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ABSTRACT

At the DLR Institute of Flight Systems mathematical models of the ACT/FHS (Active Control Technology/Flying Helicopter
Simulator), an EC135 with a highly modified control system, are needed for control system development and simulation. So
far, the models that have been derived by system identification account for rotor and engine dynamics. For comfort of ride
investigations, and to improve the model quality for frequencies above 20 rad/s, the influence of flexible modes also has
to be modeled. For the ACT/FHS the largest effect is the influence of vertical tail bending on pitch rate. The investigation
started with a single-input/single-output system for pitch rate response to collective control inputs that was extended by one
structural mode for tail flexibility. As this approach was successful, next an identified 17th order model of the ACT/FHS was
also extended by one flexible mode. In this model, the structural mode was still dynamically decoupled from the 17th order
model and its influence on pitch rate and longitudinal and vertical acceleration was described by influence factors in the
output equations. Finally, a one-way coupled hybrid model was identified that extends the influence of the structural modes
to other input/output combinations. Accounting for tail flexibility in this way extended the range of validity of the identified
model up to the nominal rotor speed of 41 rad/s.

NOMENCLATURE

A, B stability and control matrix
ax, ay, az longitudinal, lateral, and vertical accelera-

tion, m/s2

C structural mode coupling derivatives
L, M , N moment derivatives
p, q, r roll, pitch and yaw rates, rad/s
S structural mode control derivatives
s Laplace variable, 1/s
u, v, w body-fixed velocity components, m/s
u, x, x input, state, and output vectors
X , Y , Z force derivatives
δlon, δlat longitudinal and lateral cyclic inputs, %
δcol, δped collective and pedal inputs, %
Φ,Θ roll and pitch angles, rad
H structural mode influence coefficients
η1, η2 structural mode displacement and rate

states
τ time delay, s
ζstr structural mode damping
ωstr structural mode frequency, rad/s

Subscripts
m measured value
rb rigid-body
str structural mode(s)
17ord 17th order model

Acronyms
ACT/FHS Active Control Technology / Flying Heli-

copter Simulator
ML maximum likelihood

1. INTRODUCTION

To ensure satisfactory handling and ride qualities, increas-
ingly higher crossover frequencies (frequencies, where the
magnitude crosses the stationary response) are required in
the flight control systems. Flight control law design is usu-
ally conducted using linear models that describe the rigid-
body dynamics and - if required - also rotor and/or engine
dynamics. As long as the structural modes remain well sep-
arated from the crossover frequency (by a factor of at least
10-15 [1]), notch filters are sufficient to avoid potential in-
teraction with the structural modes. Otherwise, the flexible
modes have to be accounted for in the models used for con-
trol system design.

In ref. [2] it was shown that structural modes with frequen-
cies below the rotor frequency have a strong impact on ride
quality. The modeling of flexible modes is thus also impor-
tant for comfort of ride investigations.

Accounting for flexible modes in system identification has
been performed for fixed wing applications such as large
flexible aircraft [3] or sailplanes [4]. Flexible modes were
accounted for in the control system development for a large
helicopter in ref. [5]. However, in this work, models for the
flexible modes were not identified from flight test data but
determined from shake tests using finite element software.

The general derivation of the equations of motion for cou-
pled rigid-body/structural systems is described in ref. [6].
A good overview over different modeling approaches to
account for flexible modes in system identification can be
found in ref. [7].



The ACT/FHS (Active Control Technology / Flying Heli-
copter Simulator, see Fig. 1) is the main testbed for ro-
torcraft research at the German Aerospace Center (DLR)
[8–10]. It is a highly modified Eurocopter EC135, a light
twin-engine helicopter with a bearingless main rotor and a
fenestron. The mechanical controls of the ACT/FHS have
been replaced by a full-authority fly-by-wire/fly-by-light con-
trol system that allows applying control inputs generated by
an experimental system in flight. Thus, the dynamics of
the ACT/FHS are not comparable to data from a production
EC135 rotorcraft.

Figure 1: DLR research helicopter ACT/FHS

The crossover frequencies of the ACT/FHS control system
are 3 rad/s for the pitch and 5 rad/s for the roll axis. As
the models that are used to develop the control laws should
ideally be accurate from one decade below to one decade
above it (± half a decade is usually sufficient), models
are sought that cover the frequency range of at least 0.5-
30 rad/s.

Investigations for the Bo105 [11] and shake tests from a
production EC 135 indicated that the structural mode with
the lowest frequency is the vertical tail bending with a fre-
quency in the order of 35 rad/s and thus very close to the
desired range of validity for the identified models. Com-
pared to a production EC 135, the ACT/FHS has a heavier
tail due to additional instrumentation. Therefore, monitor-
ing of tail bending is mandatory when flying the ACT/FHS
in experimental mode and the aircraft is thus equipped with
strain gauges at the tail root.

System identification of the ACT/FHS yields the necessary
models for the model-based control and in-flight simula-
tion research activities at DLR. The most recently identified
models of the ACT/FHS are of 17th order and account for
the rotor degrees of freedom (flapping, inflow and regres-
sive lead-lag) and contain a dynamic engine model [12].

Looking at the remaining error dynamics of these models, it
can be seen that the error in pitch acceleration for collective
inputs as shown in Fig. 2 for a 3211-multistep input maneu-
ver is a pure damped oscillation. Comparison with strain
gauge measurements indicated that this unmodeled oscil-
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Figure 2: Remaining error in pitch axis for collective inputs
(17th order model)

lation is caused by vertical tail boom bending. (The slight
oscillation on the control input is caused by control system
feedback.)

The excitation of structural modes by the control inputs is
normally suppressed by accordingly designed notch filters.
At the time when the notch filters were designed for the
ACT/FHS, excitation of the tail vertical mode had not yet
been experienced for collective inputs. The corresponding
frequency was therefore only accounted for in the notch fil-
ters for the cyclic and not the collective control input. As it
is difficult to properly identify a structural mode if the cor-
responding frequency is suppressed by a notch filter, the
off-axis response of pitch rate due to collective input was
used as the basis for the current investigations.

The ACT/FHS is equipped with specialized flight test sen-
sors, such as a high accuracy INS, a noseboom and two
differential GPS receivers. But, except for strain gauges
at the tail, the ACT/FHS is not equipped with dedicated
sensors to measure structural deformations. As matching
the strain gauge signals was not deemed necessary, is was
tried to use the same instrumentation as utilized in the rigid-
body/rotor/engine modeling efforts also for the derivation of
models including flexible modes.

This paper uses ACT/FHS flight test data for the 60 knots
forward flight case to investigate modeling elastic effects.
First, the single-input/single-output (SISO) system of pitch
rate due to collective control input will be augmented by one
structural mode to account for tail flexibility.



The results from this modeling step will then be used as a
starting point to extend a 17th order model of the ACT/FHS
by one flexible mode. In this multiple-input/multiple-output
(MIMO) model, the structural dynamics are still dynamically
decoupled from the rigid-body/rotor/engine dynamics and
only accounted for by influence factors in the output equa-
tions. Finally, a one-way coupled hybrid model will be de-
rived and its results will be shown.

2. SINGLE-INPUT/SINGLE-OUTPUT MODELING

A full aeroelastic modeling of a flexible vehicle leads to par-
tial differential equations as not only the motion of the cen-
ter of gravity (CG) but also the movement of different mass
points with respect to the CG have to be described. A
modal analysis of such a vehicle leads to a mean-axis sys-
tem and all structural deformations can then be described
with respect to this axis system. The deformations are de-
scribed as structural modes (eigenmodes) with correspond-
ing eigenfrequency and damping. The modal synthesis
then leads to a separation of variables, generating a differ-
ential equation for the rigid body (zero-th eigenmode, cor-
responding to a frequency of zero), and a set of second
order equations for the generalized coordinates, describing
the amplitudes of the modal deflections.

As the influence of tail flexibility for the ACT/FHS is most
pronounced in pitch rate due to collective control inputs,
the transfer function q/δcol was first investigated as a SISO
system. A 1st order response was assumed for the rigid-
body part of q/δcol. Following the approach of Tischler (see
chapter 16.4 of [7]), one second order system for the tail
flexibility mode was then added in a partial fraction expan-
sion.

(1)
q

δcol
=

Mδcol

s−Mq
+

Sδcols

s2 + 2ζstrωstrs+ ω2
str

The first term on the right-hand side is the rigid-body pitch
response and the second term is the vertical tail bending
structural mode with a frequency of ωstr and a damping of
ζstr. The collective control input excites both the rigid-body
and structural modes via the control derivatives Mδcol and
Sδcol .

For identification, the partial fraction model of (1) was aug-
mented by a time delay to account for unmodeled rotor dy-
namics and then implemented with the state equatiionsq̇rbη̇1

η̇2

 =

Mq 0 0
0 0 1
0 −ω2

str −2ζstrωstr

qrbη1
η2


+

Mδcol

0
Sδcol

 δcol(t− τδcol)

(2)

Here, qrb denotes the rigid-body contribution to the over-
all pitch rate. η1 and η2 are the modal displacement and

Parameter Value CR-Bound [%]
Mδcol 0.0107 11.58
Mq -3.0 –
τδcol 0.0419 3.63
Sδcol -0.0778 4.97
ζstr 0.0369 12.84
ωstr 34.1 0.47

Table 1: Identified parameters of the SISO model

modal rate (velocity) states of the structural mode. The
overall pitch rate q is the sum of the rigid-body and struc-
tural contributions

(3) q =
[
1 0 1

]qrbη1
η2



Identification of the system from eqs. (2) and (3) was per-
formed using the frequency response method [7, 13]. The
frequency response data for q/δcol was approximated over
the frequency range of 10-40 rad/s. The corresponding
identification results are listed in Tab. 1. The derivative Mq

had to be fixed at the value identified from a 6-DoF model
without flexible modes, because it could not accurately be
identified from this cross-axis response. The frequency of
the vertical tail bending mode is identified as 34.1 rad/s with
a very low uncertainty level (Cramer-Rao bound).

It can be seen from Fig. 3 that the rise in amplitude and drop
in phase at the higher frequencies is described sufficiently
well by adding the structural tail mode in this way.
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Figure 3: Frequency domain match of the SISO model for
q/δcol with added structural mode



Fig. 4 illustrates the corresponding match in the time do-
main for the same 3211-multistep input maneuver and with
the same scaling as in Fig. 2. The oscillation in pitch accel-
eration q̇ is now modeled correctly and the remaining error
therefore drastically reduced compared to the model without
structural modes. As this is only a SISO model, the overall
match in pitch rate is of course not as good as for the fully
coupled 17th order model used in Fig. 2.
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Figure 4: Time domain match of the SISO model for q/δcol
with added structural mode

Writing the resulting identified transfer function from eq. (1)
in pole/zero formulation yields

(4)
q

δcol
= −0.067

(15.3)(−12.2)

(3.00)[0.0369, 34.1]

where (1/T ) is the shorthand notation for (s + 1/T ) and
[ζ, ω] is short for s2 + 2ζωs + ω2. The transfer function
has a zero in the right-hand plane which causes an initial
response in the opposite direction to the control input as can
be seen in the zoomed-in plots on the right side of Fig. 4.

Fig. 5 shows a root-locus plot of the transfer function from
eq. (4) for varying pitch rate gain Kq . It can be seen that
an increasing pitch rate feedback gain on collective would
destabilize the tail structural mode.

It is important to note that there is no dynamic coupling be-
tween the rigid-body and structural states in eq. (2). Nev-
ertheless, this assumption leads to a good match and pro-
vides a considerable extension in the frequency range of
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Figure 5: Root locus for pitch rate gain on collective

applicability of the identified extended model as compared
to a rigid-body model structure. Another important observa-
tion is that the identification of this simple extended model
is based solely on the fuselage angular response sensors
and does not require additional flight-test measurements of
the structural response.

3. GENERAL MIMO MODEL STRUCTURE

Assuming that the elastic displacements are small com-
pared to the rigid-body motion, the dynamics of the flexi-
ble modes can be written with respect to a body-fixed mean
axis system, a formulation commonly used in flight dynam-
ics and control literature [1]. A consequence of this mean-
axis formulation is that all coupling between the structural
and rigid-body systems is via the aerodynamic forces and
moments and there is no inertial coupling introduced into
the mass matrix. The dynamics of the structural modes in
normal coordinates can then be appended to the rigid-body
equations of motion as mutually uncoupled sets of second-
order differential equations.

In general, this means that the matrices of the coupled rigid-
body/structural modes state equations can be partitioned as
[7]

(5) A =


Rigid-Body

Stability
Derivatives

Aeroelastic
Coupling

Terms
Rigid-Body
Coupling

Terms

Structural
Flexibility
Modes


and

(6) B =


Rigid-Body

Control
Derivatives

Structural Mode
Control

Derivatives





and the state vector is also partitioned into rigid-body and
structural components as

(7) x =

[
xrb
xstr

]

The rigid-body states xrb correspond to the motion of the
fuselage reference axes. The structural state vector xstr
consists of the generalized displacement state ηj,1 and rate
(velocity) state ηj,2, for each structural mode j to be consid-
ered. They correspond to the state variables η1 and η2 in
the simple SISO system from eq. (2). The number of struc-
tural modes to be included depends on the frequency range
of interest.

Each sensor at a local position "a" measures the sum of the
rigid-body motion of the fuselage reference axes and the
elastic motion at location "a"

(8) ya = yrb + ystr

For example, the pitch rate sensor at local position "a" mea-
sures contributions from both the rigid-body pitch rate q and
local elastic rates ηj,2

(9) qa = q +Hqa,1η1,2 +Hqa,2η2,2 + . . .

where Hqa,1, Hqa,2, . . . are the influence coefficients for
η1,2, η2,2, . . . at location "a." These influence coefficients
convert the modal states to physical variables.

Similarly, a vertical accelerometer at local position "a" mea-
sures the sum of the rigid-body response and the local elas-
tic contributions, but now, the elastic contributions are pro-
portional to the modal accelerations η̇1,2, η̇2,2, . . .. Finally,
the angular sensors measure the sum of the rigid-body re-
sponse and elastic contributions that are proportional to the
modal displacements η1,1, η2,1, . . ..

A fully coupled model as in eq. (5) can only be identified
when additional measurements like strain gauges and ac-
celerometers at different positions throughout the flexible
vehicle are available. Of course, care has to be taken, that
the sensors are not placed at a modal node. In ref. [4] such
a fully coupled model was identified from flight test data of
a flexible sailplane. In that project, besides an inertial mea-
surement unit near the center of gravity, the instrumentation
included three tri-axis accelerometers on each wing and two
at the bottom and top of the vertical tail. Furthermore, one
strain gauge on each wing, one on the center between the
wings and one on the fuselage complemented the instru-
mentation.

Without such extra instrumentation, simplifications have to
be made to arrive at a model structure where all model pa-
rameters are uncorrelated and identifiable.

3.1. Decoupled Model

Dropping both the rigid-body and the aeroelastic coupling
terms in eq. (5) leads to state equations where the rigid-
body and structural modes are dynamically decoupled. This
is the MIMO extension of a simple SISO system like the one
in eq. (2). The influence of the modal states on the output
variables in such a dynamically decoupled system is solely
described by influence coefficientsHij in the measurement
equations eq. (8).

In the ACT/FHS case, the state equations of the 17th order
model from [12] were extended by one modal state for the
tail flexibility, resulting in the following stability and control
matrices

(10) A =


A17ord 017,2

02,17

[
0 1

−ω2
str −2ζstrωstr

]


(11) B =


B17ord[

0 0 0 0
0 0 0 Sδcol

]


Here, A17ord and B17ord denote the stability and control
matrices of the 17th order model corresponding to control
inputs uT = (δlon, δlat, δped, δcol) and correspond to the
rigid-body stability and control derivatives from eqs. (5) and
(6). 0n,m denotes a n-by-m matrix of zeros

Denoting the modal displacement and rate states with η1
and η2 as in eq. (2), the output equations for q̇, q and Θ as
well as for ax, az and u,w were extended by the influence
of the vertical tail elastic mode states.

Θ = Θrb +Hqη1

q = qrb +Hqη2

q̇ = q̇rb +Hq η̇2

u = urb +Huη2

ax = ax,rb +Huη̇2

w = wrb +Hwη2

az = az,rb +Hwη̇2

(12)

In these equations, variables with the index rb denote the
output of the 17th order model without the structural influ-
ences and thus correspond to yrb in eq. (8). As mentioned
above, the elastic contribution on the pitch angle Θ is pro-
portional to the modal displacement η1 and the elastic con-
tribution on the pitch rate q is proportional to the modal rate
η2. Consequently, the elastic contribution on the pitch ac-
celeration q̇ must be proportional to the modal acceleration
η̇2. Because the elastic contribution on the linear accelera-
tions ax, az are proportional to the modal acceleration η̇2,
the elastic contribution on the speed components u, w must
be proportional to the modal rate η2.
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Figure 6: Frequency domain match of the MIMO model with decoupled structural mode

Parameter Value CR-Bound [%]
ζstr 0.0309 3.98
ωstr 34.1 0.10
Sstr 1.0 –
Hq -0.0716 2.25
Hu 0.0240 6.14
Hw -0.0290 7.71

Table 2: Identified modal parameters of the decoupled
MIMO model

As the measurements of both q and q̇ come from the same
sensor package, they share a common influence coefficient
Hq . Because of Θ̇ ≈ q, the pitch angle also shares the
same influence coefficient. Similarly, both u and ax share
the influence coefficient Hu and the same is valid for w, az
and the coefficient Hw.

For the identification of the flexible mode, the parameters of
the 17th order model were kept fixed and only the parame-
ters of the structural modes were estimated. As the control
derivative Sδcol and the influence factors Hq , Hu, and Hw

are not independent, one of the parameters had to be fixed
and thus the normalization Sδcol = 1 was chosen.

The identification was performed with the maximum likeli-
hood (ML) method in the frequency domain [13] and a fre-
quency range of 10-40 rad/s was used as the frequency
range of 0.5-10 rad/s is already well covered by the 17th or-
der model whose parameters remain unchanged. The val-
ues of the identified modal parameters and the correspond-
ing Cramer-Rao bounds are listed in Tab. 2. It can be seen
that the frequency and damping of the structural mode as
well as the influence coefficients can be identified with small
uncertainty.

Fig. 6 shows the resulting match in the transfer functions
from collective control input to pitch rate and longitudinal
and lateral acceleration in comparison to the 17th order mo-
del without added flexible mode. It can be seen, that by
including the influence of tail flexibility, the match in ampli-
tude and phase for q/δcol is clearly improved in the high fre-
quency range. Unlike for the SISO model from the previous
section, the influence of tail flexibility is now also modeled
in the transfer functions for ax/δcol and az/δcol.

3.2. Hybrid Model

The generalized MIMO flight dynamics model from eqs. (5)
and (6) includes full two-way dynamic coupling between the
rigid-body and elastic states. This yields a complex identi-
fication model structure with many associated identification
parameters and considerable parameter correlation and is
thus not well suited to identification from flight test data.

In many applications, although the coupling of the rigid-
body dynamics into the elastic states (rigid-body coupling)
must be included for satisfactory modeling accuracy, the dy-
namic coupling of the elastic states into the rigid body equa-
tions of motion (aeroelastic coupling) can be assumed to be
quasi-steady.

According to ref. [7], a prerequisite for this simplification is
that the highest rigid-body mode and the lowest structural
mode are separated by at least a factor of five. If this condi-
tion is fulfilled, the effect of structural bending on the rigid-
body dynamics can be absorbed as correction increments,
or flex factors, into the rigid-body quasi-steady stability and
control derivatives. If only the most significant terms in the
dynamic coupling of the rigid-body dynamics into the elas-
tic states are retained, this leads to a so-called hybrid model
structure [7].



Parameter Value CR-Bound [%]
ζstr 0.0325 4.59
ωstr 33.7 0.14
Cu 0 –
Cw 26.0 5.91
Cq -196 6.98
Hq -0.0652 2.80
Hu 0.0188 5.89
Hw -0.0290 –

Table 3: Identified modal parameters of the hybrid MIMO
model

For the ACT/FHS, the rigid-body modes of the identified
17th model are (−0.012) for the spiral, [−0.269, 0.211] for
the phugoid, (−0.339) for the pitch subsidence mode and
[0.161, 1.78] for the dutch roll. Thus the separation by a
factor of at least five with respect to the structural mode at
34 rad/s is given and the prerequisite for the application of
the hybrid model structure therefore is fulfilled.

The one-way coupled equations for the hybrid model of the
ACT/FHS were built with

(13) A =


A17ord 017,2

Acoup

[
0 1

−ω2
str −2ζstrωstr

]


For the coupling matrix Acoup it was assumed that only the
longitudinal states u, w, and q have an influence on the
vertical tail elastic mode. As the first six states of the 17th
order model are xT = (u, v, w, p, q, r), this leads to

(14) Acoup =

[ [
0 0 0 0 0 0
Cu 0 Cw 0 Cq 0

]
02,11

]

The control matrix B is the same as for the decoupled mo-
del (see eq. (11)) and the output equations are also un-
changed from eq. (12) for the decoupled model.

Identification was again performed with the ML method in
the frequency domain. As the effect of the structural modes
on the states of the 17th order model has to be modeled
through increments on the stability and control derivatives,
these parameters now had to be estimated. Therefore, the
frequency range for the identification was extended to 0.5-
40 rad/s. The model parameters pertaining to the regres-
sive lead-lag and to the engine model [12] were kept fixed.

Tab. 3 lists the identified modal parameters. Coupling of the
longitudinal velocity u into the states for vertical tail flexi-
bility was not significant and the corresponding parameter
Cu was therefore dropped from the identification. As the
parameter Hw was not identifiable with the hybrid model, it
was fixed at the value previously identified with the decou-
pled model. It can be seen that the identified values for the

Par. 17th ord. hybrid CR-Bnd [%] flex fact.
Xu -0.0188 -0.0173 8.20 0.92
Xw 0.0257 0.0224 5.01 0.87
Yv -0.162 -0.163 1.14 1.01
Zw -0.695 -0.687 0.96 0.99
Zp 0.658 0.793 10.30 1.21
Lv -0.174 -0.177 1.09 1.02
Lw 0.110 0.107 2.34 0.97
Lr -0.857 -0.993 4.17 1.16
Mv 0.0295 0.0289 2.21 0.98
Mw 0.0263 0.0266 2.98 1.01
Nu -0.0124 -0.0114 5.81 0.92
Nv 0.0359 0.0349 1.82 0.97
Np -0.407 -0.422 1.90 1.04
Nr -0.813 -0.849 1.59 1.04
Xδped 0.00293 0.00298 6.13 1.01
Yδped -0.0165 -0.0167 2.94 1.01
Zδlon -0.0910 -0.0978 2.62 1.07
Mδped 0.00298 0.00293 4.80 0.98
Nδped 0.0231 -0.0234 0.76 1.01
Lb -80.3 -75.6 0.97 0.94
Ma -30.2 -27.3 1.37 0.90
τf 0.0696 0.0779 1.20 1.12
Ab 0.353 0.383 2.30 1.08
Ba -0.325 0.345 4.43 1.06
Aδlon -0.00196 -0.00224 1.18 1.14
Aδlat

0.00023 0.00026 3.67 1.14
Aδcol -0.00079 -0.00088 1.35 1.12
Bδlon -0.00025 -0.00031 7.49 1.26
Bδlat

-0.00227 -0.00249 1.16 1.10
Bδcol -0.00053 -0.00061 2.30 1.14

Table 4: Identified quasi-static parameters and resulting flex
factors

frequency and damping of the tail flexible mode are almost
identical to those from the decoupled model (see Tab. 2).
The influence coefficients Hq and Hu are also similar.

The identified values of the quasi-static parameters are
listed in Tab. 4 (for a description of the model structure re-
fer to [12]). The table gives the values of the 17th order
model, those of the hybrid model including the Cramer-Rao
bounds and the resulting flex factors (= hybrid model values
divided by the corresponding value from 17th order model).
Most flex factors are approximately one, especially if the
uncertainty of the identified parameters as indicated by the
Cramer-Rao bounds is taken into account. Nevertheless,
there is a tendency towards reduced damping parameters
(Xu, Lb, Ma) and increased control effectiveness (Aδlon ,
Aδlat

, Bδlon , Bδlat
) for the hybrid model.

Fig. 7 compares the match of the 17th order model with-
out flexible modes, the decoupled model from the previous
subsection and the hybrid model. It can be seen that by in-
troducing the one-way coupling between the rigid-body and
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Figure 7: Frequency domain match of the hybrid MIMO model



the modal states, the match in q/δcol is improved even fur-
ther. In addition, the influence of the structural mode is now
extended to the cyclic control inputs δlon and δlat.

4. SUMMARY AND OUTLOOK

High-bandwidth control systems with their high crossover
frequencies need models that are accurate up to high fre-
quencies and thus have to account not only for rotor de-
grees of freedom but also for structural modes. In the case
of the ACT/FHS helicopter, the influence of tail flexibility
mainly on pitch rate had to be accounted for.

The investigations led to the following conclusions:

• Extending the SISO transfer function from collective
control input to pitch rate by one structural mode leads
to a sufficiently well approximation in the high fre-
quency region.

• Extending a previously identified 17th order model by
one flexible mode, where the rigid-body/rotor/engine
and the structural state equations are decoupled, al-
lows to describe the influence of tail flexibility on pitch
rate as well as longitudinal and vertical accelerations
for collective control inputs.

• Adding a one-way coupling from the longitudinal rigid-
body states (u, w,q) to the structural states allows to
model the influence of tail flexibility also for several
other input/output combinations

Overall, accounting for flexible modes in this way extended
the frequency range of applicability of the identified model
up to the rotor frequency (40 rad/s).

So far, only data for the 60 knots forward flight case were
investigated. Next, the presented modeling approach will
be applied to data from the whole flight envelope from hover
up to 120 knots forward flight. Further investigations are
planned to model the influence of structural modes also on
the lateral-directional motion.
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