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ABSTRACT

In the present work, the flow field for a coaxial rotor in hover was computed numerically by employing
the compressible Euler equations on embedded and moving patched grids. A sliding boundary was
introduced to atlow the relative motion between the upper and lower rotor, where the flow field
information was interpolated by using moving patched algorithm. The vorticity confinement method
(VCM) 1s applied so as to minimize the namerical diffusion but the results indicate that the inappropriate
imposition of empirical parameter may cause a numerical imstability. The computation was performed for
a hovering coaxial rotor with rectangular planform of aspect ratio six. The results are compared with

Nagashima’s experiment and illustrate the feasibility of the present numerical approach in solving a

coaxial rotor flow field.

Nomenclature

= tip path plane angle
= thrust coefficient

= chord length

rotor diameter

vertical distance between the rotors
= collective pitch angle

= solidity

= angle between the blades

= angular velocity
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i = lower

n = upper
tip = blade tip
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1. Introduction

In recent years, the coaxial rotor configuration
has renewed interests for its applicability to
Unmanned Aerial Vehicles(UAV) and  ship
launched vehicles'. In the coaxial rotor, fuselage
torque is compensated by utihizing two
superimposed rotors, rotating in  opposite
direction. The coaxial destgn has the advantage of
having its over-all dimensions defined only by the
rotor diameter and of saving of power over the
single rotor-tail rotor design®. On the other hand
the rotor hubs and controls become more compiex
and rotor weights tend to increase,

Russia has been the leading countries in the
development of the coaxial rotor design but the
very few works are published in the west!.
Nagashima conducted a program to study the

aerodynamics of the coaxial rotor configuration in
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hover and forward flight during the late 1970’s
and early 1980’s™*. Extensive experimental tests
were performed o understand the wake structure
and its relationship to rotor performance as a
function of collective, rotor spacing and thrust
level. But the previous researches concentrated
mainly on the experiment and theoretical analyses
and were very helpful in understanding the overall
performance and physics. However, since they
deal with the

time-averaged aerodynamic

coefficients, the unsteady aercdynamic

characteristics of the flow field were not fully
identified. The numerical studies on this problem
are telatively rare’  until now maybe due to the
following difficulties: (1) Although the computer
capacity has greatly improved these days, a large
amount of computation time 18 still required for
three dimensional unsteady flow field analysis.
Mareover, in order to calculate the upper and
lower rotors simultaneously, a larger computation
domain is necessary; (2) In the same context
mentioned above, a special consideration is
needed in order to suppress the numerical
diffusion due to the coarse grid density; (3) A
proper wake modeling is not available for coaxial
rotor configuration. Landgrebe’ type prescribed
wake model can not be applied to this rotor
configuration because the shape and behavior of
the coaxial rotor wake are quite different from
those of a single rotor.;(4) A very complex grid
strategy 1s required to handle moving grid
configuration and it is almost impossible to
construct the whole flow field n a single block.
The main objective of this work is to introduce a
new boundary condition for a coaxial rotor
analysis and  to check the applicability of

vorticity confinement technique. The accuracy

and feasibility of the present work is validated

2. Governing Equation

While the hovering can be regarded as a steady'
problem for a single rotor calculation, the coaxial
rotor flow field is intrinsically unsteady even for a
hovering.

Therefore, the Euler

governing
equations should be described in the inertial
coordinate system to handle the general grid

motion®’.
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From the state equation for an ideal gas, the

energy is obtained from the following relation,
p=(y- 1){6“%[)(112 + v+ wz)}

The convective terms are discretized using Roe’s
flux difference splitting®.
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The primitive-variable extrapolation of MUSCL
approach is employed for higher order spatial

accuracy. An AF-ADI(Approximate

implicit
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Factorization  Alternating Direction Implicit)

method” is used for time integration.

3. Grid System

The advantage of the embedded grid method lies
in free choice of grid type™'". In order to obtain
accurate results, each grid must have sufficient
resolutton and  satisfy  orthogonality and
smoothness. The base flow is divided into four
zones - two for the rotor blades and two to

convect the rotor-wake as shown in Fig.1.

About  8*10° grid points are used to construct

the entire flow fields.

Fig.1 Side View of the Embedded Grid System

The larger H-type cylindrical grids arcund the
each blade that cover the entire flow field are
called as background grid"”. Each of the
background grid rotate in opposite direction on
the sliding boundary, through which the flow
information is exchanged. Fig 2 shows the fringe
cells around the upper blade.

A moving patched grid method is also
introduced to handle a sliding boundary. Since the
proximity of the blade is of our primary interest,

the background grids are clustered at the regions.

Fig.2 Fringe Points around the Rotor Blade

As mentioned above, the hovering flow field of
a coaxial rotor system is inherently unsteady, the
general blade motions must be described in the
mertial coordinate. In this case, the motion of the

grid points fixed at the blades are as follows'*;

X, = =Ly —uM,; cos(0Ly,, )
y. =80x
z.=0

In addition, the every grid position and its metrics
are updated in the following manner;

X" = x" cos(QAL) ~ " sin(QAL)

y™ = x" sin(QAt) + v" cos(QAt)

Z‘n+l - Zn

4. Boundary Condition

Since the blades are in motion in the present
problem, the time metric should be included when
imposing boundary conditions, Slip boundary
condition is applied at the blade surfaces and the

pressure is obtained from normal momentum
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equation. There are two types of far boundary
conditions available at the present. The one
suggested by Srinivasan' is based oo the three
dimensional  poeint-sink  theory  and  mass
conservation law, The method is known to avoid
the “Closed Box™ problem and shows 2 good
However, it was

CONVErgenty. originally

developed for a single rotor  and there is some
doubt of its basic assumption. So, it can not be
directly applied to the coaxial rotor calculation,
The other is the charscteristic far boundary
condition based on the Rismann invarianis,
Although its convergency 13 not so good as the
one, it produces a sable and reliable solutions™.
Therefore. the latier method is adopted in the
present work.

Mo flux condition is applied at the mboard
boundary. It should be noted that this condition
allows the cross flow along the span. In the
wake capiuring method, there exists a periodicity
for a hovering rotor flow fleld. By iatroducing the
periodic  boundary, the entire computational
domain can be reduced by 12n{n: number of
blade of each rotor)”®. This is also true for the
coaxial rotor flow field. The periodic boundary
condition 13 used at the front and back wall
boundaries.

The exchange of flow information between the
half cylinders covering the blades is performed
via sliding boundary. The accurate interpolation
hetween the two zones is the most crucial factor In
the present work. Fig. 3 is  the top view of the
stiding boundary and shows the schematic of the
interpolation process.

As the caleulation starts, each of the half cylinder
rotates in the opposite direction. So, the sliding

boundary is divided into the overlap region and

Ovariag Hépen
Diract mipreoiammn

Foini-aythitnalng wispaiaton

4 Upper blade

I liowerblaée

i " maginary blade

Fig. 3 The Schematic of Interpolation Provess at
the Siiding Boundary
ron-overiap region. At the overlap region, the
flow variables are directly imterpolated but for the
nan-overlap region, the periodic nature of the flow
field should be vsed again. If we assume the
imaginary blades plotted in dashed fine and the tip
vortex generated from the upper blade goes out of
the computational domain at point A, the same
vortex must enters the lower half eylinder at point
B. That i, the non-overlap region on the shding
boundary has the polat-symmetric nature with
respect to the center of rotation. Hence, for the
non-overlap  region,  the

should  be

point-symmetiic
interpoiation sccomplished.  The
detatled procedures are as folfows: {I) the
interpolation is performed on the entire sliding
boundary;(2} determine the index that divides the
overiap and non-overlap region;(3) the data-
giving area is transformed in the point-symmetric
way;(4} the interpclation is performed for the
data-receiving area at the noa-overlap region. In

the present work, all interpotation is accomplished

based on the angle that each cell occupies.

5. Vorticity Confinement Method
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The wvorticity confinement method

(VCM,

hereafter) invelves computing a  velocity
correction to the selution from a conventional
Euler/Navier-Stokes solver at ecach time step,
which limits the spreading of a vortical regicns
due to numerical diffusion by convecting the
vorticity back toward the centroid of the region'®.
The method is explained briefly here by
considering the incompressible Navier-Stokes
equations. With a confinement term, a set of
modified Navier-Stokes equations are described

as follows :

Ve(3=0

0Q

B Qo) =-V| 2 |+vWiQ+eK
ot p

where (@ is the velocity, p pressure, p density.
For the additional term, £ is a numerical
coefficient which controls the size of the
convecting vortical regions. The confinement term

takes a simple form,

K=-Axw
S0

&
where

W=V X Q is vorticity and 7 is a scalar field
that has a local minimum on the centroid of the
vortical region.

The main objective 1s to convect w back toward
the centroid as 1t diffuses outward. In the
confinement term, 0 is a unit vector pointing
away from the centroid of the vortical region.
The coefficient ¢ is made to depend on the grid
size 50 that the velocity correction becomes small
in the region where the grid is fine enongh”. Cne

of the drawback of VCM is that there is no

general rule in the specification of € and hence

experience of the user is essential.

6. Results and Discussion

Application of VCM

As noted in the previous section, YVCM requires
some experience in the specification of €. In the
case reported here, € is determined from the cell
volume ratio with the reference celi at the tip
region. The vaiue of & at the reference cell
depends on the grid density and varies from 0.4 1o
0.65 in the present case. An hovering coaxial rotor
calculation is performed in order to find out the
effect of VCM. Tip mach number is .37 and the
pitch angle 1s 7 degree for both rotors.

Thrust  histories of the lower rotors with a
variation of € are depicted in Fig.4. Three cases
(e=0, 0.50 and 0.65) are compared with one
another. It is shown that overall trends are almost
the same for all cases but in the case of £=0.65 ,

thrust is slightly underpredicted.
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Fig. 4 Thrust History of the Lower Blade with a

Variation of &.

It should be noted that in the case of £=0.63, the
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thrust begins to oscillate at around ¥=540 where
the tip vortices start to develop. Since velocity
correction is added only in the presence of
vorticity, it indicates that the numerical instability
occurs due to the added velocity correction. If &
has a value greater than 0.8, the solution diverges.
Fig. 5 shows the density contours at ‘¥=900 deg.
with a variation of €.

It is clearly shown that the

vortex core collapses with the increase of g,

Section C {(£=0.50} Section G (e=0.65)

]

Section D (£=0.50) Section D (e=0.65)

Fig.5 Density Contours at Two Different Sections

with a Variation of e

There seems to be two reasons for the instability

of the solution;

1y It is very hard to specify proper values to £
in the entire region. Because it is not
possible to know the numerical diffusion rate
all over the computational domain. Hence, if
£ exceeds the numerical diffusion rate at
some points, the velocity correction becomes
excessively large, resulting in a numerical
instability;

2}  Since in the 3-D caleulation, the axis of the
vorticity axis has an arbitrary direction, the

normal vector 01

outward may be

miscalcuated in the region where the

vorticity gradients varies abruptly.

Therefore, it is concluded that one should be
careful when using vorticity confinement method
because 1t may cause a numerical instability in
case of wrong specification of €. So, in the
following

calculations,

vorticity  confinement

method are not employed.

Resalts of Coaxial Rotor Flowfield

As mentioned earlier, the coaxial rotor flow field
is inherently unsteady unlike the single rotor.
Therefore, one must use the unsteady code even

for a

hovering calculation and continue

calculation until the solutions show a full
periodicity. By introducing the sliding boundary,
the computational domain is reduced by 1/2n(n:
the number of blade} but the accuracy of the
solution depends on the interpolation at the sliding
boundary. The volume ratio of the minor grid
around the blade and the background grid plays an
umportant role in the interpolation accuracy and
the numerical stability. In a cylindrical grid
syster, the inboard grid is very dense and the grid
becomes exponentially coarse along the radial
direction. In this reason, there is much difficulty
in controlling the cell volume ratio between the
blade and the background’s. It is well known that
the trilinear interpolation does not satisfy the
conservation law in itself. So the whole gnd
system is constructed so that the cell volume ratio
does not exceed 5 to reduce the interpolation
eTTOr.

Noticing that the previous researches
concentrate the overall performance analysis, the

present study tries to find out the unsteady nature

of the coaxial flow field. The computation is

AE 04-6




performed under the same condition as
Nagashima's experiment’. The blade has the
rectangular planform with aspect ratio of 6 and the
NACA 0012 airfoil. The rotor tip velocity 1s

Mach 0.37 and the pitch angles of the

upper

and lower rotor are 9° and 10°, respectively, The

solidity is 0.1 and the rotor spacing, B/D is 0.2
Fig.6 shows the thrust coefficient histories of

the upper and lower rotors.
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Fig. 6 Thrust Histories of the Upper and Lower

Rotors

v in the x-axis does not mean the azimuth angle
but the angle displacement between the blades. So,
it is twice the azimuth angle of the each blade. 1t
is shown that the thrust coefficients oscillate until
y reaches 90° due to the impulsive start. It is
observed that at y = 180n, the thrust of the upper
rotor instantaneously increases while that of the
lower rotor slightly decreases.

This is due to the increase of the effective pitch
angle that happens when the two rotors overlap as
shown in Fig.7 .

The thrust coefficients are almost constant
between the overlap of the rotors and the thrust
increase of the upper rotor at the overlap location

is about 8% of the mean thrust.

‘The calculated thrust coetficients are compared
in Table 1 with the experiment and semi-empirical

formula from “Helicopter” published in Russia’.

Ce*1 0l Upper Rotor | Lower Rotor (Co(Cr)y
Present 0.6347 0.5229 0.824
Experiment 0.6217 0.3596 0.583
(Ref. 3)
“Helicopter” 0.6731 ~ 0.5793 ~- 0.860
(Ref. 19) 0.5413 0.7236

Tablel Comparison of Calculated Thrust and Load

Sharing with Experiment and Semi-Empirical Formuta

Ngsuperpositicn of
@@ vertlc;;l valocity components

{ [ added velacity
T ,’ component

£

.. \.dherease In effective
- angle of alttack

Fig. 7 Increase of the Effective Pitch Angle of the

Upper Rotor

As shown in Table I, the thrust of the upper rotor
agrees well with the experiment, whereas the
thrust of the lower rotor is over-predicted. This
means that the downwash velocities from the
upper rotor is under-estimated. It seems that as
the tip vortex of the upper rotor passes through the
computational domain, it diffuses out due to the
numerical dissipation, thereby under-predicting
the induced velocities.

It should be noted that the load sharing shows a
good agreement with the semi-empirical results
from * Helicopter”. “Helicopter” is widely used
for  preliminary

performance  estimation.

Considering that the experimental result shows a
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large difference with that of “Helicopter™ ", it is
conciuded that a more general and detailed
experiment 1s required for the code validation.

The density contours are depicted at  four
circumferential locations when the two rotors
overlap. Fig. 8 shows the cross sections of the
wake grid where vortex was sampied.

The density contours for the lower rotor is shown
i Fig. 9. At the section A, a tip vortex begins to
form as it convects downward. By the time the tip
vortex reaches the section B, the strength of the
vortex core starts to weaken due to the numerical
dissipation. The tip vortex at the section B re-
enters the section C from the periodic boundary

condition.

DO { y=250° )

B( =50 360°}

Fig.8 Cross Sections of Wake Grid Where Vortex

was Sampled

As it contracts inward and descents downward , it
reaches the section A. At the section A, two
vortices can be observed. The lower one is
generated from the preceding blade. The vortex
diffuses out and lose its identity by the section D.

It should be noted that the vortex sheet whose
strength is weaker than vortex maintains its basic

structure due to the dense grid at the inboard

area. The flow field of the lower rotor has

almost the same trend as the upper one.

Section B

Section A

Section D

Fig. © The Density Contours for the Lower Rotor

at Four Different Locations

It is observed that the strength of the tip vortex is
weakened as it passes through the hole region.
This stems from the successive interpolation and
the accumulation of interpolation error.

The wake contraction and descent ratios are
compared with the

experimental data and

Landgrebe’s wake model in Fig. 10 and 11.
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Fig. 10 Wake Contraction and Descent Ratio of

the Upper Rotor

As shown in the figure, the calculated results show
a similar trend as the experimental data but the
wake descent ratio of the upper rotor is under-

predicted. It is thought that the induced velocities
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are under-predicted  due to the rapid diffusion of
the tip vortex of the upper rotor. For the lower
rotor, the contraction ratio shows a difference with
experimental data. It seems that the outflow
boundary condition at the bottom of the lower
wake grid has an effect on this problem and this

subject will be addressed in another paper.
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Fig. 11 Wake Contraction and Descent Ratio of

the Lower Rotor

6. Concluding Remark

The present study investigates the unsteady flow
fields around the coaxial rotor by using the up-to
date numerical analysis technique. The primary
objectives are to find out the unsteady
aerodynamic characteristics of the coaxial rotor
flow field and to provide a basic numerical tools
for further researches, To achieve this goal, the
numerical analysis code was developed to handle
the maving rotor configuration. By applying the
present code to the three-dimensional coaxial
rotor flow field analysis, the following
conclusions are reached:

()Therefore, it is concluded that one should be

careful when using vorticity confinement method

because it may cause a numerical instability in
case of wrong specification of g; (2} The rotor
analysis code for the unsteady coaxial flow field
has been developed and the calculated results
shows good agreements with the experimental
data; {3) The tip vortex and vortex sheet diffuse
out within one reveolution but wake contraction
and descent ratios agree well with the
experimental data. Further researches are required
to minimize the numerical diffusion such as the
use of less diffusive numerical scheme and denser
grid  system;(4) The sliding boundary is

introduced to  efficiently  construct  the

computational domain and the

interpolation

strategy is suggested.
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