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ABSTRACT

Helicopters are heavily coupled, unstable and their modeling is often a difficult nut to crack. This often makes control
design for the helicopter difficult. However, a goal for the near future for the EC135 Active Control Technology / Flying
Helicopter Simulator (ACT/FHS) is high-performance control to assess the in-flight simulation capability. This stimulates
the requirements for the feedback control design which is based on linear models derived by system identification. The
core problem for this type of design is often a mismatch of the closed-loop behavior to measured flight test data.
This paper focuses on the question how the design can be assisted to improve the plant’s model, so that the gap between
design and flight can be reduced. The framework relies on linear models derived by system identification. These linear
models are stitched together to describe not only the operating point but also the flight envelope of interest. The linear
models are also extended by non-physical models that describe the uncertainties. The model of the plant finally consists
of two parts: the physics-based, stitched model and the non-physical uncertainties. Compared to the classical techniques
system identification and nonlinear modeling, the framework proposed in this paper can be applied quickly and indicates
possible model improvements. The paper shows the application of the whole framework to ACT/FHS flight test results.

NOTATION

ACT/FHS Active Control Technology / Flying
Helicopter Simulator

ATTHeS Advanced Technology Testing
Helicopter System

ax, ay, az linear accelerations
A11,A12, partitions of the system matrix A
A21,A22

A,B,C,D linear state-space matrices
B1,B2 partitions of the system matrix B
f nonlinear system vector
g gravitation constant
Gis,m frequency response of the residual

controls due to measured controls
JRMS cost function, root mean square error
Kd differential gain
Kdd gain for the 2nd derivative
Ki integral gain
Kp proportional gain
L,M,N external moments
p, q, r angular velocities
RMS root mean square error
s Laplace variable
u, v, w body-axis velocities
ub, vb, wb bounded body-axis velocities

u,U control vector: time & frequency domain
uc commanded controls by the feedback
uf filtered controls uc
uis inverse simulated controls
um measured controls
ut vector of the trim controls
wh non-physical state due to inflow
x state vector
xt vector of the trim states
xll yll lead-lag states
X,Y, Z external forces about the rotorcraft’s

center of gravity
yr reference value
y outputs
α, β angle of attack and sideslip
∆ perturbation
∆a additive uncertainty
∆m input uncertainty
ξ interpolation variable, airspeed
ξf filtered interpolation variable ξ
ξPID operating point ξ = const.
δx, δy, δp, δ0 longitudinal, lateral, pedal, collective

control inputs
φ, θ roll and pitch angles
θc commanded pitch angle
ω frequency



1. INTRODUCTION

DLR (The German Aerospace Center) performs research
on helicopter assistance and demonstrates the function with
the research helicopter ACT/FHS (Active Control Techno-
logy / Flying Helicopter Simulator). One important aspect
of the assistance system is feedback control which can be
tested easily on the ACT/FHS. The EC135 ACT/FHS is a
light, twin-engine helicopter with bearingless main rotor and
Fenestron (see figure 1). Its mechanical controls are re-
placed by a full-authority fly-by-wire/fly-by-light primary con-
trol system, which allows changes of the control inputs ap-
plied to the actuators by an experimental system [1]. Be-
cause of these changes, the dynamic data shown in this
paper are not comparable to data from series-production
rotorcraft. The aircraft was developed jointly by Airbus Heli-
copters Germany, Liebherr Aerospace Lindenberg, the Ger-
man Federal Office of Bundeswehr Equipment, Information
Technology and In-Service Support, and DLR. It is owned
and operated by DLR. The ACT/FHS permits operations
with the core system (controlled by the safety pilot) and with
the experimental system (controlled by the evaluation pi-
lot). The core system meets the high civil aviation safety
requirements with a catastrophic failure probability of 10−9

per flight hour. It features the bare-airframe helicopter with-
out controller assistance and is the backup for the experi-
mental system. The experimental system provides the high
flexibility required for research activities and allows for feed-
back control assessment through flight testing.

Model-based control is used on the ACT/FHS [2, 3]. This
control scheme has to ensure that certain control assis-
tance ease helicopter flight so that pilot workload is re-
duced. One highly challenging application and research
topic of this control assistance is an in-flight simulation that
will be pursued with the DLR project Assisted Low Level
Flight Using In-Flight Simulation Capability (ALL-in-Flight).
That is, the pilot would believe that s/he is flying another he-
licopter. A second application is directed to Handling Qual-
ities and intends easy flying. The respective model can
be directly defined by using ADS33 [4] or user-defined so
that it is comparable to driving a car [5]. All these goals
require highly performant feedback control which is crucial
for state tracking of the arbitrarily defined reference models.
The challenge addressed in this paper is the mismatch be-
tween simulated and measured closed-loop behavior. The
proposed solution is a tailored framework that describes
the plant’s model as a combination of physics-based and
generic models used for feedback control design. The pa-
per continues with the state of the art in section 2 and shows
then the aforementioned framework as an overview in sec-
tion 3 followed by the detailed descriptions of the framework
in sections 4-7. The paper finally shows flight test examples
in section 8 and is concluded in 9. Examples company the
sections and represent qualitatively the observations made
in flight tests with the ACT/FHS.

Figure 1: DLR’s research helicopter ACT/FHS

2. STATE OF THE ART

The mismatches between the helicopter simulation and the
respective measurements drive the continuous improve-
ment of nonlinear simulation programs such as HOST (He-
licopter Overall Simulation Tool, [6]) or DLR’s SimH [7]. The
effort is worthwhile as the nonlinear model serves with their
numerically linearized models as feedback design platform
and with their real-time capability as a testing platform for
future flight tests, and in industrial application as training
device for pilots.

For feedback control design in helicopter applications, lin-
ear models are state of the art [8, 9, 10]. These models are
derived by numerically linearizing nonlinear helicopter pro-
grams such as in reference [9] or by system identification
as used in references [10, 11]. The identification technique
is an empirical method that maps parameters of a model
such that measured outputs are described with certain in-
puts. The modeling accuracy typically depends on the order
of the model and should meet specific requirements so that
feedback control design is possible. Linear models derived
by system identification are used for the feedback control
design in references [12, 13] for instance. The usage of
numerically linearized models from HOST for example are
documented in reference [14].

What if the linear model is not accurate and the expected
closed-loop behavior cannot be observed in real flight? To
improve the closed-loop behavior, the design may either fo-
cus more on the controller design or more on the modeling.
The approach chosen here is to describe the model uncer-
tainties to ease the design of a high-bandwidth control while
still classical feedback control schemes can be used.

Feedback design often uses linear models and uncertain-
ties may also arise through local nonlinear remnants [9].
Appending known nonlinear terms to the linear point model
promises at least a broader validity and may also respect
certain nonlinear remnants. References [15, 16] show a
feasible approach applied to the ATTHeS research rotor-



craft. Both references show the spline-based interpolation
of linear matrices in combination with nonlinear terms such
as altitude, gravity, and inertia. Tischler and Zivan [9, 17]
additionally use trim curves to set up the stitched model.
Different linear point models of a Bell 206 (derived by sys-
tem identification) are interpolated and the respective pilot
rating show a good simulation fidelity. Reference [18] ap-
plied a stitching technique to identification results of the
ACT/FHS and showed a good quantitative match for the
overall flight envelope. Reference [19] recently shows im-
pressively (for the light business jet Cessna Citation CJ1)
that the stitching technique features not only the interpola-
tion but also the extrapolation which requires only few linear
point models. The effect of a changing mass and altitude for
instance is extrapolated with prescribed relationships. The
pilot ratings of the full envelope Cessna simulation under-
line the high-fidelity simulation and indicate that the stitching
may serve as real-time simulation.

However, mismatches between simulated and measured
output can still remain. The predictive accuracy can be as-
sessed in the frequency domain with maximum unnotice-
able added dynamics (MUAD) [20, 21] which indicate fre-
quencies that show relevant model mismatches. Additional
models for the outputs may be derived, so that the simulated
response predicts the measurements. The more outputs
the model has, the more complex it becomes to achieve a
perfect consistency. Another strategy is to analyze the in-
puts and ask for residual inputs that have to be added to
predict the measurements. Inverse simulation is one pos-
sible method to calculate these residual inputs and is in-
troduced in references [22, 23, 24]. The subsequent de-
velopment of a non physics-based model for these residual
control is introduced in reference [25]. As a positive conse-
quence, the consistency of the outputs is still ensured.

Even high-fidelity models for helicopters may still fail in pre-
dicting the closed-loop response. A prominent example is
the so-called air resonance that is not well-predicted for the
ACT/FHS with neither nonlinear helicopter models nor lin-
ear models derived by system identification. This result mo-
tivates the application of partial closed-loop control in real
flight as a technique for model validation. Partial closed-
loop control for the ACT/FHS means that only one feed-
back axis is active. Feeding back measurements to a single
axis still ensures uncorrelated inputs which are quite often
a pre-requisite for system identification. This method was
already successfully applied for the roll axis in references
[13, 26, 27]. The technique is adopted from validation of
nonlinear simulation tools where numerical integration of
certain subsystems is broken and measurements are used
instead [28]. It is applied for example for an engine model
of the Bo-105 in reference [7] and for the Fenestron model
of the EC135 in reference [29].

This paper shows a feasible approach to combine model
stitching, inverse simulation, and partial closed-loop to ob-

tain a full flight envelope model with uncertainties. The goal
is to provide a model of the ACT/FHS for high-performant
feedback control design.

3. STEPS TO OBTAIN THE MODEL OF THE PLANT: AN

OVERVIEW

Consider a linear model describing the helicopter motion
without controller assistance at a certain operating point.
Assume further that the linear model has a lack of model-
ing accuracy. Reference [30] proposes different structures
for the uncertainties of a linear model. Two of these struc-
tures are presented in the block diagram of figure 2. These
uncertainties may be expressed with parametric and struc-
tured systems so that the overall transfer function matches
the measurements at least for the deterministic part. Re-
maining stochastic uncertainties may also exist but are not
addressed in this paper.

The linear models are derived by system identification and
are presented in section 4. In accordance with figure 2, a
three-step approach is chosen to obtain the uncertainties
together with the full envelope model:

• The Full Flight Envelope Model:
The linear point models are stitched together such
that airspeed dependent maneuvering flight is possi-
ble [17, 18]. Known nonlinearities such as trim curves
and gravity are taken into account to arrive at a full en-
velope simulation. Section 5 shows the application to
models of the ACT/FHS.

• Inverse Simulation to Obtain Input Uncertainties:
By means of inverse simulation, the second step facil-
itates a detailed analysis of the controls that are nec-
essary to obtain the measured response, [24, 25]. The
comparison between inverse-simulated and measured
controls finally allows for the modeling of the input un-
certainty. With this technique, section 6 shows that
the modeling quality can be improved for the ACT/FHS
without feedback control.

• Partial Closed-Loop for Additive Uncertainties:
The third step features the analysis of the model for
its application to feedback control design. The model
is simulated with feedback and the closed-loop re-

Figure 2: Uncertainties to improve the plant’s model for
flight control design



sponses between simulation and measurements are
compared, [13, 26]. The feedback is only applied to a
single control axis (and is called partial closed-loop) to
avoid correlation between multiple inputs. Section 7 fi-
nally shows how to determine the additive uncertainty
so that the model of the plant (see figure 2) is prepared
for its application to feedback control design.

4. THE ORIGINAL MODEL DERIVED BY SYSTEM IDENTI-
FICATION

System identification is based on a physical model with cer-
tain parameters. For the ACT/FHS, five operating points are
chosen by experience dependent on airspeed from hover
to 120 knot in steps of 30 knot. It is believed that the five
point models cover the strongly varying flight dynamics from
hover to fast forward flight. Each linear model respects fre-
quencies up to 20 rad/s and degrees of freedom depicted in
figure 3, namely the body-fixed velocities (u, v, and w), an-
gular rates (p, q, and r), flapping (a and b), regressive lead-
lag (xll, and yll), and mean inflow (ν). Flapping and mean
inflow are expressed implicitly by the angular acceleration
ṗ, q̇ and vertical acceleration ẇ, respectively [8, 18]. The
linear model has the form of a state space model [30] with
inputs ∆u ∈ Rm, outputs ∆y ∈ Rl, and states ∆x ∈ Rn.
The state and output equations of the system are:

∆ẋ =AξPID
∆x + BξPID

∆u

∆y =CξPID
∆x + DξPID

∆u
(1)

with the system matrix AξPID
, the input matrix BξPID

, the
output matrix CξPID

and the feedthrough matrix DξPID
.

The index ξPID denotes the airspeed at the operating point
which may be hover, 30 knot, · · · , 120 knot. The ma-
trix A60 knot for instance is the system matrix obtained for
60 knot forward flight. The inputs of the system are the four
controls of the helicopter that are longitudinal δx, lateral δy ,
pedal δp, and collective δ0 control.

∆u = (∆δx,∆δy,∆δp,∆δ0)
T(2)

The states comprise the fixed-body with its velocities, rates,

Figure 3: Degrees of freedom to model the flight dynamics
of the ACT/FHS

and attitudes, the implicit flapping as well as lead-lag of
the main rotor blades, and the mean inflow as non-physical
state wh [18]:

∆x = (∆u,∆v,∆w,∆p,∆q,∆r,∆wh,∆ṗ,∆q̇,

∆φ,∆θ,∆xll,1,∆xll,2,∆yll,1,∆yll,2)
T

(3)

The outputs are chosen such that corresponding measure-
ments are available:

∆y = (∆u,∆v,∆w,∆p,∆q,∆r,∆φ,∆θ,

∆ax,∆ay,∆az,∆ṗ,∆q̇,∆ṙ)
T

(4)

The accuracy of these models is typically assessed in the
time-domain with the cost function proposed in reference
[9]. To express the model quality, the following variables:

(5) ỹ = (α, β, p, q, r, ax, ay, az, φ, θ)

are used to calculate the root mean square error (RMS) of
a single run:

JRMS =

√√√√ 1

noutputs · nsamples

nsamples∑
k=0

Jk

with: Jk = (ỹmeas,k − ỹk)Q(ỹmeas,k − ỹk)T

(6)

The cost is normalized by the number of outputs noutputs
(i.e. ten in equation (5)) and by the number of samples
nsamples. The output errors are weighted with Q such that
the linear motion variables are given in ft, ft/s, · · · and the
rotational ones in °, °/s, · · · . Adequate accuracy for rotorcraft
modeling is achieved [9] when

1.0 ≤ JRMS ≤ 2.0

For smaller values of JRMS , the modeling quality can be
considered to be good. This validation is performed for all
point models. For validation purposes, 3211- and 2311-
multistep inputs are used. The length of each run varies
between nine and twelve seconds. The number of analyzed
response data sets varies for each operating point from 9
(120 knot) to 24 runs (30 knot). The RMS is calculated for
each run individually and then plotted by means of boxplots
as shown in figure 4. An individual run for the longitudinal
3211-multistep input is shown in figure 5.

The boxplot comprises the median as red line, the box with
50% of the data, the whisker with maximum three-times of
the box length, and the outliers marked as circles. Each
run is assigned to a specific operating point which gives the
first diagram in figure 4. The second diagram is obtained
through assigning the control axis that features the multi-
step input. The third diagram shows a single output (i.e.
roll, pitch, yaw, and climb rate) which is a single element of
the output vector of equation (5).

Most of the data show adequate modeling quality as de-
picted with the median of the airspeed-dependent box plots.



Figure 4: Root mean square error of all operating point
models depending on velocity, control axis, and measured
variable

The model for 120 knot shows the best accuracy but is
still adequate. The point models for 30 knot, 60 knot, and
90 knot show slightly higher RMS values when compared to
the hover case which is adequate for the majority of cases.
The 30 knot model shows reasonable results even though
the ACT/FHS is trimmed either at 25 knot or at 35 knot which
results in challenging conditions for system identification.
Lateral and collective control inputs show adequate quality
in most cases whereas longitudinal and pedal control in-
puts are characterized by modeling deficiencies. The on-
axis as well as coupling to the pitch rate is predicted well
whereas the simulation of roll, yaw, and climb rate should
be improved and suffers from the highly coupled dynamical
behavior of the ACT/FHS.

A single measurement is shown in figure 5. As expected by
the RMS, the response of the pitch acceleration is covered
well whereas higher frequencies with approximately 35 rad/s

Figure 5: Comparison in time domain between measured
or reconstructed (grey) and simulated (green) values for the
multi-step input at 60 knot forward flight

are not covered. The roll and yaw acceleration are predicted
adequately but show deficiencies for smaller frequencies,
e.g. roll at t ≈ 6 s, and yaw at t ≈ 10 s. The linear ac-
celerations are predicted adequately, too, whereas lateral
acceleration needs to be improved for smaller frequencies.
Especially small frequencies are respected by the RMS so
that the results depicted in time domain can be empirically
translated into a corresponding RMS value.

It is believed, that the existing modeling deficiencies origi-
nate from the absence of both engine and Fenestron mod-
els. For 120 knot, the influence of the engine on the sys-
tem’s response is small, so that the RMS value is also
small when compared to other airspeed-dependent oper-
ating points. Additionally, the RMS for pedal inputs varies
strongly which may be caused by the missing Fenestron
model. Respecting both, the Fenestron and engine, may
further improve the modeling quality. However, physics-



based modeling is almost always difficult so that the mis-
match between simulation and measurement will be de-
scribed by generic models. The linear models can be en-
hanced by nonlinear terms and uncertainties (see figure 2)
which will be presented in the following based on ACT/FHS
flight test data.

5. THE FULL FLIGHT ENVELOPE MODEL

Basically, the single operating point models have a limited
validity. If airspeed changes, another discrete model may
be needed. The colured curves in figure 6 show this effect
for different airspeeds. The modeling quality is significantly
reduced if a specific operating point model is used at a non
intended airspeed. The blue curve for instance comprises
the point model derived for 60 knot forward flight and this
model is used to simulate the flight test data obtained at
all operating points. The dots represent the median (e.g.
red line in figure 4) as obtained through equation (6). In
all cases, the point model works best when used for the in-
tended operating point. The so-called model stitching tech-
nique [9, 17, 18] interpolates the point models smoothly so
that the helicopter dynamics are adapted to airspeed. The
median of the RMS value of the stitched model is shown
with the black curve in figure 6 and clearly indicates that
this model covers the flight envelope. The following section
summarizes the results obtained in stitching identified linear
models of the ACT/FHS.

Method. The stitching technique requires flight test data
for the dynamical and stationary behavior. For this purpose
flight tests should also cover trim analysis at different condi-
tions such as different airspeeds, quartering flight, and alti-
tudes. Trim data for the ACT/FHS at different airspeeds are
depicted in figure 7 for the attitudes and controls. Roll atti-
tude shows some outliers which may arise through trimming
the helicopter either with slight angle of sideslip or without.

Consider a linear system such as equation (1) given at an
operating point ξPID. For this model, only the state equa-
tion is taken into account as the states already have a phys-
ical meaning that corresponds to the measured outputs y.
All elements of the state equation (matrices and constants
at the operating point) are now considered to depend on the
trim condition. The trim variable ξ controls the selection of
the trim condition smoothly. With this, the state equation of
the stitched model is

∆ẋ =A(ξf )(x− xt,f ) + B(ξf )(u− ut(ξ))+

f(x, u)− f(xt(ξ), ut(ξ))

with: ξ =
√
u2b + v2b + w2

b

ξ̇f = −1/T1ξf + 1/T1ξ, ξf (0) = ξPID

xt,f = xt(ξf )

x(t = 0) = xt(ξPID), u(t = 0) = ut(ξPID)

(7)

Figure 6: Median of the RMS value (equation (6)) of the
point models at each airspeed (colored curves) and the
RMS of the stitched model (black curve)

Figure 7: Trim variables depending on airspeed

The input vector ∆u = u − ut,ξPID
for instance is now a

function of the trim variable and leads to u−ut(ξ). The term
ut(ξ) respects the trim controls as depicted with the green
curves in figure 7. Additionally, known nonlinear terms such
as gravity or inertia are respected with the nonlinear vec-
tor f(x, u). The trim variable ξ is filtered with a large time
constant T1 to obtain ξf which is then used to calculate
the filtered trim states xt,f . The filtered trim states com-
prise the roll and pitch attitude as depicted with the green
curves in figure 7 and also respect the trim velocities. The



trim variable is the airspeed which is calculated by means of
the three body-fixed velocity components u, v, and w. The
body-fixed velocities are bounded so that a 30 knot side-
ward flight with zero forward and vertical speed do not lead
to the selection of the 30 knot operating point model. De-
tails on the bounds ub, vb, and wb are documented in refer-
ence [18]. The linearized equation (7) at a specific operat-
ing point ξPID should exactly be the same as the originally
linear model derived by system identification equation (1).
With this assumption, the linear matrices A(ξf ) and B(ξf )
are calculated at the predefined operating points and are
then interpolated with respect to airspeed.

Application to ACT/FHS data. The stitched model allows
for maneuvering flight. Dependent on airspeed, the appro-
priate trim controls and states together with system and in-
put matrix are used. The linearized equation (7) provides
the eigenvalues and their transition between the originally
five operating points. Figure 8 shows the respective eigen-
values. The path of the eigenvalues looks original and mo-
tivates the application as model for the maneuvering flight.
The main achievement of the stitching (for the most recent
system identification results obtained for the ACT/FHS) is,
that the helicopter dynamics are automatically selected de-
pending on airspeed. The RMS error between stitched and
point model is similar for each operating point as shown in
figure 6. Maneuvering flight such as acceleration and de-
celeration for example can be simulated with the stitched
model.

6. INVERSE SIMULATION TO OBTAIN INPUT UNCERTAIN-
TIES

Originally, inverse simulation is a tool for model validation
[22, 24]. However, this tool can also be used to extend the
physics-based model by certain generic ones which give the
input uncertainty in figure 2.

Method. The inverse simulation procedure is sketched in
figure 9. This simulation technique computes control inputs
uis such that the measured outputs are obtained with these
controls for a given model [23, 24]. The comparison be-
tween the inverse simulated and original inputs helps ana-
lyzing modeling deficiencies. Inverse simulation translates
the modeling errors such that these can be observed for the
inputs. It is stressed, that the classical simulation shows
the differences and modeling errors for the measured out-
puts as shown with the time domain result in figure 5. Given
a linear system such as equation (1), the partitioned state
space model becomes(

∆ẋs,1
∆ẋs,2

)
=

[
A11 A12

A21 A22

](
∆xs,1
∆xs,2

)
+

[
B1

B2

]
∆u

∆xs,1 =
[
I 0

](∆xs,1
∆xs,2

)(8)

Figure 8: Eigenvalues and their transission between the op-
erating points

Figure 9: Inverse simulation to compute residual controls

The outputs ∆xs,1 are user-defined, have (typically) the
same dimension as the control inputs, and are linearly inde-
pendent from one another. An important requirement is that
the feedthrough matrix must be zero for the output variables
∆xs,1. The task for the inverse simulation is to compute the
controls ∆uis such that the values ∆xs,1 exactly match the
corresponding measurements ym. For the application to
ACT/FHS models, typical outputs are pitch acceleration q̇,
roll acceleration ṗ, yaw rate r, and climb rate w with the re-
spective inputs longitudinal δx, lateral δy , pedal δp, and col-
lective δ0. If the matrix

[
A22 − B2B−1

1 A12

]
is stable, then

the inverse simulated controls ∆uis are obtained through
(see references [25, 31]):



∆ẋs,2 = A∗∆xs,2 + B∗
(

∆ẏr
∆yr

)
+ ∆ẋi,2

∆uis = C∗∆xs,2 + D∗
(

∆ẏr
∆yr

)
with: A∗ =

[
A22 − B2B−1

1 A12

]
B∗ =

[
B2B−1

1 A21 − B2B−1
1 A11

]
C∗ = −B−1

1 A12

D∗ =
[
B−1
1 −B−1

1 A11

]
∆ẋi,2 = −B∗

(
∆ẏr(0)
∆yr(0)

)
, ∆xs,2(0) = 0

(9)

Equation (9) is initialized such that all derivatives ∆ẋs,2 are
zero at t = 0. The inverse simulation uses reference values
∆yr and their derivatives ∆ẏr which require corresponding
measurements ym and ẏm, respectively. Dependent on the
level of noise, the inverse simulated controls will be noisy as
well which is distracting for the further analysis. The flight
test data ym are thus filtered such that measuring noise
is reduced and the reference values yr are consistent to
one another. The influence of disturbances such as wind
and uncertain trim conditions is estimated and is detailed in
reference [25].

The inverse simulated controls are compared to the mea-
sured controls. For the purpose of flight control design,
especially the analysis in frequency domain is of interest.
Thus the frequency response of the residual controls due to
the measured inputs is calculated. The Laplace represen-
tation with s being the Laplace variable is:

Gis,m =
Uis(s)− Um(s)

Um(s)
(10)

If the frequency representation Gis,m is mostly determin-
istic over frequency, the input uncertainty ∆m may model
the missing or not considered dynamical behavior. Inverse
simulation thus assists the analysis of the bare-airframe he-
licopter.

Example. The approximated on-axis pitch motion of the
ACT/FHS at 60 knot is given by

∆θ̇
∆q̇
∆q̈

 =

0 1 0
0 0 1
0 Mq Mq̇

∆θ
∆q
∆q̇

+

 0
0

Mδx

∆δx

∆q̇m =
[
0 0 1

]∆θ
∆q
∆q̇


with:

(
∆θ(0) ∆q(0) ∆q̇(0)

)T
= 0,

∆δx(0) = 0

(11)

The numerical values are
(12)
Mq = −13 1/s2, Mq̇ = −7 1/s, Mδx = 0.75rad/%s3

The output ∆q̇m is selected to obtain the match between
simulation and measurement, i.e. ∆xs,1 = ∆q̇m in equa-
tion (8). Inverse simulation requires this output together with
its derivative so that ∆q̇m is filtered and integrated again to
obtain the desired consistent reference values (i.e. q̇r, q̈r)
for inverse simulation.

For the purpose of this example, it is assumed that system
identification estimates M̃q̇ = −9. Thus, the inverse simu-
lated control is computed under this erroneous estimation.

(
∆θ̇s
∆q̇s

)
=

[
0 1
0 0

](
∆θs
∆qs

)
+

[
0 0
0 1

](
∆q̈r
∆q̇r

)
∆δx,is = −Mq/Mδx∆qs +

[
1 M̃q̇/Mδx

](∆q̈r
∆q̇r

)
(13)

Inserting the control law equation (13) into equation (11)
(use ∆δx,is instead of ∆δx) yields the simulated pitch ac-
celeration that matches the respective reference value, fig-
ure 10. Due to the erroneous estimation of the stability
derivative M̃q̇ , the measured and inverse simulated longitu-
dinal controls are different. The frequency response is cal-
culated using equation (10). Figure 11 shows the response
of the residual control ∆δx,is−∆δx due to the original con-
trol ∆δx. The respective model is obtained by estimation
methods that are implemented in Fitlab [32, 33]. In this ex-
ample, the model ∆m can be given analytically by:

Figure 10: Example for the inverse simulation of ptich axis

Figure 11: Input uncertainty of the pitch axis example



∆m =
(Mq̇ − M̃q̇)s

2

s3 −Mq̇s2 −Mqs
(14)

If the model ∆m is used as input uncertainty as presented
in figure 2, then the modeling quality is significantly im-
proved. Although this example only demonstrates how
to handle parameter uncertainties of a linear system, the
same procedure can be applied if certain degrees of free-
dom are missing. Finally, the example underlines that in-
verse simulation is a promising technique for estimating a
structured input uncertainty and is a reliable tool for model
validation.

Application to ACT/FHS data. Each point model is ana-
lyzed for the respective flight test data by means of inverse
simulation. Then, the inverse calculated controls are com-
pared with the measured controls of the ACT/FHS. As an
example, flight test data with collective input are used. Es-
pecially the inverse simulated pedal axis shows dominant
amplitudes which are needed to obtain the measured he-
licopter motion. The respective frequency response of the
additional pedal input due to measured collective control is
shown in figure 12 (grey curves) and is computed adapting
equation (10) which gives:

Gis,m,p0 =
δis,p(s)− δm,p(s)

δm,0(s)
(15)

Figure 12 collects the computed frequency responses for
all test data from hover to 120 knot. The larger the am-
plitudes of the frequency response, the larger the model-
ing uncertainties are. The value 0 dB for instance means
that the collective is directly added on the pedal axis. Fre-
quencies around 4 rad/s ≤ ω ≤ 16 rad/s are not covered
that well by the original linear model. It is believed that
an additional engine model within the system identifica-
tion would improve modeling quality and reduce the inverse
simulated pedal input within the aforementioned frequency
range. Additionally, the resonance phenomenon at approxi-
mately ω = 35 rad/s is not covered by the original model de-
rived by system identification and accumulates several ef-
fects such as structural oscillations of the tailboom and con-
ing. This effect is observed for all other control axes, while
these are almost only characterized by this resonance.

For all control axes, a model approximates the frequency
response. The red curve in figure 12 represents the model
that calculates the residual pedal due to collective control.
The modeling procedure is repeated for all other control
axes so that, finally, the input uncertainty is obtained. With
this, missing or not considered dynamical effects of the orig-
inal point models are respected by means of a combination
of physics-based model and generic input uncertainty.

Figure 13 shows the time domain response at 60 knot due to
longitudinal input (compare figure 5). Again, the pure point
model derived by system identification is depicted with the

Figure 12: Input uncertainty for ACT/FHS data, residual
pedal due to collective control

green curves. In comparison, the same point model is simu-
lated together with the input uncertainty (blue curves). With
input uncertainty, the match is improved. Especially, lateral
velocity, roll acceleration, and yaw acceleration benefit from
the modeled input uncertainty.

The advantage of using only one model for the input uncer-
tainty for all velocities (aside from time savings) is that it can
be easily attached to the stitched model. There is no inter-
polation dependent on airspeed needed. The drawback is
that the overall model cannot be improved as much as pos-
sible. However, the improved prediction capability is highly
motivating, as the modeling deficiencies have been there
for years. Especially flight control design benefits from the
model improvement. If further and more detailed model-
ing is needed for feedback design, the technique presented
above just needs to be applied to each operating point but,
then, the models have to be interpolated.

7. PARTIAL CLOSED-LOOP TO OBTAIN ADDITIVE UN-
CERTAINTIES

System identification is based on flight test data whereas
small amplitudes and rates are used to excite the ACT/FHS
without feedback. The resulting models cover the flight-
dynamical behavior of the ACT/FHS and should allow for
feedback design. For the roll axis, the preliminary feed-
back control design leads to an unexpected roll oscillation in
flight tests with the ACT/FHS [13, 26]. This result motivates
partial closed-loop as a method to identify additional uncer-
tainties (see figure 2), so that the closed-loop behavior is
predicted by the model.

Method. Partial closed-loop consists of only one feedback
axis while the remaining axes have no feedback control. In
this way, correlation is still small which is often a prereq-
uisite for system identification [8]. In flight tests, measure-
ments are fed back to a single axis. The remaining axes are
controlled by the pilot directly. In simulation, the recorded



Figure 13: Predictive Capability for 60 knot forward flight,
measurements (grey), point model (green), and point model
with input uncertainty (blue)

data of the remaining axes are used as direct input for the
model and the feedback axis is simulated. The technique
was first applied to the roll axis to predict the so-called air
resonance which is an oscillating roll motion. Reference
[34] shows how to adapt point models as well as the non-
linear helicopter simulation to predict air resonance. More
specifically, measured rates such as roll, pitch, yaw, and
climb rate are used for feedback on the respective control
axis. The measured response is compared with the sim-
ulated one and certain parameters of the additive uncer-
tainty are optimized until the simulated response matches
the measured one. The additional uncertainty is simply set
up as a state space model with the same dimension as the
point model. The block diagram in figure 14 summarizes
the procedure for the lateral axis.

The point model with additional uncertainty is set up with the

Figure 14: Block diagram of the partial closed-loop, lateral
control is activated

additional system matrix Aa,ξPID
and input matrix Ba,ξPID

.
For each operating point, specific additive matrices Aa,ξPID

and Ba,ξPID
are used.

∆ẋ = (AξPID
+ Aa,ξPID

) ∆x

+ (BξPID
+ Ba,ξPID

) ∆u

∆y =CξPID
∆x + DξPID

∆u

∆u =∆m∆uf + ∆uf

(16)

The minimization of the error between simulation and mea-
surement is conducted as follows

(17) min
Aa,ξPID

Ba,ξPID

(
(∆y−∆ym)

T CTa Ca (∆y−∆ym)
)

The output matrix Ca selects the output variables which are
ax, ay , az , ṗ, q̇, and ṙ.

Application to ACT/FHS data. Flight test data are used to
compare the simulation results. Figure 15 shows the results
of the roll axis at 60 knot forward flight. The point model
(green) cannot predict the measured response though the
oscillation is qualitatively predicted. The additive uncer-
tainty together with the point model (blue) predicts the os-
cillation well.

8. APPLICATION TO FEEDBACK CONTROL DESIGN

The three parts (i.e. additive uncertainty, input uncertainty,
and stitched model) are combined such that the overall
model allows for performant feedback design. The model
has the following state equation

∆ẋ =(A(ξf ) + Aa,ξPID
(ξf ))(x− xt,f )+

(B(ξf ) + Ba,ξPID
(ξf ))(u− ut(ξ))+

f(x, u)− f(xt(ξ), ut(ξ))

(18)

where the control inputs are obtained through

u =∆muf + uf(19)



Figure 15: Roll rate due to lateral control at 60 knot forward
flight of the ACT/FHS, measurements (grey) from flight test,
point model with input uncertainty (green), and point model
with additive and input uncertainty (blue)

uf denotes the processed controls that have been filtered
to avoid structural oscillations of the fuselage and tailboom
and that then have passed the core system computer as
well as the actuators. A simple approximation of this signal
processing is provided by

uf =− 1/T1u̇f + e−t/Ttuc(20)

The controls generated by feedback are called uc. The
three models equations (18-20) are used for the feedback
control design.

Example. Assume that system identification results in the
model equations (11, 12) of the pitch attitude due to longitu-
dinal control. Assume further that the control design results
in a PID-controller with (SI-units are used)

δx,c =40 ė+ 110 e+ 50

∫
e dt

with: e = θc − θ
(21)

The control signal δx,c is processed by equation (20) where
the time constant is T1 = 25 ms and the delay is Tt =
25 ms. With this, the closed-loop system as depicted in
figure 16 is set up. The simulated closed-loop response
with the feedback controller of equation (21) is shown in
figure 17. The grey curve shows the commanded pitch atti-
tude that is desired by the pilot. The blue curve shows the
response expected by the design. The same closed-loop
behavior is expected in real flight but, however, reveals a
slightly oscillatory response (red curve). After application of
the inverse simulation, the pitch axis requires the following
input uncertainty (taken from the ACT/FHS correspondent
input uncertainty):

Figure 16: Block diagram of the exemplary pitch axis
closed-loop

Figure 17: Closed-loop response of the pitch attitude for the
pitch axis example

∆m =
−2.6 · 105s(s− 10)

(s+ 3)(s+ 0.3)(s2 + 10s+ 925)(s2 + 7s+ 1612)

(22)

The controller design is now assisted through the model-
ing of the oscillation at approx. 35 rad/s. The controller de-
sign uses an additional feedback of the pitch acceleration to
avoid the oscillating response of the pitch attitude. Assume
that the controller design results in the following feedback
controller:

δx,c =6 ë+ 60 ė+ 110 e+ 50

∫
e dt

with: e = θc − θ
(23)

The respective closed-loop response (red continuous line)
on bottom of figure 17 is similar to the preliminary expec-
tation from the first design (blue curve in top of the same
figure).

Application to ACT/FHS data. The whole procedure is
applied to the ACT/FHS with its models derived by system



identification [8, 18]. The high-bandwidth control of the roll
axis for instance is documented in references [13, 34]. By
means of the additive uncertainty as shown in figure 15,
the feedback design is tailored such that air resonance is
suppressed and high-bandwidth control is possible. Fig-
ure 18 shows the comparison between high gain roll rate
feedback (green) and the same feedback with additional air
resonance suppression (red).

The framework is also applied to the pitch axis and helps to
improve the response to pitch attitude. Similar to the exam-
ple in equation (23), an additional feedback of the pitch ac-
celeration is used. Compared to the example, the ACT/FHS
has a much more complex on-axis pitch transfer function
(due to coupling) and features feed-forward control [35].
Figure 19 shows the response obtained with the prelimi-
nary control architecture. The attitude is not well tracked al-
though the feedback design by means of the original model
leads to the expectation of an overall good tracking perfor-
mance. Then, the whole framework with the full envelope
model, input, and additive uncertainty was applied. Based
on the adapted model of the plant, the feedback controller
for the pitch axis was redesigned similar to the example
given by equation (23). In flight tests, the redesigned feed-
back controller shows a significant improvement (figure 19).

The full envelope simulation equation (7) also helps in as-
sessing the performance of the maneuvering flight. The per-
turbation about the trim controls for instance emphasizes
that a deceleration maneuver depends on the stationary
trim curve. The feedback cannot predict this effect so that
a corresponding compensation is used. For the longitudinal
PID-controller, the trim curve is compensated through:

δx,c =Kdd ë+Kd ė+Kp e+Ki

∫
e dt

+ δx,t(Va)− δx,t(t = 0)

with: e = θc − θ

(24)

The additional term δx,t(Va) − δx,t(t = 0) avoids the
steady-state tracking error which is shown in figure 20.

9. CONCLUSION AND OUTLOOK

The predicting capability of linear models is crucial for suc-
cessful high-bandwidth feedback control. The approach
presented in this paper relies on the combination of physics-
based system identification and generic modeling and
shows the application to feedback control design for sim-
ple examples as well as real flight tests with the ACT/FHS.
The physics-based approach allows for full envelope mod-
eling with linear models that are interpolated smoothly and
respect nonlinear terms such as kinematics and trim curves.
Advantageously, the maneuvering flight with deceleration
and acceleration can be simulated and the feedback con-
troller can be designed with respect to maneuvering flight.

Figure 18: Application of the additive uncertainty to sup-
press of air resonance of the ACT/FHS

Figure 19: Design of the pitch attitude controller with and
without input uncertainty

Figure 20: Pitch attitude control with classical PID (top) and
with trim curve feedback (bottom)



Although, nonlinear remnants may be covered by the full
envelope model, certain modeling uncertainties may still re-
main. Those uncertainties can be covered by adding the
input and additive uncertainty which are derived by means
of inverse simulation and partial closed-loop, respectively.
Finally, the model of the plant consists of a full envelope
helicopter simulation that is based on system identification
results and enhanced by generic uncertainty models. The
paper shows the advantage of this framework by recently
flight-tested feedback control results and future work will ap-
ply this approach to next upcoming feedback design tasks.
The results on the uncertainties shown in this paper will be
transferred to the physics-based system identification which
may then be improved in predicting the helicopter response.
Additionally, generic system identification [36] will be per-
formed and the results will be used to further improve the
modeling.
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