
24 th EUROPEAN ROTORCRAFT FORUM 
Marseilles, France - 15th-17th September 1998 

An Euler Calculation for a Hovering Coaxial Rotor Flow Field 
with New Boundary Condition 

Reference : AE04 

Kwanjung Yee·, Dong-Ho Lee' 

Department of Aerospace Engineering, Seoul National University 

SeoullSl-742, Korea 

ABSTRACT 

In the present work. the tlow field for a coaxial rotor in hover was computed numerically by employing 

the compressible Euler equations on embedded and moving patched grids. A sliding boundary was 

introduced to allow the relative motion between the upper and lower rotor, where the flow field 

information was interpolated by using moving patched algorithm. The vorticity confinement method 

(VCM) is applied so as to minimize the numerical diffusion but the results indicate that the inappropriate 

imposition of empirical parameter may cause a numerical instability. The computation was performed for 

a hovering coaxial rotor with rectangular planform of aspect ratio six. The results are compared with 

Nagashima's experiment and illustrate the feasibility of the present numerical approach in solving a 

coaxial rotor flow tield. 

c 

D 

H 

subscript 

u 

tip 

Nomenclature 

= tip path plane angle 

= thrust coefficient 

= chord length 

= rotor diameter 

= vertical distance between the rotors 

=collective pitch angle 

=solidity 

= angle between the blades 

= angular velocity 

=advance ratio 

=lower 
=upper 
=blade tip 

* Postdoctoral Research Associate 
t Professor 

1. Introduction 

In recent years, the coaxial rotor configuration 

has renewed interests for its applicability to 

Unmanned Aerial Vehicles(UAV) and ship 

launched vehicles1
• In the coaxial rotor, fuselage 

torque ts compensated by utilizing two 

superimposed rotors, rotating in opposite 

direction. The coaxial design has the advantage of 

having its over-all dimensions defined only by the 

rotor diameter and of saving of power over the 

single rotor-tail rotor design2 On the other hand 

the rotor hubs and controls become more complex 

and rotor weights tend to increase. 

Russia has been the leading countries in the 

development of the coaxial rotor design but the 

very few works are published in the west1
. 

Nagashima conducted a program to study the 

aerodynamics of the coaxial rotor configuration in 
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hover and forward t1ight during the late 1970's 

and early 1980'su. Extensive experimental tests 

were performed to understand the wake structure 

and its relationship to rotor performance as a 

function of collective, rotor spacing and thrust 

level. But the previous researches concentrated 

mainly on the experiment and theoretical analyses 

and were very helpful in understanding the overall 

performance and physics. However, since they 

deal with the time-averaged aerodynamic 

coefficients, the unsteady aerodynamic 

characteristics of the flow tield were not fully 

identified. The numerical studies on this problem 

are relatively rare4 until now maybe due to the 

following difticulties: (!) Although the computer 

capacity has greatly improved these days, a large 

amount of computation time is still required for 

three dimensional unsteady flow tield analysis. 

Moreover, in order to calculate the upper and 

lower rotors simultaneously, a larger computation 

domain is necessary; (2) In the same context 

mentioned above, a special consideration is 

needed in order to suppress the numerical 

diffusion due to the coarse grid density; (3) A 

proper wake modeling is not available for coaxial 

rotor configuration. Landgrebe5 type prescribed 

wake model can not be applied to this rotor 

configuration because the shape and behavior of 

the coaxial rotor wake are quite different from 

those of a single rotor.;(4) A very complex grid 

strategy is required to handle moving grid 

configuration and it is almost impossible to 

construct the whole flow field in a single block. 

The main objective of this work is to introduce a 

new boundary condition for a coaxial rotor 

analysis and to check the applicability of 

vorticity confinement technique. The accuracy 

and feasibility of the present work is validated 

2. Governing Equation 

While the hovering can be regarded as a steady 

problem for a single rotor calculation, the coaxial 

rotor flow field is intrinsically unsteady even for a 

hovering. Therefore, the governing Euler 

equations should be described in the inertial 

coordinate system to handle the general grid 

motion6
'
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From the state equation for an ideal gas, the 

energy is obtained from the following relation, 

p = ( y -I){ e-+ p( u 2 + v' + w 2)} 

The convective terms are discretized using Roe's 

!lux difference splitting8 

• 1 • • 1'1 E ,,,=-{E.+E I -A(Q+l -Q )} 
!+ - 2 LJ l+ .J l .J l.J 

The primitive-variable extrapolation of MUSCL 

approach is employed for higher order spatial 

accuracy. An implicit AF-ADI(Approximate 
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Factorization Alternating Direction Implicit) 

method9 is used for time integration. 

3. Grid Svstem 

The advantage of the embedded grid method lies 

. fr h . f "d 10 II I d b . m ee c 01ce o gn type · . n or er to o tam 

accurate results, each grid must have sufficient 

resolution and satisfy orthogonality and 

smoothness. The base flow is divided into four 

zones - two for the rotor blades and two to 

convect the rotor-wake as shown in Fig. 1. 

Fig.! Side View of the Embedded Grid System 

The larger H-type cylindrical grids around the 

each blade that cover the entire flow tield are 

called as background grid 12
• Each of the 

background grid rotate in opposite direction on 

the sliding boundary, through which the flow 

information is exchanged. Fig 2 shows the fringe 

cells around the upper blade. 

A moving patched grid method is also 

introduced to handle a sliding boundary. Since the 

proximity of the blade is of our primary interest, 

the background grids are clustered at the regions. 

About 8 * 105 grid points are used to construct 

the entire flow fields. 

Fig.2 Fringe Points around the Rotor Blade 

As mentioned above, the hovering flow field of 

a coaxial rotor system is inherently unsteady, the 

general blade motions must be described in the 

inertial coordinate. In this case, the motion of the 

grid points fixed at the blades are as follows 13
; 

x, = -Qy- J.lM,,, cos( aTP,) 

Y, = Qx 

z, = 0 

In addition, the every grid position and its metrics 

are updated in the following manner; 

x"+' = x" cos(QL'l.t)- y" sin(QL'l.t) 

y"+' = x" sin(QL'l.t) + y" cos(QL'l.t) 

zn+l = zn 

4. Boundarv Condition 

Since the blades are in motion in the present 

problem, the time metric should be included when 

imposing boundary conditions. Slip boundary 

condition is applied at the blade surfaces and the 

pressure is obtained from normal momentum 
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equation. There are two types of far boundary 

:::onditions available at the present. The one 

suggested by Sdniv.:.:san 13 is based on rhe three 

dimensional point-sink theory and mass 

conservation law. The method is known to avoid 

the "Closed Box" problem and shows a good 

convergency. However, it was originally 

developed for a single rotor and there is some 

doubt of its basic assumption. So, it can not be 

directly applied to the coaxial rotor calculation. 

The other is the characteristic far boundary 

condition based on the Riemann invariants. 

Although its convergency is not so good as the 

one, it produces a stable and reliable solutions". 

Therefore, the latter method is adopted in the 

present work. 

No flux condition is applied at the inboard 

boundary. lt should be noted that this condition 

aHows the cross flow along the span. In the 

wake capturing method. there exists a periodicity 

for a hovering rotor flow field. By introducing the 

periodic boundary, the entire computational 

domain can be reduced by ll2n(n: number of 

blade of each rotor)". This is also true for the 

coaxial rotor Oow field. The periodic boundary 

condition is used at the front and back wall 

boundaries. 

The exchange of t1ow information between the 

half cylinders covering the blades is performed 

via sliding boundary. The accurate interpolation 

between the two zones is the most crucial factor in 

the present work. Fig. 3 is the top view of the 

sliding boundary and shows the schematic of the 

interpolation process. 

As the calculation starts, each of the half cylinder 

rotates in the opposite direction. So. the sliding 

boundary is divided into the overlap region and 

Top View 

~~~5 Upper biade 
~ t..ower blade 

:maginafY blade 

o.~,,~~ :;;,,;;:~ 

Q(oct •~lotCJ C<'~ 

Fig. 3 The Schematic of lnterpolation Process at 

the Sliding Boundary 

non-overlap region. At the overlap region, the 

flow variables are directly interpolated but for the 

non-overlap region. the periodic nature of the tlow 

field should be used again. If we assume the 

imaginary blades plotted in dashed line and the tip 

vortex generated from the upper biade goes out of 

the computational domain at point A, the same 

vortex must enters the lower half cylinder at point 

B. That is, the non-overlap region on the sliding 

boundary has the point-symmetric nature with 

respect to the center of rotation. Hence, for the 

non~overlnp region, the 

interpolation should be accomplished. The 

detailed procedures are as follows: (I) the 

interpolation is performed on the entire sliding 

boundary;(2) determine the index that divides the 

overlap and non-overlap region;(3) the data

giving area is transformed in the point-symmetric 

way;(4) the interpolation is performed for the 

data-receiving area at the non-overlap region. In 

the present work, all interpolation is accomplished 

based on the angle that each cell occupies. 

5. Vorticity Confinement Method 
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The vorticity confinement method (VCM, 

hereafter) involves computing a velocity 

correction to the solution from a conventional 

Euler/Navier-Stokes solver at each time step, 

which limits the spreading of a vortical regions 

due to numerical diffusion by convecting the 

vorticity back toward the centroid of the region 16
. 

The method rs explained briefly here by 

considering the incompressible Navier-Stokes 

equations. \Vith a confinement term, a set of 

modified Navier-Stokes equations are described 

as follows : 

'V•Q=O 

CJQ +(Q•'V)Q =-v(.£ l+v'V 2Q+£K 
CJt p) 

where Q is the velocity, p pressure, p density. 

For the additional term, £ is a numerical 

coefficient which controls the size of the 

convecting vortical regions. The confinement term 

takes a simple form; 

K=-fixw 

where 

(J) = 'V X Q is vorticity and TJ is a scalar field 

that has a local minimum on the centroid of the 

vertical region. 

The main objective is to convect w back toward 

the centroid as it diffuses outward. In the 

confinement term, n is a unit vector pointing 

away from the centroid of the vertical region. 

The coefficient E is made to depend on the grid 

size so that the velocity correction becomes small 

in the region where the grid is fine enough17
• One 

of the drawback of VCM is· that there is no 

general rule in the specification of £ and hence 

experience of the user is essential. 

6. Result~ and Discussion 

Application of VCM 

As noted in the previous section, VCM requires 

some experience in the specification of £. In the 

case reported here, £ is determined from the cell 

volume ratio with the reference cell at the tip 

region. The value of £ at the reference cell 

depends on the grid density and varies from 0.4 to 

0.65 in the present case. An hovering coaxial rotor 

calculation is performed in order to fmd out the 

effect of VCM. Tip mach number is 0.37 and the 

pitch angle is 7 degree for both rotors. 

Thrust histories of the lower rotors with a 

variation of E are depicted in Fig.4. Three cases 

(£~0. 0.50 and 0.65) are compared with one 

another. It is shown that overall trends are almost 

the same for all cases but in the case of £~0.65 , 

thrust is slightly underpredicted. 

0.008 F. 

I 
0.007' 

o.oos I 

180 360 

"' 
540 720 

Fig. 4 Thrust History of the Lower Blade with a 

Variation of E. 

It should be noted that in the case of £~0.65, the 
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thrust begins to oscillate at around '1'=540 where 

the tip vortices start to develop. Since velocity 

correction is added only in the presence of 

vorticity, it indicates that the numerical instability 

occurs due to the added velocity correction. If E 

has a value greater than 0.8, the solution diverges. 

Fig. 5 shows the density contours at '¥=900 deg. 

with a variation of E. It is clearly shown that the 

vortex core collapses with the increase of c. 

~-- ~ 

Section C ( E = 0.50) Section C ( E = 0.65 ) 

vorticity gradients varies abruptly. 

Therefore. it is concluded that one should be 

careful when using vorticity confinement method 

because it may cause a numerical instability in 

case of wrong specification of £. So, in the 

following calculations, vorticity confinement 

method are not employed. 

Results of Coaxial Rotor Flowfield 

As mentioned earlier, the coaxial rotor !low tield 

is inherently unsteady unlike the single rotor. 

Therefore, one must use the unsteady code even 

for a hovering calculation and continue 

f==========~~=========d calculation until the solutions show a full 

Section D ( £ = 0.50 ) Section D ( E = 0.65) 
periodicity. By introducing the sliding boundary, 

the computational domain is reduced by l/2n(n: 

the number of blade) but the accuracy of the 

solution depends on the interpolation at the sliding 

boundary. The volume ratio of the minor grid 

L _________ JL _________ _j around the blade and the background grid plays an 

Fig.S Density Contours at Two Different Sections 

with a Variation of £. 

There seems to be two reasons for the instability 

of the solution; 

l) It is very hard to specify proper values to E 

in the entire region. Because it is not 

possible to know the numerical diffusion rate 

all over the computational domain. Hence, if 

e exceeds the numerical diffusion rate at 

some points, the velocity correction becomes 

excessively large, resulting in a numerical 

instability; 

2) Since in the 3-D calculation, the axis of the 

vorticity axis has an arbitrary direction, the 

outward normal vector n may be 

miscalcuated in the region where the 

important role in the interpolation accuracy and 

the numerical stability. In a cylindrical grid 

system, the inboard grid is very dense and the grid 

becomes exponentially coarse along the radial 

direction. In this reason, there is much difficulty 

in controlling the cell volume ratio between the 

blade and the background". It is well known that 

the trilinear interpolation does not satisfy the 

conservation law in itself. So the whole grid 

system is constructed so that the cell volume ratio 

does not exceed 5 to reduce the interpolation 

error. 

Noticing that the previous researches 

concentrate the overall performance analysis, the 

present study tries to find out the unsteady nature 

of the coaxial flow field. The computation is 
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performed under the same condition as 

Nagashirna's experiment3
. The blade has the 

rectangular p\anform with aspect ratio of 6 and the 

NACA 0012 airfoil. The rotor tip velocity is 

Mach 0.37 and the pitch angles of the upper 

and lower rotor are 9° and 10°, respectively. The 

solidity is 0.1 and the rotor spacing, HID is 0.2. 

Fig.6 shows the thrust coefficient histories of 

the upper and lower rotors. 
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Fig. 6 Thrust Histories of the Upper and Lower 

Rotors 

'V in the x-axis does not mean the azimuth angle 

but the angle displacement between the blades. So, 

it is twice the azimuth angle of the each blade. It 

is shown that the thrust coefficients oscillate until 

IJI reaches 90' due to the impulsive start. It is 

observed that at IJI = 180n, the thrust of the upper 

rotor instantaneously increases while that of the 

lower rotor slightly decreases. 

This is due to the increase of the effective pitch 

angle that happens when the two rotors overlap as 

shown in Fig.? . 

The thrust coefficients are almost constant 

between the overlap of the rotors and the thrust 

increase of the upper rotor at the overlap location 

is about 8% of the mean thrust. 

The calculated thrust coefficients are compared 

in Table 1 with the experiment and semi-empirical 

formula from ''Helicopter" published in Russia 19
. 

C-,*102 Upper Rotor Lower Rotor (CTMCTlo 

Present 0.6347 0.5229 0.824 

Experiment 0.6217 0.3596 0.583 

(Ref. 3) 

"Helicopter" 0.6731 - 0.5793 -- 0.860 

(Ref. 19) 0.84\3 0.7236 

Table 1 Companson of Calculated Thrust and Land 

Sharing with Experiment and Semi-Empirical Formula 

Fig. 7 Increase of the Effective Pitch Angle of the 

Upper Rotor 

As shown in Table 1, the thrust of the upper rotor 

agrees well with the experiment, whereas the 

thrust of the lower rotor is over-predicted. This 

means that the downwash velocities from the 

upper rotor is under-estimated. It seems that as 

the tip vortex of the upper rotor passes through the 

computational domain, it diffuses out due to the 

numerical dissipation, thereby under-predicting 

the induced velocities. 

It should be noted that the load sharing shows a 

good agreement with the semi-empirical results 

from " Helicopter". "Helicopter" is widely used 

for preliminary performance estimation. 

Considering that the experimental result shows a 
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large difference with that of "Helicopter"12
, it is 

concluded that a more general and detailed 

experiment is required for the code validation. 

The density contours are depicted at four 

circumferential locations when the two rotors 

overlap. Fig. 8 shows the cross sections of the 

wake grid where vortex was sampled. 

The density contours for the lower rotor is shown 

in Fig. 9. At the section A, a tip vortex begins to 

form as it convects downward. By the time the tip 

vortex reaches the section B, the strength of the 

vortex core starts to weaken due to the numerical 

dissipation. The tip vortex at the section B re

enters the section C from the periodic boundary 

condition. 

B ( '~~90' ,JG<l') 

Fig.S Cross Sections of Wake Grid Where Vortex 

was Sampled 

As it contracts inward and descents downward , it 

reaches the section A. At the section A, two 

vortices can be observed. The lower one is 

generated from the preceding blade. The vortex 

diffuses out and lose its identity by the section D. 

It should be noted that the vortex sheet whose 

strength is weaker than vortex maintains its basic 

structure due to the dense grid at the inboard 

area. The !low field of the lower rotor has 

almost the same trend as the upper one. 

Section A Section B 

Fig. 9 The Density Contours for the Lower Rotor 

at Four Different Locations 

It is observed that the strength of the tip vortex is 

weakened as it passes through the hole region. 

This stems from the successive interpolation and 

the accumulation of interpolation error. 

The wake contraction and descent ratios are 

compared with the experimental data and 

Landgrebe's wake model in Fig. l 0 and 11. 

!So 
N 

,, 

'-' 

'·' 
!!!" 
c 

• 

• • • • 

• ••• • 

Wal<o Oucont•calc~tation 
Wah Do,.on! • bpelimon! 
Wal<o Contraction· Calculation 
Wol<oContrncOOn. bponment 
landgraba 

• • • • 
1o 90 180 270 360 

lJI (Degree) 

Fig. 10 Wake Contraction and Descent Ratio of 

the Upper Rotor 

As shown in the figure, the calculated results show 

a similar trend as the experimental data but the 

wake descent ratio of the upper rotor is under

predicted. It is thought that the induced velocities 
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are under-predicted due to the rapid diffusion of 

the tip vortex of the upper rotor. For the lower 

rotor, the contraction ratio shows a difference with 

experimental data. It seems that the outflow 

boundary condition at the bottom of the lower 

wake grid has an effect on this problem and this 

subject will be addressed in another paper. 
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Fig. 11 Wake Contraction and Descent Ratio of 

the Lower Rotor 

6. Concluding Remark 

The present study investigates the unsteady flow 

f1e\ds around the coaxial rotor by using the up-to 

date numerical analysis technique. The primary 

objectives are to find out the unsteady 

aerodynamic characteristics of the coaxial rotor 

flow field and to provide a basic numerical tools 

for further researches. To achieve this goal, the 

numerical analysis code was developed to handle 

the moving rotor configuration. By applying the 

present code to the three-dimensional coaxial 

rotor flow field analysis, the following 

conclusions are reached: 

(l)Therefore, it is concluded that one should be 

careful when using vorticity co"nfinement method 

because it may cause a numerical instability in 

case of wrong specification of c; (2) The rotor 

analysis code for the unsteady coaxial flow freld 

has been developed and the calculated results 

shows good agreements with the experimental 

data; (3) The tip vortex and vortex sheet diffuse 

out within one revolution but wake contraction 

and descent ratios agree well with the 

experimental data. Further researches are required 

to minimize the numerical diffusion such as the 

use of Jess diffusive numerical scheme and denser 

grid system;(4) The sliding boundary is 

introduced to efficiently construct the 

computational domain and the interpolation 

strategy is suggested. 
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