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Abstract: A fluid-structure coupled simulation code has been developed to investigate aeroelastic 
effects of a blade on BVI noise. The flow around the blades is computed using computational fluid 
dynamics (CFD) with a moving overlapped grid method[1], while the blade is modeled as a beam 
and computed by a mode decomposition method. Mode analysis of the blade was made using 
Myklestad method[2][3]. Mode shapes and eigenvalues are calculated by this method and 
compared with HARTII data. It was shown that the frequencies of the modes agree well with the 
HARTII data. This method is used in the simulation using the overlapped grid as well. Strong 
(tight) coupling is applied for the fluid-structure coupled simulation. At the each time step, the 
cells are moved and deformed, according to the shape of the blade. Far-field noise is computed by 
an acoustic code based on Ffowcs Williams and Hawkings (FW-H) formulation[4]. The results are 
compared with HARTII data[5][6]. 
 
 
1. INTRODUCTION 
 
Today, helicopter play a various role in the human activity, for example, life saving and disaster 
relief, observation around the highway and the top of volcano et al. However, as a helicopter has a 
chance to fly over the urban area, the noise, especially generated from main rotor in the descend 
flight, is extremely annoying to the neighborhood. This noise is called the ‘slap noise’ and is 
caused by the rotor blades striking on the tip vortices generated from the preceding blade. Such 
noise is referred to as Blade-Vortex Interaction (BVI) noise. The lower frequency (1-5 Blade 
Passage Frequency or BPF) noise was radiated by the main rotor near the plane of the rotor disk 
and directly ahead in the direction of vehicle translation is important for direction. Community 
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acceptance of rotorcraft operations is usually determined by human annoyance to the mid to high 
frequency (6-40 BPF) range dominated by BVI noise. 
 
Investigation on the BVI noise has been conducted so far by so many institutes, for example 
NASA, ONERA, DLR, JAXA, many helicopter companies and universities et al. experimentally 
and CFD techniques. In 1990, the international joint cooperation within US-German and 
US-French MOU/MOA has been initiated. Since then, in 1994, the first wind tunnel test using 
German-Dutch Windtunnel (DNW) has been conducted, the main purpose was to study the effect 
of the Higher Harmonic pitch Control (HHC) on the BVI noise and high vibration level (called as 
HART project). In 2001, the second DNW test has been conducted to extend the HART data with 
new measurements techniques, more especially the 3-components PIV technique for wake 
measurements (called as HARTII project)[7]-[9]. In 2003, the HARTII data was available to the 
outside permitted researchers. 
 
Concerning to CFD technique, accurate prediction of the acoustic signature associated with a main 
rotor system in flight is critical to civil and military applications. Because the distance of a blade 
relative to the vortex has a great influence on BVI noise level, correct simulation of the 
deformation of a blade is very important. For the accurate simulation of rotary-wing aeroelasticity, 
the structural analysis is combined with the CFD simulations. There are two ways to combine the 
fluid and structure dynamics analysis. The first method is the weak (or loose) coupling , where the 
fluid and structure related information is exchanged after convergence of each individual method. 
The second method is the so-called strong (or tight) coupling. This means that the aerodynamic 
loads and structural deformations are exchanged at each integral time step. 
 
Several papers deal with the strong coupling[10][11] and weak coupling[12]-[16] have been 
presented so far. Altmikus et al[10] has well compared above two coupling by using the CFD code 
FLOWer and WAVES and comprehensive code HOST. He pointed out that the strong coupling 
shows almost same results with weak coupling but it takes about 2.5 times increase in cost and 
also it is very difficult to apply the trim calculation. Because of this inherent deficiency of the 
strong coupling, the loose coupling procedure is frequently used to get more accurate blade 
motion. The loose coupling procedure was developed by Tung, Caradonna, and Johnson using a 
transonic small disturbance (STD) code[17][18]. Recently the full potential methods were used 
later coupled. With the continual advancement of high speed computers, it becomes possible to 
use Euler[10][13] and Navier-Stokes[19]-[22] CFD in the coupling. Although the loose coupling 
strategy seems more efficient to obtain the trimmed and well converged CFD-CSD solutions, it is 
questionable if it can capture the strong time-dependent non-linearity such as BVI encounter or 
shock and stall phenomena on a blade or impulsive excitations such as quick maneuvering on 
small timescales. 
 
In this paper, the strong coupling procedure is applied to investigate the effect of the blade 
aeroelastic behavior on the airloads of a blade. Because the BVI occurs at a very small timescale 
compared with one rotor rotation, it is believed that the strong coupling solution of CFD-CSD is 
more rigorous and promising for this problem. HARTII Model rotor was used to compare the 
calculated results. 
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2. CFD-CSD coupling Scheme 
 
In this investigation, the CFD-CSD coupled simulation code has been developed. CFD code 
called the Moving Overlapped Grid Method has been used to calculate the flow around a rotor. On 
the other hand, structure analysis using mode decomposition method is used to calculate the blade 
deformation. 
 
2.1 Numerical method 
The governing equations of the aerodynamic computation are the unsteady 3-dimensional Euler 
equations. The inertial force terms by the rotation are included in the calculation of the blade 
grid[23]. Even thought it is pointed out that the strong coupling can not take account the trim 
calculation in the CFD procedure, the trim condition was given from other trim calculation, for 
example Local Momentum Theory (LMT)[24] and so on.  
 
2.1.1 Grid system 
A moving overlapped grid approach is employed to treat rotating rotor blades. The grid system for 
a 5-bladed configuration used in our previous study is sketched in Fig. 1. The blade grid rotates in 
the Cartesian background grid. 

 
Background grid

Blade grid

 
Figure 1. Blade grids and background grid for 5-bladed rotor computation. 

 
A new grid topology is employed to concentrate grid points near the rotor disk. The Cartesian 
background grid is divided into the two parts as shown in Figs. 2 and 3. One is the inner 
background grid and the other is the outer background grid. The inner background grid is placed 
around the rotor disk. The outer background grid covers whole computation region and has sparse 
grid density. The flow data are exchanged between inner and outer background grids. The size of 
the two background grids for forward flight calculation is shown in Fig. 4. 
 
Huge number of grid points is distributed to the inner background grid to achieve higher 
resolution, because the density of grid directly affects the strength of numerical viscosity. The 
blade grid wraps rotor blade using BFC and moves with the blade motions, such as rotation, 
flapping, feathering, and lagging. It is provided for each blade in multi-bladed computations as 
shown in Fig. 3. The flow data are exchanged between the blade grids and the inner background 
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grid at the outer boundary of the blade grids.  The blade grid is generated by an algebraic 
formulation and has an O-H type topology. The number of grid points in span-wise direction is 
considerably increased to match the grid density of the blade grid with that of the inner 
background grid. Table 1 shows the numbers of grid points.  The grid spacing of the inner 
background grid corresponds to 0.169c, where c is the chord length. 
 
 

 

 

 Inner background grid  Outer background grid  

grids. 
 
 
 

Figure 2. Blade grids, inner background 
grid, and outer background grid. 
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Figure 4. Size of computation regions of inner and outer background grids. 
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Table 1. Grid specifications. 
HARTII (B. L.) 

rid ( x × y × z ) 
290 × 230 × 50 =  3,335,000 

grid ( x × y × z ) 
83 × 79 × 49 = 321,293 

(chord x normal x span) x blade 

(87×30×131)x4 = 1,367,640 

5,023,933 points 
 grid in rotor disk
4 
Figure 3. Blade grids and background 
 

0.169c ( = 0.01R ) 



2.1.2 Numerical method for Cartesian background grid 
A high accuracy explicit scheme is utilized in the background Cartesian grid.  The compact TVD 
scheme is employed for spatial discretization[25]. MUSCL cell interface value is modified to 
achieve 4th-order accuracy.  Simple High-resolution Upwind Scheme (SHUS)[26] is employed 
to obtain numerical flux. SHUS is one of the Advection Upstream Splitting Method (AUSM) type 
approximate Riemann solvers and has small numerical diffusion. The time integration is carried 
out by an explicit method. The four stage Runge-Kutta method is used for the present calculation. 
The free stream condition is applied for the outer boundary of the outer background grid. 
 
2.1.3 Numerical method for blade grid 
The numerical method for the blade grid calculation is an implicit finite-difference scheme[23]. 
The transformed equations are written as 
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The quantity ρ  is the density, vu,  and  are the velocity components in the Cartesian 

coordinate system, and  are the contravariant components of the velocity. The quantity 

 is the angular velocity of the blade rotation, and  is the pressure which is represented as 

w
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Where γ  is the ratio of specific heat and  is the total energy per unit volume. The quantity  

is the Jacobian of the transformation between Cartesian and computational coordinate. 

e J

 
The numerical method to solve the governing equations is an implicit finite-different scheme. The 
Euler equations are discretized in the conventional delta form using the Euler backward time 
differencing. A diagonalized ADI method based on an upwind flux-split technique is used for the 
implicit left-hand-side regarding the spatial differencing. In addition, a higher-order upwind 
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scheme based on TVD is applied for the inviscid terms of the explicit right-hand-side. Each ADI 
operator is decomposed into the product of lower and upper bidiagonal matrices by using 
diagonally dominant factorization. In addition, an upwind scheme based on TVD by Chakravarthy 
and Osher is applied for the inviscid terms of the explicit right-hand-side. Each operator is 
decomposed into the product of lower and upper bi-diagonal matrices by using diagonally 
dominant factorization. The accuracy of this solver in space and in time is 2nd-order and 1st-order, 
respectively. In order to obtain the unsteady solution in forward flight conditions, the Newton 
iterative method is also used. In order to reduce the residual at each time-step, six iterations are 
used. 
 
The typical dividing number along the azimuthal direction is about 5,000 per revolution for the 
HARTII blades. It corresponds to azimuth angle about 0.072°. The unsteady calculation is 
impulsively started from the azimuth angle of 0°. 
 
2.1.4 Interpolation of flow data 

The search and interpolation to exchange flow data, , between the grids are 

executed in each time step because the blade grid rotates with the rotor blade in the background 
grids. The computation time spent for search and interpolation is one of the disadvantages of the 
moving overlapped grid approach. In our computation, this problem is severe because a vector 
and parallel computer is used. Therefore, a new algorithm using tri-liner interpolation is developed 
and it is vectorized and paralellized31. The typical calculation time for the interpolation is about 
20% of all calculation time in the parallel computation of 5-bladed rotor case. 

tewvuQ ),,,,( ρρρρ=

 
2.1.5 Noise analysis 
The prediction method of the far field acoustic pressure is based on the combination of CFD 
technique with an acoustic equation solver. Although direct computation can be used to get the 
noise solution directly from the flow calculation with CFD based methods, this is available only in 
the near field in spite of huge computing cost. At present, the best way is the coupling with the 
integral method for far-field prediction. Acoustic analogy[27], which is re-arranged into the 
Ffowcs Williams-Hawkings equation, is widely used and still under construction for better 
applications. Retarded time solution to this equation, neglecting quadruple noise, can be written in 
the form of Formulation1 by Farassat[28][29].  
 
The prediction of rotor noise is conducted in the following procedures: 1) calculation of sound 
pressure of the noise source, 2) acoustic prediction computation at the observer position, and 3) 
post-processing of the noise data in the way of sound level using visualization or audible 
converting.  
 
Hypothesis of the Ffowcs-Williams and Hawkings equation[2] to be satisfied are known that the 
noise source must lay in low speed flow, and the observer should be located outside of the source 
region (i.e. outside of the boundary layer, separation flow or wake) in order to avoid the nonlinear 
effect. In most calculations to compare the results with wind tunnel experiment, the observer 
moves in the same direction and at the same speed as the noise source. The pressure distribution 
on the blade surface calculated by the CFD code is stored every 0.5 degrees in azimuth-wise 
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direction as the input data in noise calculation. 
 
The acoustic pressure p, which is the function of an observer position x and an observer time t , 
satisfies the wave equation as follows: 
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where  is the Heaviside function and )( fH )( fδ  is the Dirac delta function. The quantity  is 

the speed of sound. The bar over the operator symbol denotes operators involving generalized 

derivatives[29]. The vector n and  and  in equation (5) are described as follows:  
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By using the Green function in unbounded space, equation (5) gives  
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In equation (7), the vector y  is a source position, τ  is a source time. In equation (9),  is the 

distance between a source and an observer position. By performing the integration on the 
influential surface in equation (7), the following equation is obtained. 
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where 

θcosnn MM 21 −+=Λ                                  (11) 

In equation (10),  is the influential surface generated by all Σ Γ -curves as the source time τ  
varies  to ∞− t  for the fixed observer position x  and time t , where the -curve is the 

intersection of body and sphere . The function 

Γ

0=g g  is defined by equation (9) and 0=g   

shows the sphere on which the acoustic pressure transmits in the space. The quantity θ  is the 
angle between  and [30]. Figure 6 shows the schematic view of the influential surface. In the 
figure 7, the chart of the acoustic analysis used in this investigation is shown. 

n r

 
2.1.6 Treatment of blade motion 
The aerodynamic blade deformations such as flapping, torsion, and lead-lag deformations are 
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calculated at each time step in CFD calculation. These deformations are calculated by using mode 
decomposition method. Mode calculation was performed by using the Myklestad method. In this 
method, a blade is composed of several discrete masses and bays. Each bay has structural 

properties such as flapping bending stiffness, and the chordwise bending stiffness, and 

torsional stiffness, . The blade torsional, flap bending, and chordwise bending equations of 
equilibrium can be derived respectively as follows: 

yEI zEI

GJ

 

 
 
 
 
 
 
 
 
 
 
 
Figure 6. Schematic view of the influential surface.      Figure 7. The chart of acoustic analysis. 
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When the coupled mode shapes and the associated frequencies are denoted by φ,, vw  and jω , 
respectively, blade deformations can be expressed as 
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Where  is the generalize coordinate of the  coupled mode. According to the Rayleigh-Ritz 
approach[31], equations (12)-(14) result in the following form where the orthogonality condition 
of the natural modes was used in the derivation. 
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The radial extension of the blade  is approximated as u
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In order to take into the account of preconing angle 0β  of a blade, the aerodynamic forces and 

moments are change as follows: 

 For the flapwise correction:  )sin()cos(,, 00
2 ββΩ−⇒ jjzaza rmFF  

For the torsional correction: )sin()cos(,,, 00
2 ββΩ−−⇒ jjCGEAzaxaxa rmeeFMM  

Where  are the normal aerodynamics force and pitching moment respectively. Also 

 are the distance between elastic axis and aerodynamics center (quarter chord) (Positive 

toward leading edge) and between elastic axis and center of gravity (positive toward leading edge). 
The inertial forces by these dynamic motions have not considered yet in the present flow solver.   

xaza MF ,, ,

CGEA ee ,
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2.9 Calculation conditions 
HARTII blade is selected in this calculation. The HARTII model rotor was positioned on the 
lateral center of the DNW test section, and 915 mm up from the longitudinal centerline (Fig. 8). 
The dimensions of the calculated rotor and the operating conditions are summarized in Tables 2 
and 3. In this investigation, only Baseline case of the HARTII data was used because the main 
purpose of this investigation was developing the CFD-CSD code by using the Moving 
Overlapped Grid Method with the ode decomposition method. 
 
 
 
 
 
 
 
 

Figure 8. HART
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 m
II hingeless rotor model in DNW Wind tunnel 
Table 2: Dimensions of blades 
tor HARTII (B.L.) 

lades, b 4 
s, R (m) 2.0 
th, c (m) 0.121 

t (deg/R) -8.0 
io, AR 16.5 
NACA23012mod 

er Myklestad method was used to calculate the eigenvalues and 
property of the HARTII model were used. 

Table 3: Operating conditions 

in Rotor HARTII (B.L.) 

 Number, MTip 0.6387 

ce ratio, µ 0.15 

tilt angle, ιs 5.3 deg.(aft) 

ing angle, β0 2.5 deg. 

 pitch angle, θ0 3.20 deg 

ic pitch angle, θ1c -2.0 deg 

yclic pitch angle, θ1s 1.1 deg 

10 



 
3. Results and Discussions 
 
Mode analysis was executed by the Myklestad method. Calculated results are shown in Table 4. 
Results are compared with those by other papers. In this figure, 1st and 2nd natural frequencies are 
well coincident with those of HARTII blade and other papers.  However for above 3rd mode, 
present calculation results shows different tendency compared with other results. In the case of 3rd 
mode, present results show the torsion mode, however HARII data shows the flap mode and 
Umac or Boyd data show the flap/torsion mode. The present results also shows the strong 
coupling with the flap mode, therefore it may be called as flap/torsion mode in this case. In the 
case of 5th mode, present result and the results by other papers shows the torsion 3rd mode, 
however HARTII data shows the 3rd lead-lag mode. After more precise investigation, this 3rd 
torsion mode is strongly coupled with lead-lag motion. With the precise comparison, the present 
calculation results show the almost same blade property that is expressed by the other means. 
 

Table 4. Natural Frequencies of HARTII blade. 
 

Mode Number Umarc Boyd et al HARTII Present Method
1(Lead-Lag) 0.787 0.786 0.782 0.754
2(Flap) 1.11 1.111 1.125 1.138
3(Torsion) 2.66
3(Flap) 2.835
3(Flap/Torsion) 2.8 2.8
4(Torsion) 4.06 4.43 3.845 3.82
5(Torsion) 4.607 4.604 4.366
5(Lead-lag) 4.592
6(Lead-lag) 4.697
6(Flap) 5.058 5.03 5.168
7(Flap) 7.794 7.806 6.665
8(Flap) 11.171 11.199 9.237
9(Lead-lag) 11.056
10(Torsion) 11.603

Natural Mode Frequency
(/rev)

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 3rd mode shape                           (b) 6th mode shape 
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Figure 9. Comparison of 3rd and 6th mode shape 
 
First of all, these natural frequencies and natural vectors are applied to the LMT. This theory 
calculates the instantaneous momentum balance between momentum lift and blade element lift 
and finally derives the local lift on a blade. These aerodynamic forces and moments are combined 
with the structural calculation. The LMT was calculated at each 10 degrees time step and at the 
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same time the structural calculation was executed by using the aerodynamic forces in the 
generalized forces. 
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Figure 10. Comparison of the Blade pressure
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Figure 12. Comparison of the lead-lag deformation
of the HARTII blade with LMT results 
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of HARTII blade with LMT results 
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(a) Iso-vorticity contour around a rotor         (b) Comparison of Lift fluctuation of a blade 
Figure 15. Iso-vorticity contour and comparison of Lift fluctuation by CFD . 

 
Figure 16(a) and (b) show the noise carpet contour below the rotor of HARTII data and CFD 
calculation respectively. Even though the CFD calculation does not include an effect of the blade 
deformation, a noise carpet property shows well coincidence with the HARTII data. As shown in 
this figure, BVI events are mainly occurred in 1st quadrant and 4th quadrant. CFD calculation 
shows well coincidence with the HARTII data. 
 
 
 
 
 
 
 
 
 
 
 

(a) Carpet noise contour below a rotor        (b) Carpet noise contour by CFD 

 

Figure 16. Comparison of the carpet noise contour of HARTII below a rotor data and CFD. 
 
Figure 17 shows the flow chart of present CFD-CSD coupling analysis. In this calculation, the 
structure analysis is executed at the each time step in CFD calculation. The calculation was started 
after the 6 revolutions in which a blade was supposed to be a rigid blade. Even though time 
interval was so small in CFD, a blade have sudden deformation. As a result, a fairly large 
deformation in flap and torsion direction can be seen and each blade has different response at the 
beginning. It is necessary to get the same response for each blade. At the present time, it takes long 
time to get such convergence status in this strong coupling system. From the investigation using 
the strong coupling procedure, several important issues to be improved, such as viscous effect, 
trim calculation, inertial terms due to blade deformation have been clear. Concerning to the trim 
calculation, it should be investigate the weak (or loose) coupling. 
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Figure 17. Flow chart of the CFD-CSD coupling. 
 
4. Conclusions 
The CFD-CSD coupling code has been developed by combination with the Moving Overlapped 
Grid Method (CFD part) and the mode decomposition method (CSD part). This code has been 
executed by using the HARTII data. Through this investigation, the following conclusions have 
been derived. 
(1) CSD analysis is combined with CFD code, the Moving Overlapped Grid Method to 

investigate the aeroelastic effect on the blade airloading and acoustic property. 
(2) Mode analysis was made by the Myklestad method. 
(3) Results of the eigenvalues are well coincident with HARTII data and other analysis. 
(4) CFD code shows the accurate airloadings on a blade. 
(5) Numerical calculations shows the great sensitivity with CSD coupling. 
 
5. Future Works 
In this CFD-CSD coupling study to get accurate airloadings of a blade, several important 
assumption, such as no viscosity and so on, have imposed in these calculations. Therefore the 
following items have to be considered. 
(1) Inertial effects by blade deformation should be included. 
(2) Viscous effect should be included. (Navier Stokes Equations will be used.) 
(3) Weak coupling should be considered from the trim calculation point of view. 
(4) The prescribed blade deformations should be included to enhance the time efficient 

calculation. 
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