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Abstract

This paper describes the physical, mathematical and numerical approaches applied by laboratories of
”Helicopter Garteur Action Group AG20” to vibro-acoustic behavior of helicopter trim-panels. The aim
of this numerical activity is to conduct a benchmark study involving different models in order to estimate
their framework for using for realistic trim panels. The calculated quantity is the acoustic transmission
loss allowing to determine the efficiency of panels to reduce an incident noise. It represents the ratio
between incident acoustic power, generally produced by a diffuse acoustic field, and the acoustic power
radiated by the panel.

1. INTRODUCTION

Transmission Loss (TL) simulations, based on an-
alytic modelling or Finite and Boundary Element-
type techniques, can be achieved to evaluate the
effect of the main parameters or to optimize the na-
ture and arrangement of layers, specially for trim
panels. Nevertheless, because of the computational
time needed for an optimization process, analyti-
cal or semi-analytical models are widely used, al-
though suited to an infinite panel size or a finite
panel size with simple boundary conditions (simply
supported, clamped or free conditions). Accurate
modelling of multi-layered trim panels for vibration
and acoustic analysis presents many difficulties and
challenges, mostly due to their highly heteroge-
neous anisotropic constitution in the thickness di-
rection and the wide frequency range of interest.
Effort in modelling plate problems has been and is
still currently devoted to identify which aspects of

the 3D mechanical behavior should be accounted
for and properly modeled in a 2D mathematical
framework, in order to obtain sufficiently simple
yet reliable models without unnecessary complex-
ity. This is a basic requirement of industry, where
the accuracy of the model should not come at the
cost of excessive computational expense, in par-
ticular if the model is to be used for iterative de-
sign and/or optimization studies. The vast major-
ity of approaches available nowadays are based on
reducing the 3D problem to a 2D problem coinci-
dent with a chosen reference surface of the plate by
introducing in advance ad-hoc kinematic assump-
tions about the behavior of the displacement field
along the plate’s thickness. A cumbersome analy-
sis based on a high-fidelity fully 3D model could be
avoided only if the kinematics of the 2D represen-
tation is properly enriched so that the essential 3D
nature of the problem is correctly described. The
analyst should ideally have the freedom of choosing
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the effective 2D model to be used according to the
geometric and material properties of the trim panel
under study and the frequency range of interest. In
so doing, the complexity of the model could be cal-
ibrated against a desired or required accuracy for
the specific problem at hand, without wasting valu-
able computational time during the design process.

ONERA has developed several analytic models
(integrated into the software PIAMCO) to com-
pute the acoustic TL of infinite or finite sand-
wich panels, with a thick orthotropic core and or-
thotropic multi-layered laminates (symmetric or
dissymmetric). Models consider elastic materials
as, for example, homogeneous materials, compos-
ite fibers (kevlar, carbon or fiber glass) with resin,
visco-elastic materials, honeycombs or foams, de-
scribed by their stiffness matrix. They can be ap-
plied to simulate structural panels of helicopter
fuselage [1], trim panels of cabins [2],[3] and
”global” walls [4] by the interaction of a structural
panel (e.g. mechanical deck) and a trim panel sep-
arated by air gap or porous material (blanket).
The first model called ”multi-layered model” as-
sumes, firstly, that the panel has an infinite curved
or plane surface and, secondly, that the dynamic
transverse displacement is constant through the
thickness, whatever the frequency range. The dis-
placement field can be written for each layer with
membrane, bending and shear terms. So, the con-
tinuity of displacements and shear stresses is sat-
isfied at the interface of each layer. Nevertheless,
there is no continuity in normal stress and shear
stresses are supposed to be independent of the
thickness. The potential energy and the kinetic
energy are calculated by integrating the different
energy densities over a volume defined by the thick-
ness of the panel, one wavelength in the direction
of bending waves, and per a unit distance. The
Lagrange’s equations are then used to obtain the
unknown parameters for a given incident acous-
tic field. The Warburton formulation is used for
a finite panel with clamped boundary conditions.
The second used model concerns symmetric struc-
tures with orthotropic multi-layered laminates and
a thick orthotropic core whose transverse dilatation
is introduced. The formulation of core displace-
ment is similar to that employed by [5] in the case
of a single isotropic laminate on each side of the
core. The stiffness terms comply with the hypoth-
esis of plane strain (3D). As concerns the external
laminates, the displacement and stress fields follow
the approach of the ”multi-layered” model.

In the lower frequency range a more detailed
knowledge of the TL is desirable, e.g., to evaluate

the performance of active control methods. There-
fore, the DLR uses a finite element simulation in-
cluding all material properties and boundary con-
ditions and applies a diffuse sound field which is
analytically calculated with a hemisphere approach
on the finite element mesh. The simulated surface
velocities are post-processed with the radiation re-
sistance matrix in order to calculate the radiated
sound power.

The Transfer Matrix Method (TMM) has been
exploited by PoliMi to assess the vibro-acoustic
behavior of trim-panels. Matrix representation of
sound propagation is an efficient and largely used
tool for modelling plane acoustic fields in stratified
media. The problem is formulated in the frequency
domain. The layers are assumed to be laterally in-
finite, and can be of different natures. Nonetheless,
at low frequencies, where the effects of size are im-
portant, it is essential to include appropriate cor-
rections, accounting for the finite radiating area.
An approach, to the specific problem of airborne
TLs, is based on a spatial windowing technique.
Analytical expressions for the transfer matrices are
only available for elastic solids, thin plates, fluids
and poro-elastic media. On the basis of the 3D
elasticity theory, the transfer matrix of a general
anisotropic layer can also be derived. Description
of non-homogeneous media, e.g. honeycomb lay-
ers, requires homogeneous representation for such
structures. PoliMi also exploits the so-called sub-
laminate concept. Instead of adopting a global
kinematic description for the whole laminate, the
thickness of the multi-layered plate is subdivided
into an arbitrary number of sublaminates, each one
containing one or more adjacent physical plies, and
different kinematics refinements can be freely intro-
duced in different thickness subregions. When the
laminate is modeled by using one single sublami-
nate, the classical Equivalent Single-Layer (ESL)
and LayerWise (LW) models are easily recovered.

2. NUMERICAL MODELS FOR
TRANSMMISSION LOSS PREDIC-
TION

Let us consider a rectangular baffled plate lying on
the 1−2 plane (Figure 1) and separating two semi-
infinite media characterized by a speed of sound c0
and a density ρ0. A plane wave impinges upon
the bottom surface of the flat structure at an inci-
dence angle of θI with an orientation with respect
to the 1 direction defined by the heading angle φ.
Both a reflected wave and a transmitted wave will
therefore propagate from the interposed medium.



Figure 1: Field and structural system of coordi-
nates

Continuity of the velocity at the bottom interface
shows that the angles of incidence and reflection
are equal: θI = θR = θ. The angle of transmission,
θT , and the amplitudes of the reflected and trans-
mitted waves depend on the physical properties
of the barrier. With Sommerfeld conditions, the
acoustic transmission coefficient can be described
by:

(1) τ(ω, θ, φ) =
PT

PI

where PI and PT are the incident and transmitted
acoustic powers. In case of a diffuse field excita-
tion, the power transmission factor is defined as

(2) τd(ω) =

∫ 2π

0

∫ θmax

θmin
τ(ω, θ, φ)F (θ)dθdφ

2π
∫ θmax

θmin
F (θ)dθ

where F (θ) defines the incident field. The
most common field used in literature is F (θ) =
cos(θ) sin(θ) but an isotropic field (F (θ) = 1) fits
better with alternative methodologies (see the 286
sources distributed over a hemisphere discussed in
Section 2.2) and experimental results reported in
the present work. Eventually, the transmission loss
is computed as

(3) TL(ω) = −10 log(τd(ω)) .

2.1 ONERA

In the framework of the ”multi-layered model” the
displacement field of the i-th layer (Figure 2) can

Figure 2: Displacement field in the i-th layer

be defined as:
(4)

ui (x, z) = uoi (x)−(z −Ri)

(
∂wi (x, z)

∂x
+ φix (x)

)

(5) wi(x, z) = w(x)

with u, w displacements in x and z direc-
tions, Ri median axis of a layer i, and, respec-
tively, membrane bending and shear terms: uoi(x)

,∂wi(x,z)
∂x ,ϕix(x). As w is assumed to be constant

through the thickness, we can define the structural
impedance Zs:

(6) Zs =
p2 − p1
w

and the acoustic coefficient transmission:

(7) τ (θ, φ) =

(
ω ρ0c0
cos (θ)

)2
4∣∣∣Zs − 2ȷω ρ0c0
cos(θ)

∣∣∣2
If we consider a finite panel with clamped bound-

ary conditions, the displacement in z direction w
can be expressed along (x,y) by:

(8) w =

∞∑
m=1

∞∑
n=1

χmnXm(x)Yn(y)

with χmn magnitude of shape Xm(x) Yn(y) for
each mode (m,n) (hypothesis of orthogonality).
The displacement field parameters are assumed to
be:

(9) uoi =

∞∑
m=1

∞∑
n=1

αimnX
′
m(x)Yn(y)

(10) voi =

∞∑
m=1

∞∑
n=1

βimnXm(x)Y ′
n(y)



Figure 3: Core displacement in x direction

(11) ϕix =

∞∑
m=1

∞∑
n=1

δimnX
′
m(x)Yn(y)

(12) ϕiy =

∞∑
m=1

∞∑
n=1

ζimnXm(x)Y ′
n(y)

For a clamped rectangular panel, Xm(x) Yn(y) sat-
isfy the Warburton formulation.
For the second used model for which the core is

assumed to be thick, the core displacement field
satisfies (Figures 3 and 4):

uc(x, z) = uoc(x)+

−z
(
∂wc(x, z)

∂x
+ φxc(x)

)
+ ζxc(x) cos

(
π z

tc

)
(13)

wc(x, z) =

w11(x) + w21(x)

2
+ z

w11(x)− w21(x)

tc

(14)

with (1,2) the layers 1 and 2 in contact with the
core and xc(x) the expansion term.
It is interesting, for the following, to introduce

symmetric (s) and antisymmetric (a) terms to de-
scribe relative displacements of external laminates:

ws(x) = αs sin(kxx), wa(x) = αa sin(kxx),

us(x) = βs cos(kxx), ua(x) = βa cos(kxx),

ζxc(x) = ζxc cos(kxx)

(15)

with

αs =
α11 − α21

2
and αa =

α11 + α21

2

βs =
β11 + β21

2
and βa =

β11 − β21
2

(16)

The transmission coefficient can be described
by impedances Zs and Za relative to symmetric

Figure 4: Core displacement in z direction

and antisymmetric displacements of external lam-
inates:

(17) τ (θ, φ) =

∣∣∣∣∣∣
ρ0c0
cos(θ) (Zs − Za)(

Zs +
ρ0c0
cos(θ)

)(
Za +

ρ0c0
cos(θ)

)
∣∣∣∣∣∣
2

2.2 DLR

The design of active and semi-active methods is rel-
evant for the lower frequency range (up to 1 kHz).
Therefore, a detailed finite element simulation of
the test-panel was conducted at DLR in the lower
frequency range. The frequency band that can
be analyzed with finite element methods is lim-
ited due to the computational effort which is nec-
essary to increase the frequency range (discretiza-
tion/number of elements increases with frequency).
Six major steps have to be done for a TL simula-
tion:

• generating a diffuse sound field and the pres-
sures on the panel surface

• calculating nodal forces induced by a diffuse
sound field

• provide harmonic analysis in the frequency
range of interest for the FE-model with ap-
plied nodal forces

• export the surface velocities

• post-processing of the velocities with the radi-
ation resistance matrix

• calculation of the TL using incident and radi-
ated sound power.

These major steps are visualized in Figure 5. First
of all, the diffuse sound field on the panel surface



Figure 5: Simulation steps for the TL calculation
[8]

has to be generated, which is done with a hemi-
sphere method described in [9]. Therefore, 286
acoustic point sources was distributed over a hemi-
sphere with diameter of 1 meter. The acoustic
point sources are driven with the same amplitude
but with random phase and the panel is located in
a distance of 200m from the hemisphere. After the
calculation of the sound pressures on the panel sur-
face they are transferred to nodal forces by using
the finite element mesh of the panel. The accuracy
of the synthesized diffuse sound field is validated in
[10]. The incident sound power due to the diffuse
sound field can be calculated by [7]

(18) P (ω) =
Sp2avg
4ρ0c0

,

where S is the panel area and pavg is the averaged
sound pressure of all points on the finite element
mesh.
After the calculation of the nodal forces, a har-
monic analysis is performed in the FE-software
ANSYS and the normal surface velocities are ex-
ported for post-processing. An example of the
meshing in thickness direction can be seen in Fig-
ure 6 for reference panel 2. It has to be noticed
that the melamine foam is modeled with volume
elements and the other layers with shell elements.
The simulation is conducted with 6 elements in
thickness direction of the melamine foam. In order
to calculate the radiated sound power, the radia-
tion resistance matrix is used [6]. Assuming that
the finite element size is small compared to the
structural and acoustical wavelength the radiated

Figure 6: Meshing in thickness direction, glass fab-
ric (blue), honeycomb (purple), glue (cyan) and
melamine foam (red)

sound power can be calculated via

(19) P (ω) = ve
H(ω) ·R(ω) · ve(ω).

The normal surface velocities are summarized in
the vector ve(ω) and R(ω) is the radiation resis-
tance matrix at the circular frequency ω. The ra-
diation resistance matrix is defined by Eq. (20) [6]
where SE is the area of an elemental radiator, k is
the wave number and rij is the distance between
the i-th and the j-th elemental radiator.
(20)

R(ω) =
ω2ρ0S

2
E

4πc0


1 sin(kr12)

kr12
· · · sin(kr1N )

kr1N

sin(kr21)
kr21

1 · · ·
...

...
...

. . .
...

sin(krN1)
krN1

· · · · · · 1


By using the radiated sound power and the in-

cident sound power the TL can be calculated.

2.3 PoliMi - Transfer Matrix Method

Various types of waves can propagate in each layer
of the interposed barrier. The 1 − 2 components
of the wavenumber of each wave propagating in
each layer are equal to the 1−2 components of the
incident wave in the semi-infinite medium, i.e.:
(21)

k1 =
ω

c0
sin(θ) cos(φ) , k2 =

ω

c0
sin(θ) sin(φ) .

The acoustic field in a single layer is completely
defined by the nature of the waves propagating in
it and by their amplitudes [11].

In a TMM context, each layer of the barrier is
replaced by a matrix linking the values of a proper
set of variables at the opposite interfaces. First, the



relationship between a set of variables which de-
scribe the acoustic field at a specific height, V(zj),
and the wave amplitudes vector, Aj , must be de-
fined for the j-th layer through a square matrix:
V(zj) = Γ(zj)Aj . Then, the variables at the bot-
tom interface of the layer, VBj , can be related to
the variables at the top interface, VTj :
(22)
VBj = Γ(zBj)Γ(zTj)

−1VTj = Tj(ω, θ, φ)VTj .

The transfer matrix thus obtained for a specific
incident plane wave, Tj(ω, θ, φ), depends on the
thickness and physical properties of the layer. An-
alytical expressions for the transfer matrices of dif-
ferent kind of layers are available in [11].
The transfer matrix of a layered medium is ob-

tained from the transfer matrices of individual lay-
ers by imposing continuity conditions at interfaces
as

(23) H0 =


If1 Jf1T1 · · · 0
...

...
. . .

...
0 0 · · · 0
0 0 · · · J(n−1)(n)Tn

 ,

where Iij and Jij are interface matrices which de-
pend on the nature of the i-th and j-th layers and
the suffix f denotes the fluid at the excitation side.
Details on the interface matrices are fully available
in [11]. For a layered medium with n layers of
the same nature interface matrices Iij and Jij are
identity matrices and the global transfer matrix
becomes

(24) H0 = [If1 Jf1T] ,

where

(25) T = T1 ·T2 · ... ·Tn .

At the termination side, impedance conditions re-
lating the field variables are needed to well pose
the problem. Such conditions closely depend on
the nature of the termination: hard wall or semi-
infinite fluid. The added equations and variables
leads to the matrix H [11].
Enforcing the impedance condition of the fluid at

the excitation side allows to calculate the acoustic
indicators of the problem. The surface impedance
of the medium is calculated by

(26) Zs = −detH1

detH2
,

where detHi is the determinant of the matrix ob-
tained when the i-th column is removed from H.

The classical expression for the reflection coeffi-
cient is [11]

(27) R =
Zs cos(θ)− Z

Zs cos(θ) + Z
,

where Z = ρ0c0 is the characteristic impedance of
the semi-infinite medium. In case of semi-infinite
fluid termination, the transmission coefficient, T ,
and the reflection coefficient, R, are related by

(28)
p1

1 +R
=
p2
T
,

where pi is the pressure in the i-th semi-infinite
fluid, so obtaining the transmission coefficient

(29) T = −(1 +R)
detHN+1

detH1

and the power transmission factor for the infinite
structure:

(30) τ∞(ω, θ, φ) = |T (ω, θ, φ)|2 .

The classical TMM assumes a structure of infi-
nite extent, flat interfaces and homogeneous (and
isotropic) layers. The last two limitations can be
overcome by involving a FE model for the peri-
odic unit cell of each heterogeneous layer [12]. So,
the TMM makes it possible to accurately and effi-
ciently assess the sound transmission through any
planar structure with arbitrary stratification and
infinite extent. A simple geometrical correction to
account for finite size effect is presented. The ap-
proach consist on replacing the radiation efficiency
in the receiving domain by the radiation efficiency
of an equivalent baffled window. This approach is
thus strictly valid for planar structures. The power
transmission factor accounting for the finite size ef-
fect, τ , is related to the classical factor, τ∞, by [11]

(31) τ = τ∞σR cos(θ) .

The geometrical radiation efficiency, σR, for a rect-
angular baffled plate with in-plane dimensions a×b
can be expressed as

(32) σR(k0, θ, φ) =
abk0
π2

∫ k0

0

kH√
k20 − k2

dk ,

where kt = k0 sin(θ), k0 = ω/c0 and

H(k) =

∫ 2π

0

1− cos(ka cos(ψ)− kta cos(φ))

(ka cos(ψ)− kta cos(φ))2
·

1− cos(kb sin(ψ)− ktb sin(φ))

(kb sin(ψ)− ktb sin(φ))2
· dψ

(33)



2.4 PoliMi - Sublaminate variable-
kinematics Ritz models

A very flexible modelling technique for compos-
ite structures capable of generating, within a uni-
fied mathematical framework, a virtually infinite
number of plate models based on arbitrary-order
2D theories of different typologies is here briefly
presented. The present technique comes with a
characteristic variable-kinematic property, which
means that the formulation is invariant with re-
spect to the choice of a specific plate theory.
The fundamental element is the sublaminate,

which is defined as a specific group of adjacent
material plies with a specific 2D kinematic descrip-
tion, i.e., the theory adopted to approximate the
displacement field across the thickness of the sub-
laminate. Accordingly, each sublaminate is associ-
ated with the number of plies of the sublaminate,
the first and last ply constituting the sublaminate
and the local kinematic description (ESL or LW).
The order of the theory can be chosen indepen-
dently from sublaminate to sublaminate.
The formulation is based on the geometric de-

scription illustrated in Figure 7. The multilay-
ered panel of total thickness h is assumed to be
composed of Np physical plies of homogeneous or-
thotropic material and thickness hp. For modelling
purpose, the laminate is arbitrarily subdivided into
k = 1, 2, . . . , Nk sublaminates of thickness hk.
When Nk = 1, hk = h and a classical single model
is retrieved, i.e., one sublaminate coincident with
the whole laminate. In general, Nk ≤ Np. All
the relevant quantities belonging to ply p of sub-
laminate k are indicated with the superscript ()p,k.
Each sublaminate is associated with a specific kine-
matic description, both in terms of theory and or-
der of the expansion. The 3D displacement field
associated to the generic ply p of the sublaminate

k is denoted as up,k =
{
up,kx up,ky up,kz

}T
and

each component is postulated in a layerwise man-
ner as follows:

up,kx (x, y, zp, t) = Fαux
(zp)u

p,k
xαux

(x, y, t), αux = 0..Nk
ux

up,ky (x, y, zp, t) = Fαuy
(zp)u

p,k
yαuy

(x, y, t), αuy = 0..Nk
uy

up,kz (x, y, zp, t) = Fαuz
(zp)u

p,k
zαuz

(x, y, t), αuz
= 0..Nk

uz

(34)

where zp is the local ply-specific thickness coordi-
nate, Fαu◦

(zp) are thickness functions (◦ = x, y, z),

up,k◦αu◦ is the kinematic variable of the adopted 2D
approximation, and Nk

u◦
is the order of expansion.

Note that in Eq. (34) the summation is implied
for repeated theory’s indexes αu◦ and sublaminate

ESL models can be recovered by setting zp = zk,
where zk is the sublaminate-specific thickness coor-
dinate (see Figure 7). The thickness functions are
taken as a proper combination of Legendre poly-
nomials so that the kinematic variables associated
to the expansion indexes αu◦ = 0, 1 identify the
displacement at the top and the bottom of the ply
or sublaminate. This property is particularly use-
ful during the through-the-thickness assembly pro-
cedure, as far as the continuity between adjacent
plies or sublaminates is easily imposed.
The formulation is developed in the context of

a variational displacement-based approach. More
specifically, the weak form of the equilibrium equa-
tions is expressed by means of the Principle of Vir-
tual Displacements (PVD). Once a specific plate
theory is postulated through Eq. (34), the cor-
responding displacement approximation is substi-
tuted into the PVD equilibrium equation so that
the original 3-D problem is transformed into a 2-D
problem in the x − y plane. The resulting varia-
tional form contains 2-D generalized kinematic co-
ordinates, which are further expressed through a
Ritz expansion as follows:

(35)


up,kxαux

(x, y) = Nuxi(x, y)u
p,k
xαux i

up,kyαuy
(x, y) = Nuyi(x, y)u

p,k
yαuy i

up,kzαuz
(x, y) = Nuzi(x, y)u

p,k
zαuz i

i = 1..M

where Nu◦1, Nu◦2, . . . , Nu◦M is the complete set of
global, admissible and linearly independent func-
tions selected to represent each kinematic unknown
related to the expansion of the generic displace-
ment component u◦. In this work, the Ritz set
is selected as the product of Chebyshev polyno-
mials and proper boundary functions defined in
the computational domain (ξ, η) of the plate, with
ξ ∈ [−1, 1] and η ∈ [−1, 1].
After substituting Eq. (34) and Eq. (35) into the

PVD, the discretized weak form of the dynamic
equilibrium equations can be expressed in compact
form by means of self-repeating building blocks, de-
noted as fundamental kernels of the formulation,
which are invariant with respect to the number of
sublaminates, the typology of the local kinematic
description (ESL or LW) and the orders of expan-
sion of each local displacement quantity. Accord-
ingly, the proposed approach allows for the hier-
archical generation of plate models with different
2-D kinematic descriptions from the same unified
mathematical framework. In other words, an ap-
propriate sequence of expansion and assembly pro-
cedures of these kernels yields the specific stiffness
and mass matrix of the multi-layered plate accord-
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Figure 7: Geometric description.

ing to the selected multiple-kinematic model. If a
different model is required, the same sequence is re-
peated starting from the same building blocks with
the new free parameters of the model (sublaminate
subdivision, typology of kinematic description, or-
der of expansion of the displacements, number of
terms retained in the Ritz series) to yield the new
stiffness and mass matrices of the plate.
The expansion and assembly procedure involves

four main steps. The first step deals with the ex-
pansion of the kernels according to the summa-
tion implied in the repeated indexes αur

and βus

(r, s = x, y, z), which arises from the order of the
kinematic description postulated in each sublam-
inate. The second step is the assembly of the
ply-contributions in each sublaminate involving a
cycling over the index p. All sublaminate contri-
butions are subsequently stacked along the thick-
ness coordinate to account for the continuity of the
generic displacement variable at the interfaces be-
tween adjacent layers. The sublaminate contribu-
tions of different layers are always assembled in a
LW manner. The assembly of the sublaminates
contributions involves the cycling over the index k.
The final step deals with expansion corresponding
to the summation implied in the repeated indexes
i and j related to the Ritz series approximation of
the kinematic quantities. The final set of governing
equations takes the following form

(36) Mü+Ku = Ltopf top + Lbotfbot

where u collects all the generalized coordinates of
the Ritz expansion corresponding to each variable
of the kinematic model assumed in each sublami-
nate and f top and fbot denote the normal pressure
applied at the top and bottom of the panel, respec-
tively.
Fluid loading on the plate is assumed to be small

and it is thus neglected. A diffuse field is simulated

on one side of the panel by a set of incident plane
waves of same amplitude and different incidence
angle (θ, φ). With the assumption of a light fluid
for the two sides of the plate, the incident pressure
field on the top side of the panel can be expressed
as

(37) ftop = 2e−jk sin θ(x cosφ+y sinφ)

where k = ω/c0 is the wavenumber. For each in-
cident wave, the incidence transmission coefficient
τ(ω, θ, φ) is computed as

(38) τ =
2ρ0c0P

S cos(θ)

where S is the panel area and the radiated sound
power, P (ω, θ, φ), is evaluated in terms of elemen-
tary radiators, Eqs. (19,20). The diffuse trans-
mission loss, TL(ω), is computed according Eqs.
(2,3).

3. STUDY CASES

These different models are involved for two types
of ONERA ”trim” panel used as reference: the
first one has a core designed with a nomex hon-
eycomb and the second one with a melamine foam,
to produce an added dilatation effect in the fre-
quency range of interest. Only results of ”finite”
approaches are reported, along with experimental
evaluation of TLs. Similarities and differences are
analyzed according to particularities of each ap-
proach.

3.1 Panel 1

The 1st panel (surface: 0.90 × 0.90m2) reaches
3.4kg/m2 for a thickness of 11.7 mm (Figure 8). A
modal analysis has been conducted with clamped
boundary conditions (free surface: 0.84× 0.84m2)
to verify the mechanical and dimensional char-
acteristics. The computation of resonance fre-
quencies has been led with an analytical vibra-
tion model, developed in ONERA, that points out
membrane, bending and shear effects with the con-
tinuity of displacements and shear stresses at the
interface of each orthotropic layer. The theoreti-
cal mode shapes follow the Warburton formulation.
The simulations are achieved for layers characteris-
tics listed in Table 1. Twenty four modes have been
extracted with accuracy between 84 and 1312 Hz
with a loss factor between 2 and 20%. The modes
shapes are in accordance with the clamped bound-
ary conditions, except for the first modes for which
theses conditions are more difficult to achieve.



Glass Aramid Glue Nomex
fabric fabric honey.

ρ (kg/m3) 1600 1300 1000 32
Exx 16.2 27.5 1.68 (0.001)
Eyy 16.2 27.5 1.68 (0.001)
Ezz (1) (1) 1.68 0.080
Gyz 2.75 2.0 0.60 0.013
Gxz 2.75 2.0 0.60 0.023
Gxy 2.75 2.0 0.60 (0.001)
ν 0.15 0.09 0.4 (0.3)

η(%) 1 1 1 3

Table 1: Properties of materials for Panel 1 (elastic
moduli are expressed in GPa, values in brackets,
required by a full 3D constitutive law, are little
relevant with respect to results).

The panel has been tested in the ONERA setup
to obtain the experimental acoustic TL with dif-
fused field. The simulation of the TL and the
experimental measurement for the panel are com-
pared in Figure 9. It is important to note that,
below 200 Hz, assumption of diffused field is not
assured experimentally because of ONERA rever-
berant room characteristics. So, some differences
can occur between simulations and experimenta-
tion. Globally, experimental tendencies are repre-
sentative of ”mass law”. It can be seen that the TL
in the frequency range up to 900 Hz is very well
approximated. So, simulations follow experimen-
tal mean curve with generally a tolerance of ± 1
dB, except for infinitely extended model (TMM)
for which the modal behavior is not taken into
account. In this last case, when modal density
increases, differences decreases. Even the modal
characteristics of the panel (e.g. at 480 Hz) are
present in the simulation, where the transmission
loss curve has major dips compared to analytical
models or FE modelization. Above 900 Hz the TL
is slightly overestimated, possibly due to the errors
in the assumed structural damping in the simula-
tion.

3.2 Panel 2

The 2nd panel (surface: 0.90 × 0.90m2) reaches
4.75kg/m2 for a thickness of 21.7mm and is com-
posed of ”melamine” foam placed between Nomex
honeycombs and external fiberglass layers (Figure
10). The manufacturing has been done with the
following process:

• Polymerization of ”glass fabric / honeycomb”
layers under vacuum at 120◦C

• Control of total thickness of ”glass fabric /
honeycomb”

• Application of glue on foam sides with spatula

• ”glass fabric / honeycomb” layers + ”glue /
foam” under vacuum

• Polymerization under mass at 60◦C

• Control of total thickness of ”glass fabric /
honeycomb”

The lay-out is symmetrical to avoid internal
stresses generating a panel curvature.
A modal analysis has been conducted with

clamped boundary conditions (free surface: 0.84×
0.84m2) to verify the mechanical and dimensional
characteristics. The theoretical mode shapes follow
the Warburton formulation. The simulations are
achieved for layers characteristics listed in Table
2. Nineteen modes have been extracted by modal
analysis, with accuracy, between 23 and 266 Hz
with a viscous damping between 2 and 7.5%. The
mode shapes are in accordance with the clamped
boundary conditions, except for the first modes
for which theses conditions are more difficult to
achieve.
The simulation of the TL and the experimental

measurement for the panel are compared in Figure
11. The high TL is assured thanks to a dilata-
tion effect of foam from medium frequencies and
the static bending stiffness thanks to honeycombs.
It appears the particular behavior of double wall
resonance around 700-800 Hz, frequency band for
which the TL increased highly to reach about 60
dB. The simulations led with the previous charac-
teristics (Table 2) follow the tendencies of the ex-
perimental TL with, nevertheless a frequency shift
that depends on the transverse Young modulus of
the foam. The frequency range up to 1200 Hz is
very well approximated. Modal behavior is less
perceived than for Panel 1 because of presence of
double wall resonance that amplifies transverse di-
latation.

4. CONCLUSIONS

Because of many constraints the design of an ef-
fective trim panels for helicopters is a very chal-
lenging task. Numerical methods, independently
conceived by the research groups cooperating in
Garteur AG20 in the frame of the structural dy-
namics and applied to vibroacoustics, have been
compared. They refer to different implementa-
tion of the dynamic structural modelization of a



Glass Melamine Glue Nomex
fabric foam honey.

ρ (kg/m3) 1600 11.7 1050 96
Exx 21000 0.24 1950 1
Eyy 21000 0.24 1950 1
Ezz 21000 0.24 1950 330
Gyz 3000 0.12 700 85
Gxz 3000 0.12 700 38
Gxy 3000 0.12 700 1
ν 0.13 0 0.4 0

η(%) 1 10 1 5

Table 2: Properties of materials for Panel 2 (elastic
moduli are expressed in MPa).

panel under external acoustic loads. Three meth-
ods take into account of the finite size of panel,
i.e. ”multi-layered model” (ONERA), FE-model
(DLR) and SL Ritz (PoliMI). Two other meth-
ods lie in more analytical frames applied to infinite
panel i.e. ”transverse dilatation model” (ONERA)
and TMM (PoliMI). In particular, for TMM, ex-
ploiting the Transfer Matrix approach, a window-
ing technique is also required.
The results are satisfactorily comparable despite

the difficulties in modelling dynamic problems in
the specific frequency range. All the methods are
able to catch typical physical phenomena, e.g. the
TL decay due to the double wall effect in Panel
2. Furthermore they well match with experimen-
tal data. In this case the quality of the comparison
can be affected by the weighting function chosen
in Eq. (2) to represent actual conditions obtained
in the reverberant room. All the methods exploit
3D constitutive material relationship, thus some of
needed data are often not available from standard
testing activities. They can have non negligible
effects on the results. The comparison with exper-
iment data testifies the effectiveness of the different
approaches that can be used in the frame of actual
design.
The little time required by the analysis of ”infi-

nite” approaches, few seconds against many min-
utes of other approaches, and a negligible time for
model building make TMM and ”transverse dilata-
tion model” suitable candidates for optimization
activities.
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Stacking Sequence

Material Thick. Spec.Mass

GLASS FABRIC

ARAMID FABRIC

GLUE

NOMEX HONEYCOMB

GLUE

ARAMID FABRIC

GLASS FABRIC

0.66

0.186

0.25

9.5

0.25

0.186

0.66

1.056

0.2418

0.25

0.304

0.25

0.2418

1.056

Case:

Panel 1

11.7mm 3.40kg/m2

Figure 8: Panel 1
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Figure 9: TL simulations and measurement for Panel 1



Stacking Sequence

Material Thick. Spec.Mass

GLASS FABRIC

NOMEX HONEYCOMB

GLUE

MELAMINE FOAM

GLUE

NOMEX HONEYCOMB

GLASS FABRIC

1.1

3

0.24

13

0.24

3

1.1

1.76

0.288

0.252

0.1521

0.252

0.288

1.76

Case:

Panel 2

21.68mm 4.75kg/m2

Figure 10: Panel 2
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Figure 11: TL simulations and measurement for Panel 2
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