during growth regime: 

CLu- ws(fJt- "'t ClJCL" + w~(CL"- 'ltCLJ = -EtwsO:- Dtwsa (9) 

C23-5 



where the constants are given a superscript +to characterize growth regime. A Van-der-Pol 
- Duffing type equation has been the basis of various mathematical models of flow past a 
cylinder but has never been applied to the case of an airfoil. The simplest way for modeling 
the decay regime is by a damped oscillator: 

(10) 

where f3£ is negative. It is possible to model the 2 regimes by the same type of analytical 
equation with, however, a different set of constants for each regime: 

.. ± ± 2. 2 ±3 ± 2 ±. ± .. ( 
cL.- ws(f3L -IL CLJCL. + Ws( CL.- TJLCL.- az,LCLJ = -ELwsa- DLwsa 11) 

One notices in Eq. (11) the presence of an additional term in C'L: when k increases, it 
provides a larger shift to CL. from the equilibrium value C L. = 0. Such an analytical term 
is suggested by studies of Noack et a!. [25], related to the description of the Karman vortex 
street generated past a cylinder. In total, Eq. (11) require 8 parameters. 

The moment coefficient CM. is governed by an equation of the same form: 

C.. (/3± ± 0 2 )C. 2 (. C ± 0 3 ± 0 2 ) E± . D± .. (12) Mu - Ws M -IM M,. Mu + Ws M .. - "flM Mu - az,M M.. = - MWsCX- MWSCX 

It has been observed experimentally that the change in CM induced by stall occurs at a value 
of angle of attack greater than that for the rise of CL [26]. To incorporate this effect, we use 
different values of a; for the coefficients CL and CM: 

where the vaL:es of a'1;.,L are deduced from equation (8). 

4 Comparison between experimental results 
and model predictions 

(13) 

The case of the N ACA 0012 airfoil in pitch motion is considered. The experimen­
tal data come from measurements by McAlister et a!. [2] and correspond to the following 
conditions: 

Mach= 0.3, El = 15° + 10°sin(k t) (14) 

The parameters of equations (2) and (3) governing the steady components CL, and CM, can 
be easily determined according to the procedure of the ONERA model. The parameters 
involved in calculating the equilibrium values c;,;uil and C~j:il are obtained according to the 
procedure of the Leishman - Beddoes model. The 8 parameters characterizing the unsteady 
components CL. and CM. are chosen such that the model reproduces at best the experimental 
results. The values of the parameters chosen for the lift coefficient are: 

Et = 0.186 , Dt = -0.89 , f3t = 0.015 , 1t = 0.75 , TJt = -0.6 , ai,L = 0 , (3£ = -3.0 
(15) 

T te values of the parameters chosen for the moment coefficient are: 

E't.r = -0.62 , D't.r = 0.455 , f3't.r = 0.015 , 1t1 = 7.5 , TJt1 = 0 , ai,M = -0.75 , /3ij = -3.0 
(16) 

The value of ws is common to both: 

ws = Z1rS , S = 0.124 (17) 
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The initial conditions for lift and moment coefficients are fixed to zero. 
The predictions of the model are given in Fig. 6 for the lift coefficient and in Fig. 7 

for the moment coefficient. Also are represented the experimental results and the predictions 
of the ONERA model. The predictions of the new model are similar in first approximation to 
those of the ONERA model for values of reduced frequencies k < 0.1. However for k ~ 0.1, 
the predictions of the new model have a better agreement with the experimental results. 
Furthermore, the model predicts oscillations on the loops of the aerodynamic coefficients. 
Such oscillatory behavior is not clearly shown in experimental results, as they correspond to 
the averaging of about 50 cycles. It seems that the oscillatory behavior is more pronounced 
on other thin airfoils, such as Ames- 01, Wortman FX 69-H-098, Sikorsky SC- 1095, Hughes 
HH-02, Boeing-Vertol VR-7 and NLR-1 [2]. 

5 Conclusion 

(i) A mathematical model of the aerodynamic contribution to the equations of motion 
governing an airfoil immersed in an oncoming fluid stream has been elaborated by identifying 
dynamic stall onset to a Hopf bifurcation. It is found that a set of nonlinear ordinary 
differential equations (ODE) governs the behavior of the aerodynamic coefficients eL and 
eM. The possibility of describing eL and eM beyond the Hopf bifurcation in terms of 
ODE's originates from the existence of a. periodic time-varying equilibrium state of the flow. 

(ii) The model provides a global description of dynamic stall phenomena. It gives an 
explanation of the character of non-repeatability of aerodynamic coefficient measurements 
based on the sensitivity of the phase of the periodic time-varying equilibrium state upon the 
initial conditions of the flow. The oscillatory behavior of aerodynamic coefficients during 
deep stall is associated with the periodic character of the vortex-shedding phenomenon. It is 
predicted that the flow past an airfoil should have a very varied behavior, and in particular 
a lock-in regime for an appropriate set of values of external forcing amplitude and frequency. 

(ii) The predictions of the new model are in good agreement with experimental results 
in the case of the NACA 0012 airfoil, and are a.n improvement over those of the ONERA 
model. 

(iv) The 2-D dynamic stall model requires knowledge not only of static values of 
aerodynamic coefficients but also of their unsteady behavior. By extrapolation, we expect 
that modeling of 3-D dynamic stall requires knowledge of 3-D aspects which have to be 
provided by experiments or by CFD simulation. 
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• I 

Fig.!.- Flow phenomena of dynamic stall of a NACA 0012 airfoil in the 
ONERA water tunnel: Re = 6000. 
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Fig.2.- Typical values of the lift coefficient CL versus the angle of attack 
a: the measured static values are denoted by symbols •; beyond the Hopf 
bifurcation which occurs at <>c,., the lift coefficient can be decomposed into 
steady component CL. and unsteady component CL. of amplitude c[_,. 
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Fig.4.- Velocity profiles near the airfoil leading edge: 
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runs and measurements of CL are only reproducible within a phase shift. 
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CL(<>) for a NACA 0012 airfoil ( __ )with theoretical 
values predicted by the ONERA model ( • • · ) and by 
the new model ( · - - ), at various values of reduced 
frequency k. 
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