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Abstract

This paper discuses the advantages of using quadratic-programming-based higher harmonic control (HHC)
algorithms for vibration reduction applications. Their benefits when dealing with actuator constraints in com-
parison with scaling, truncation and weight manipulation of the control efforts have been exposed in previous
works. The main contribution of this work is the discussion in more detail of important implementation aspects
of the quadratic programming in the context of Higher Harmonic Control. Equivalent translations of flapping
constraints via constraints of the Fourier coefficients are not always possible in a quadratic-programming
framework and approximations of the feasible region are required. Such approximations should be taken into
consideration carefully to avoid significant loss of optimal performance. The benefits of incorporating quadratic
programming algorithms in the HHC design problem are shown for a linearised representation of a five-blade
coupled rotor-fuselage model augmented with active trailing edge flaps.

1 INTRODUCTION

Vibrations form a very important aspect in the design
and operation of rotorcraft vehicles. Current research
and technology development efforts are devoted to
mitigate the detrimental effects of vibrations since
they contribute towards decreased airworthiness, me-
chanical wearing and decreased flight comfort. A ma-
jor source of vibration in helicopters, which can be
treated using control algorithms operating in steady
conditions during forward flight, is originated from pe-
riodic forces and moments at the main rotor hub. A
rotor with identical blades under identical loading and
undergoing identical motion, the hub forces and mo-
ments are characterised by multiples of N /rev (N be-
ing the number of rotor blades), with the N /rev har-
monic being the most dominant [5]. In turn, the vibra-
tions at the rotor hub can be attributed to the complex
wake structure, unsteady flow field and stall effects.
Active rotor technologies are exploring the use of ac-
tive elements in both the fixed and the rotating frame
of the main rotor to produce the required actuating
signals to mitigate the undesired vibrations. Under
this scope, active trailing edge flaps (ATEFs), which
are mounted on each rotor blade, represent a promis-
ing technology with the advantages of low power con-

sumption and conceptual simplicity [10].

The success of a control strategy relies heavily in
the quality of the models of the process to control.
Control theory offers well-established methods when
essential features of the vibration process around
well-known operating conditions can be captured by
static or Linear-Time-Invariant (LTI) representations,
expressed usually in the form of transfer function ma-
trices or state-space representations [11]. Most con-
trol strategies for vibration reduction purposes are de-
veloped for such representations of the vibratory pro-
cess. Static models can capture the multi-harmonic
nonlinear behaviour [6] of the vibratory process [5]
whereby an active element in the rotating frame op-
erating at a certain frequency exerts an influence
on other harmonics of the vibration at the rotor hub.
Note however that static models imply that any con-
trol actions have an immediate effect on the hub vi-
brations, which assumes the transient characteris-
tics of the process are insignificant. This assumption
makes it more difficult to guarantee or predict reliably
stability and performance levels even around some
neighbourhood of the operating condition. On the
other hand, LTI models can not capture such a multi-
harmonic behaviour due to the superposition principle
that governs LTI systems. However, they allow con-



Figure 1: Overall control structure for vibration control
using ATEF actuators.

ventional feedback control [11] methods to account
for the transient behaviour of the vibratory process
and hence offering more reliable predictions about the
success of the control strategy. The main advantage
of using adaptive or feedback control design methods
in comparison to empirical approaches, is the guaran-
tee of an optimised behaviour in ideal conditions given
some prescribed performance demand and control
authority. Overall, all control approaches using ATEF
actuators can be represented by a two-layer control
architecture, as shown in Figure 1. The vibration con-
troller, which is the element of attention in this work,
determines desired flapping signals u(t) required to
reduce vibrations. A second element, the actuator
controller, has the goal of reproducing as closely as
possible the flapping signals demanded by the vibra-
tion controller. The success of the overall vibration
reduction system depends on the success of both the
vibration and the ATEF controller systems.

A very well (perhaps the most) known control strat-
egy to mitigate vibration is known as Higher Harmonic
Control (HHC) [4]. The strategy is constructed from
the assumption of a static linear relation between the
Fourier coefficients of the most dominant harmonic
of the vibrations and chosen (higher) harmonics of
the actuation. Typically, the modelling assumption ex-
tends to the existence of a baseline vibration, which
is a non-zero vibration in the presence of zero ac-
tuation. HHC methods developed under such static
modelling assumptions can be categorised as Adap-
tive Control [1], since the controller gains are updated
from regular estimations of the open-loop process.
Typically, the control law is constructed from the so-
lution of an unconstrained optimisation problem [2]
such as Least Squares, whereby a performance func-
tion, which encapsulates a weighted combination be-
tween vibration energies and actuation efforts, is min-
imised.

ATEF actuators can only deliver a limited range of
deflection angles. A common approach to deal with
such constraints is to scale or truncate (clip) the con-
trol actions obtained from the solution of the uncon-
strained optimisation problem. Another approach is to
manipulate the weight associated with control author-
ity in the performance function until the constraints are

satisfied. Scaling and truncation can degrade signif-
icantly the achievable performance and such disad-
vantages have already been exposed in [3]. Weight
manipulation has the problem that the process of
choosing a priori the input weight to meet the flapping
constraints is not transparent. Iterative weight manip-
ulation can become computationally very expensive
making it very difficult for real implementations [3].
In addition, overweighting control authority to ensure
flapping constraints can lead to poor performance re-
sults.

To overcome the issues exposed by scaling, trun-
cation and weight manipulation, constrained optimi-
sation techniques have been explored and shown to
be a successful alternative [3]. This paper pays par-
ticular attention to Quadratic Programming (QP) and
shows its benefits over the the afore-mentioned tech-
niques. The main contribution of this work is the dis-
cussion in more detail of important implementation
aspects of the QP in the context of HHC algorithms
for vibration reduction. Equivalent translations of flap-
ping constraints via constraints of the Fourier coef-
ficients are not always possible in a QP framework
and approximations are required. Such approxima-
tions should be taken into consideration carefully to
avoid significant loss of optimal performance.

The paper is structured as follows. Section 2 intro-
duces the static model representation for the vibratory
process and used in conventional HHC algorithms.
Section 3 explains how to incorporate QP laws in the
HHC problem and important implementation aspects
of this control approach are discussed in section 4.
The benefits of incorporating QP algorithms in the
HHC design problem are shown in section 5 for a lin-
earised representation of a five-blade coupled rotor-
fuselage model augmented with active trailing edge
flaps operating at cruise flying conditions. The work
concludes with some final remarks in section 6.

2 Conventional HHC

HHC is constructed from the assumption that the rela-
tion between the Fourier (sine and cosine) coefficients
of the input and output forces and moments [4] is lin-
ear. Define a vector yk as the output containing the
harmonics of the loads and vibrations at the time in-
stant indicated via the index k, with t = k∆t and ∆t
representing the time gap between each implementa-
tion of the control actions. Likewise, define the input
vector uk containing the harmonics of a control input
signal. The above assumption in the modelling of the
rotor system is encapsulated in the following mathe-
matical expression:

(1) yk = Tuk + d



where d represents the harmonics of the baseline vi-
bration, which is equivalent to yk when the control in-
puts are zero (uk = 0). Commonly, the matrix T is
referred to as the interaction matrix or sensitivity ma-
trix [8]. The above model is referred by Johnson [4]
as the global model of helicopter response and can
be rewritten as

(2) yk = y0 + T (uk − u0)

This model implies that both the interaction matrix T
and d are time-invariant and any change in the con-
trol input will have an immediate effect on the output
vibration. Also, u0 represents the control action re-
quired to trim the rotor and sets the initial control input
for subsequent control actions.

Typically, control algorithms developed for static
and quasi-static models are based on the minimisa-
tion of a performance function Jk at the index time k,
which is expressed in a quadratic form for mathemat-
ical convenience, and whereby a trade-off between
vibration reduction and actuator authority is specified:

(3) u†k = arg min
uk

yTk QyTk + uT
kRuT

k︸ ︷︷ ︸
Jk

Typically, yk contains the sine and cosine components
of the N /rev fixed hub loads and moments: Fx, Fy, Fz,
Mx, My, and Mz. Control actuation corresponds to
the Fourier coefficients of the actuator signals, usually
at N − 1, N and (N + 1)/rev. The weight Q = QT > 0
is used to target specific vibration reduction among
some of the vibration channels. Likewise, the weight
R = RT > 0 is used to specify actuator authority.
Often, both weights are diagonal and may be scaled
differently if sensor measurements are provided in dif-
ferent units. A good starting point when designing the
controller is to chose the same weight (given that all
vibration and load measurements as well as actuator
signals are provided in the same units) for all chan-
nels, which corresponds to Q = R = I. The above op-
timisation problem can be solved analytically by mak-
ing

(4)
∂Jk
∂uk

= 0

Solving for uk provides the following analytical expres-
sion for the optimal control input

(5) u†k = −(TTQT + R)−1(TTQ) (y0 − Tu0)︸ ︷︷ ︸
d

3 HIGHER HARMONIC CONTROL
via QP

The implementation of unconstrained control laws can
lead to actuation signals which exceeds actuator lim-
its. In terms of simultaneous reduction of vibration

and noise [9], the drawbacks of using scaling and
truncation of the control inputs can be clearly noticed
by significant increases of vibration and noise mea-
surements with respect to the optimal performance,
see for instance [3]. Another approach is to manipu-
late the weight R associated with the control input, but
it has the risks of demanding large computational ef-
forts [3] or overweighting the control actions and thus
leading to poor performance results. Such issues will
be illustrated clearly in the simulation results in Sec-
tion 5. In order to better handle actuator constraints, it
is recommend to use instead optimisation algorithms
which minimise the performance function given a fea-
sible set of control input values. If the objective func-
tion is (convex) quadratic and the constraint functions
are linear inequalities equalities, the control algorithm
can be implemented as a Quadratic Programming [2]:

u†† = arg min
uk

yTk Qyk + uT
kRuk︸ ︷︷ ︸

Jk

s.t. Huk ≤ f(6)

The above constrained optimisation problem can be
equivalently written only in terms of the optimisation
variable uk with the use of (1) as:

u†† = arg min
uk

1

2
uT
k (TTQT + R)uk + uT

k T
TQd

s.t. Huk ≤ f(7)

Note that the symbol ≤ indicate element-wise in-
equality. If the vector uk has dimension q and the
numbers of inequalities requires to express the flap-
ping constraints is p, then H and f have dimensions
p× q and p× 1, respectively. A region of actuator sig-
nals is specified via the polyhedron Huk ≤ f . Such a
polyhedron can be sufficient to specify feasible actua-
tion signals for active rotor applications (more general
feasible regions in convex optimisation problems in-
clude also solution sets of equality constraints which
are affine). Polyhedral regions of such a form are de-
fined as the solution set of a finite number of linear
inequalities, or equivalently, the intersection of a finite
number of half spaces [2].

4 IMPLEMENTATION OF QP-
BASED HHC

It is argued that the solution of convex optimisation
problems via interior-point methods works very well
in practice [2]. They can solve the problem in a num-
ber of steps or interactions that is almost always in
the range between 10 and 100. In general, each
step requires on the order of max{q3, q2p, F} oper-
ations; with F denoting the cost of evaluating the first
and second derivatives of the objective and constraint



functions. q is the dimension of the optimisation vari-
able uk and p represent the number of inequality con-
straints.

Another important aspect to consider is that of ex-
pressing min-max actuation signals via polyhedra re-
gions, which can introduce some performance limita-
tions of the QP. To visualise this aspect, consider for
instance having one ATEF actuator per blade operat-
ing at a single frequency n/rev:

(8) u(t) = uc,n cos(nΩt) + us,n sin(nΩt) + u0

The flapping constraint is typically expressed

(9) |u(t)| ≤ ū,∀t

The above inequality can be written equivalently as

|u0| ≤ ū

u2
c,n + u2

s,n ≤ (ū− |u0|)2(10)

for some positive ū. The above flapping constraint
can not be expressed clearly via linear inequality con-
straints due to the quadratic terms. A common ap-
proach to overcome this issue is to use box con-
straints instead so for each control input we have:

|u0| ≤ kū

|uc,n| ≤ kū

|us,n| ≤ kū(11)

with the positive scaling factor k adjusted with the
smallest values so the box is just contained within the
true flapping constraint region. For instance, if u0 was
fixed to be zero, then k = 1/

√
2 is the factor so the box

constraints (a square region) just fits within the feasi-
ble (circle) region. Another alternative is to use more
sophisticated linear constraints to better represent the
true flapping constraints, such as

|u0| < ū

|uc,n|+ |us,n| ≤ ū− |u0|(12)

Graphically, the above flapping constraints translate
in approximating the conic region (10) into box (11) or
pyramidal constraints (12) and hence leading to less
conservative results, see Figure 2.

4.1 General approximation of flapping
constraints via “pyramidal” regions

In general, let the ATEF signals be expressed in the
time-domain as

ui(t) = ui,0 +

n̄∑
n=n

(ui,c,n cos(nΩt) + ui,s,n sin(nΩt))

= ui,0 +

n̄∑
n=n

√
u2
i,c,n + u2

i,s,n

cos

(
nΩt + arctan

(
ui,s,n

ui,c,n

))

us,n 

uc,n 

u 

ku uc,n 

us,n 

u0 

Figure 2: Left : Top view of the feasible flapping conic
region (10) and two approximations: box (11) and
pyramidal (12) constraints. Right : three-dimensional
representation of the approximation regions.

The index triad {i, {c, s}, n} is used to easily map the
harmonic coefficients. The first index i = {1, ..., ī} has
been included to account for the fact that there can be
more than one actuator on each blade. It is common
to find two ATEFs with one actuator mounted in the
inboard and the other on the outboard section of the
blade to increase control power. The second index set
{c, s} are include to indicate the cosine and sine co-
efficients. The index n = {n, n + 1, ..., n̄} denotes the
frequency multiples at which the actuator operates.

Flapping constraints are expressed for each actua-
tor as

(13) |ui(t)| < ū,∀i, t

Such constraints can be equivalently expressed as

|ui,0| < ū,∀i
n̄∑

n=n

√
u2
i,c,n + u2

i,s,n ≤ ū− |ui,0|,∀i

”Pyramidal” approximations to the above flapping
constraint can be expressed as

|ui,0| < ū,∀i
n̄∑

n=n

|ui,c,n|+ |ui,s,n| ≤ ū− |ui,0|,∀i(14)

which can be clearly implemented via linear inequali-
ties.

4.2 Alternative implementations of QP-
based HHC for vibration reduction

In terms of the implementation of the QP, the above
possibilities of representing non-polyhedral flapping
constraints via polyhedral methods, open the ques-
tion about what method is appropriate to implement
the constrained optimisation algorithms in a non-
conservative way yet effectively, i.e., with affordable
computational efforts.
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Figure 3: Schematic of the open-loop system.

The use of improved approximations to represent
the original feasible region more accurately is perhaps
the most recommendable approach but care must be
taken not to use an unnecessary high number of lin-
ear inequality constraints and avoid very large design
efforts.

Scaled box constraints are the easiest to specify
but they could yield very conservative performance,
see Figure 2. To improve over this aspect, an alterna-
tive is to iterate over the scaling factor of the “box” as
follows:

i) Adjust the scaling factor k so the flapping con-
straint set is just contained.

ii) Solve the QP and evaluate whether the optimal
solution is feasible.

iii) If yes, then implement control action.

iv) If no, reduce the scaling factor k and go to ii).

It is clear that once the scaling factor is reduced by a
certain value so the scaled box is inside the flapping
constraint region, the obtained solution is feasible. In
other words, the algorithm is guaranteed to converge
to a solution in a finite number of steps. The maxi-
mum number of steps are determined by the size of
the decrements in step iv). In the end and given the
specific application, the designer should decide by
carrying out preliminary studies via simulations with
computer models on the approaches presented ear-
lier (approximation of flap constraints or iterative box
constraints) according to a desired trade-off between
speed and performance.

5 SIMULATIONS

In order to illustrate the ideas discussed in this re-
port, simulations have been performed on linearised
model of a coupled-rotor fuselage model (CRFM)
augmented with ATEF actuators for vibration reduc-
tion purposes. The rotor has N = 5 blades and two
active trailing edge actuators mounted on each blade:
inboard (i = 1) and outboard (i = 2). In order to obtain
a linear model, the CRFM has been linearised around

a given cruise flight condition. With this purpose, ma-
nipulated amplitude and phase (or cosine and sine
coefficients) of 5/rev harmonics are chosen as control
signals. Rotor theory explains that forces and mo-
ments in the rotating frame at 3, 4, 5, 6 and 7/rev will
have a significant influence on the 5/rev component of
the vibratory loads and moments, which are the de-
sired signals to be controlled [5]. In order to produce
flapping signals with such frequency components, the
5/rev inputs are modulated with 0, 1 and 2 /rev har-
monics, see Figure 3. For simplicity, we will assume
ideal actuation, i.e., the delivered and demanded flap-
ping signals are the same.

To consider the modulation in more detail, the con-
trol signals are chosen as follows:

û(t) =


û1,c

û2,c

...
û10,c

 cos(5Ωt) +


û1,s

û2,s

...
û10,s

 sin(5Ωt)

with all cosine and sine coefficients being the ele-
ments of the vector uk. Modulation with lower (0, 1
and 2/rev) harmonics and following the structure of
the control inputs provided by CRFM, the following
flapping signal for the inboard actuator is produced

u1(t) = (û1,c cos(5Ωt) + û1,s sin(5Ωt)) +

(û3,c cos(5Ωt) + û3,s sin(5Ωt)) cos(Ωt) +

(û5,c cos(5Ωt) + û5,s sin(5Ωt)) sin(Ωt) +

(û7,c cos(5Ωt) + û7,s sin(5Ωt)) cos(2Ωt) +

(û9,c cos(5Ωt) + û9,s sin(5Ωt)) sin(2Ωt)

Simplifying the above expression by the use of
trigonometric identities, we obtain that

u1(t) =

7∑
n=3

(u1,c,n cos(nΩt) + u1,s,n sin(nΩt))

where

u1,c,3 = 1
2 (û7,c + û9,s), u1,s,3 =

1

2
(û7,s − û9,c)

u1,c,4 = 1
2 (û3,c + û5,s), u1,s,4 =

1

2
(û3,s − û5,c)

u1,c,5 = û1,c, u1,s,5 = û1,s

u1,c,6 = 1
2 (û3,c − û5,s), u1,s,6 =

1

2
(û3,s + û5,c)

u1,c,7 = 1
2 (û7,c − û9,s), u1,s,7 =

1

2
(û7,s + û9,c)

A similar simplification can be done for the outboard
flapping:

u2(t) =

7∑
n=3

(u2,c,n cos(nΩt) + u2,s,n sin(nΩt))



where

u2,c,3 = 1
2 (û8,c + û10,s), u2,s,3 =

1

2
(û8,s − û10,c)

u2,c,4 = 1
2 (û4,c + û6,s), u2,s,4 =

1

2
(û4,s − û6,c)

u2,c,5 = û2,c, u2,s,5 = û2,s

u2,c,6 = 1
2 (û4,c − û6,s), u2,s,6 =

1

2
(û4,s + û6,c)

u2,c,7 = 1
2 (û8,c − û10,s), u2,s,7 =

1

2
(û8,s + û10,c)

Let the behaviour of the system at a given cruise
condition be captured by a LTI transfer function ma-
trix G(s), see [11]. The linear representation of the
CRFM at a given rotor speed Ω can be obtained then
by the complex matrix G(jΩ). The vibratory response
in the frequency domain with 5/rev ATEF inputs is in
the form of (1) with

T =

[
Re{G(j5Ω)} Im{G(j5Ω)}
−Im{G(j5Ω)} Re{G(j5Ω)}

]
with uk = [û1,c, ..., û10,c, û1,s, ..., û10,s]

T . If the j-th
channel of the vibration signal is expressed as
(15)

yi(t) = yj,0 +

∞∑
n=1

(yi,c,n cos(nΩt) + yi,s,n sin(nΩt))

then yk = [y1,c,5, ..., y6,c,5, y1,s,5, ..., y6,s,5, ]
T . The up-

per and lower blocks of the baseline vibration d con-
tain the cosine and sine Fourier coefficients of the
5/rev vibration harmonic with zero flapping, respec-
tively.

The exact translation of flapping constraints for both
actuators in terms of the sine and cosine Fourier co-
efficients is not straightforward. For the sake of sim-
plicity and economic design efforts, we first explore if
box constraints lead to satisfactory results:

|ûj,c,n| ≤ kū

|ûj,s,n| ≤ kū

Flapping constraints are given with ū = 1 and we
chose k = 0.37 to guarantee the flapping constraints.
The simulation results performed with the linear rep-
resentation are shown in Figures 4 and 5. In order to
emphasise the importance of handling appropriately
the constraints, we have compared the vibration re-
sults with the practice of scaling, truncation and over-
weighting. It is clearly seen from Figure 4 the sig-
nificant performance degradation when using scaling
and truncation of the control inputs. Further remarks
follow below:

• The results obtained with the QP are very suc-
cessful in the sense that they are not too different
with respect to the optimal case (unconstrained
optimisation): all vibration reduction levels are
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Figure 4: Achieved vibration results.
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Figure 5: Normalised Vibration signals.

very similar in all vibration channels except in the
in-plane horizontal component Fy(t) whereby a
decrease of about 20% in vibration reduction is
observed.

• It is corroborated in this simulation study the de-
terioration in performance produced by the use of
scaling and truncation. Truncation was found to
be much worse than scaling producing a signif-
icant increase in vibration in Fy(t). Scaling pro-
vides in average a loss of about 50% in vibration
reduction with respect to the optimal case. Vibra-
tions in Fz(t) and Mx(t) were increased also by
the use of truncation.

• The degradations by overweighting are less se-
vere than scaling and truncation. Simulations
show the worst degradation occurring in Fy(t).
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Overall, overweighting underperforms the QP-
based algorithms in all vibration channels.

• Despite the use of box constraints in the QP, the
obtained performance is not too compromised,
suggesting that for this particular case the ap-
proximation via box constraints is satisfactory.
Recall that the use of box constraints simplifies
significantly the efforts when compared to more
sophisticated approximations. The QP was exe-
cuted in Matlab and it takes about 25 iterations
and 0.03 seconds to solve the QP problem with
a 2.66 GHZ Intel core 2 duo.

• If ‖û(ω)‖ > ksū then scaling is performed as

ûs(ω) =
û(ω)†

‖û(ω)†‖
ksū(16)

with the complex vector û(w)† being the pha-
sor representation of û(t) with the Fourier coeffi-
cients obtained from the unconstrained optimisa-

tion problem. The scaling factor ks = 1 was ad-
justed to guarantee the min-max flap constraints.

• Truncation is performed on a channel-basis. Let
the i-th component of û(ω) be denoted by ûi(w).
If ‖ûi(w)†‖ > ktū, then

ûti(ω) =
ûi(ω)†

|ûi(ω)†|
ktū(17)

for all channels i. Again, the scaling factor kt =
0.55 was adjusted to guarantee the min-max flap
constraints.

• The control effort weight R was increased by a
factor of 5× 104 in the “weight manipulation” sce-
nario with respect to the value used in the un-
constrained optimisation problem to ensure the
min-max flap constraints.

Figure 6 shows that the baseline vibration has a
5/rev dominant component. Normalised flapping sig-
nals for all considered control methods are shown in
the time domain in Figure 7.

6 CONCLUDING REMARKS

This work has been focused on control strategies
for vibration reduction using static models. Ac-
tuator limitations can impose significant limitations
to the achievable performance and they must be
treated carefully. We have paid particular attention
to Quadratic Programming (QP) and the their benefits
over clipping, scaling and weight manipulation meth-
ods to deal appropriately with actuator constraints.
We discussed also alternative ways of implement-
ing QP-based algorithms to account for any conser-
vatism introduced by approximating actuator limita-
tions in Higher Harmonic Control problems, which
are generally non-linear, via linear matrix inequali-
ties. Simulation results show clearly the significant
benefits of the QP approach, the possibility of us-
ing non-sophisticated approximation regions for actu-
ator constraints and the dangers of mishandling them.
Simulations assumed ideal actuation, however, actua-
tor dynamics can restrict the achievable performance
and the designer should take this into account when
implementing HHC systems for vibration reduction in
real applications. The constraint handling methods
considered in this report might be complemented with
advanced actuator control design methods, such as
anti-windup [7], to improve actuator response and
therefore the overall performance.
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