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An auto-pilot is applied to helicopter rotor flap-lag-torsion equations in order 
to obtain the control settings for a trimmed flight condition. The rotor aerodynamic 
description includes a state-space dynamic stall model for lift and for pitching moments. 
Thus, we attempt to trim the rotor for flight conditions in which significant stall and 
torsional deformations are present. The auto-pilot is extended to Q-bladed rotors by a 
series of time-delay terms. As a result, the optimum gains and time constants depend 
upon the number of blades as well as upon the torsional stiffness. 
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1 Introduction 

Computation of the vibrations and stability of rotary-wing aircraft in forward 
flight requires finding a periodic solution to a set of nonlinear, time-varying, partial 
differential .,quations. This, in itself, can be a formidable task because the periodic 
solution may be very lightly damped or even unstable. Therefore, conventional time
marching is not always satisfactory. However, whether the periodic solution is stable 
or unstable, ·the computation is made even more difficult by the fact that the equations 
contain unknown trim parameters (such as pilot control settings, airframe orientation 
angles, etc.) which must be chosen such that the final periodic solution satisfies the 
trim-equilibrium equations of a given flight condition. Thus, the rotary-wing analyst is 
faced with t.he solution of nonlinear equations with integral c.onstraints on the solution. 
The solution of this constrained problem stands as one of the most difficult obstacles 
to analysis of rotary-wing aircraft with many degrees of freedom. 

Presently, there are many proposed solution methodologies for this problem. 
Each has its strengths and weaknesses. For the time-wise solution, there are three 
general categories of methods. First, there are time-marching algorithms, including 
conventional methods as well as finite-elements in time, Ref. [1]. Second, there are 
harmonic-balance techniques of various types, Ref. [2]. Third, there are transition
matrix methods inclucling convolution, Ref. [3], and periodic shooting, Ref. [4]. For 
the solution of the trim constraints, there are also several alternatives. First, there is 
Newton-Raphson iteration on the control variables (which involves a complete periodic 
solution for each control perturbation). Second, there are closed-form force-balance 
equations which can be used as constraint. equations to be solved in paralled with the 
other equations, Ref. [5]. Third, there are auto-pilots which "fly" the rotor to trim 
during the time-marching towards a periodic solution, Ref. [6]. 

Onc.e a perioclic, tri=ed equilibrium has been found, the dynamicist must 
find the dynamic behavior of perturbations away from this perioclic orbit. This is 
often complicated by the fact that the aerodynamic models utilized in the equations 
either have hidden dynamic states or else have an infinite number of dynamic states 
(due to time delays, lift-deficiency functions, ets. ) Furthermore, many of the trim 
methodologies (such as transition-matrix methods or periodic shooting) also require 
explicit. knowledge of these states. Therefore, another challenge for the analyst is to 
develop aerodynamic theories that have explicit states. To this end, several researchers 
have investigated state-variable wake models, Ref. [7-9]; and others have investigated 
finite-state lift models that include dynamic stall, Ref. [10-13]. 

In this paper, we explore trimming by the auto-pilot method. The auto-pilot 
method is not appropriate near blade stability boundaries. However, it is very efficient 
for well-damped rotors with many degrees of freedom and with complicated aerody
namics. In the past, however, its deficiency has been that a user would not know a 
priori what gains, time constants, and couplings to use. Those optimized in hover, for 
example, often failed in forward flight. One purpose of this paper is to improve those 
controllers. The rotor equations include flap, lag, and torsion; and they include the dy
namic stall model of Ref. [12]. In addition, the present work includes state variables that 
describe the unsteady pitching moments. The existing auto-pilot equations, although 
previously optimized for simple linear flapping, have never been applied successfully 
to flap-lag-torsion in forward flight with high thrust. and significant stall. Therefore, 
we have reformulated the auto-pilot and re-optimized it for these more stringent con
clitions. This paper describes the results of this reformulation on rotor tri=ing. The 
work is an extension of that found in Ref. [14]. 
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2 Mathematical Model of Rotor 

2.1 Structural Model 

We present here the vertical and in plane bending equations and the torsion equa
tion. The nondimensional form is obtained by dividing both sides of the dimensional 
form of each equation by mfl2 R. Terms including blade precone are not considered 
here. The derivation and a more extensive discussion related to these equations can be 
found in Ref. [15]. Only terms of order c and c3 are retained in the nondimensional 
flap equation. 

- (rw+t + (A1- A2)(11 + ¢>)v-++++ + {A2 + (A1- A2)(ll + ¢)2}w++++ +ill= Lw (1) 

where T is the nondimensional tension expressed as 

1- xz t • •• -
r(l, c2) = 

2 
+ }, (2v + ii- ii + Lu)dx (2) 

In the lag equation, terms of order c2 and c4 are retained: 

-(rv+)+ +{AI +(A2-AJ)( ll+¢) 2}v-++++ +(AI -A2)( 11+¢)w++++ +2~+ jj -v = Lv (3) 

where, 

~. = -l' w+J,+ ax (4) 

The torsion equation is written in a non dimensional form with terms of order ( e4
) 

" . w+2 -
- A3Jq,++ + e{xw+ + •I•}- eAw+T A.cu:+ + -

2
-) = M., (5) 

The generalized aerodynamic forces per unit length in the inertial reference system Lv 
and Lw are expressed in terms of L. and Ly, the aerodynamic forces per unit length 
in the deformed blade coordinates. They are expressed in a nondimensional form as 
follows 

Lv = -{L. cos( II + ¢>) + Lysin( II + ¢>)} 

Lw = { -L. sin(l1 + ¢) + Ly cos(l1 + ¢)} 

(6) 

(7) 

The above equations have been compared in Ref. [15] with other work related to blade 
equations. When the equations are written to the higher order, they include all the 
terms of the equations derived by other authors and more. This is due to the assump
tions and the method used in the derivation, in addition to the scaling procedure. 

2:2 Unified Lift Model 

The unified lift model extends the ONERA model to include plunge, unsteady 
free stream, and large angles of attack. In the modification, a distinction is made 
between the angle of attack due to pitch motion and that due to plunging motion. Fur
thermore, the unified model separates the apparent-mass lift, L0 , from the circulatory 
lift. Thus, we have, for the components of lift normal to the cl10rd (L.) and along the 
chord (L~), Fig. 1. 

where, 

L. = Lo + U~(f\ + f'2) 

L. = -U.(f'I + f'2) 

- - . 
L 0 = bsU" 
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Table 1: Identified Coefficients of Stall Equations 

Parameter 

s 
8 

d 
e 

Numerical Value 
0.2 

57r /180 
( aa':: - ,';o )(1 + 1.43t.q 

0.10 + 0.023(la:l-13°)u(la:l-13°) 
Ia: I < 21.7 

0.3 la:l > 21.7 
0.105/w 

2-5.1 tan-1{1.21(la:l-13°)}u(la:l-13°) 

Physical Description 
time delay parameter 
apparent mass quantity 
relates lift coefficient 
to the pitch rate 
a damping factor 

stall natural frequency 
phase shift parameter 

and where U, and Uy are the components of the flow along the chord and normal to the 
chord (respectively). The unified model has the same structure as the Greenberg and 
Theodorsen theories at small angles of attack. A complete discussion of the refinement 
which led to the unified model is presented in Ref. [12]. T~ simplified version, in which 
reversed flow is approximated and higher order terms in r 2 equation are neglected, is 

• 
k'f\ + .>-I\ = .>-aUy + 8b~ (11) 

·rF2 + 2dwkt,+ w2(1 + d2)f2 = -w2(1 + d2 ){U,t.C; + ek(lj ,t.C; + at.a 
0

= u y)} (12) a: 
where U, and Uy are normal and chordwise airflow relative to the airfoil and k is an 
average of the reduced frequency of the freestream. The coefficients 8, w, d, e, are 
evaluated at the instantaneous angle of attack, a:= tan- 1 (Uy/U,); and~ is the rotation 
of the airfoil with respect to the air mass. This model is used in the present research 
work to determine the aerodynamic forces applied on the blade. Although it does 
not present a perfect representation of the aerodynamic environment in stall regime, 
it has been shown to give good agreement with experiments and it is certainly more 
reasonable than the linear, quasi-steady theory presently used in stability analyses. 

2.3 Stall coefficients 

In the above equations, the total circulation density r is expressed as a. sum 
of two components, r, and r2. r, is the circulation density associated with a. linear 
model. r 2: however, is the deviation of the circnla.tion from the linear value due to 
stall. The model is expressed by differential equations which depend on t.C;, which 
is the difference between the linear static lift coefficient (Czl =a sin a:) and the actual 
stalled lift coefficient C.,. 

The coefficients .>-, a, s, 8, d, w, and e depend on the angle of attack only. In 
Table 1, we present, for illustrative purposes, the numerieal values of these coefficients 
determined by wind tunnel tests a.nd parameter identification for an OA212 airfoil. In 
this table, u. is the unit step function. It is equal to unity for a positive argument and 
zero otherwise. 

The static lift curve for a typical airfoil is presented in Fig. 2. The lift coefficient 
is linear between -10° and 10°. For large angles, the magnitude shows a deviation from 
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linearity. czl is the static coefficient extrapolated from the linear region. cz, is the 
actual static lift. In the unified lift model of Ref. [12], the linear component of the 
circulation with reversed flow is expressed as f 1 = aU sin a cos a where, for the OA212 
airfoil, a = 7 .1. 

2.4 Aerodynamic Pitching Moment Model 

The pitching moment per unit length about the aerodynamic center, positive 
nose up, is expressed in Ref. [11]. The nondimensional version is given by 

- r,c 2 2 - "' - * -2 .... •• 
Mq, = (3-;[U Gmt+ U Cm2 + c,bU. + c2bU E +cab ( B + 4> )] {13) 

In the above equation, Gmt is the linear static moment coefficient, Cm2 is the nonlinear 
component of the pitching moment due to stall. B is the pitch angle, and 4> is the 
elastic angle. The coefficients c1 , c2 , and c3 , are empirical coefficients which depend on 
the Mach number and which have been found to have the following expressions for the 
OA212 airfoil 

(14) 

{15) 

3~ ~ 
ca = -

16 
[-1.26- 1.53 arctan{15(M- O.t ))] {16) 

The effect of the airfoil geometry on the pitching moment due to unstalled flow is 
included through the Gmt coefficient only. 

The curves of the actual static moment coefficient Om, and its linear counterpart 
Gmt for an OA212 airfoil are presented in Fig. 3. It is important to mention that this 
curve is accurate for small positive angles of attack (0 ::::; a ::::; 25°). The extension of 
the curve for other angles is approximate. This extension was guided by typical airfoil 
test data. For large angles of attack and in the reversed flow regime, the goal is to use 
a well-behaved approximation of the static coefficients since the angle of attack of any 
blade section more often falls in the range of small or moderate angles (0 ::::; a::::; 25°). 

The nonlinear moment coefficient Cm2 is computed from the following expression 

-2·· -· -• k Cm2 + akCm2 + rCm2 = -rU i::;.Crn + EkUy {17) 

The coefficients of the Cm2 equation were found to have common forms for a variety 
of aifoils. Each coefficient depends on the geometry of the airfoil and on t:;.C., the 
difference between the actual static lift. coefficient and its linear counterpart. These 
coefficients have the following expressions 

r = (r0 + r2/::;.C;) (18) 

(19) 

(20) 

It can be noted that the Cm2 coefficient is equal to zero when the flow is not stalled. 
This is due to the fact that /::;. Crn and E are both equal to zero for this case. Table 2 
provides the order of terms in the pitching moment equation. 
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Table 2: Scaling of the Terms of the Moment Equation 

Parameter Value or Expression Assumed .Order 
u U"" U~(l, t:2 ) l 

Cml -.08--; .08 E 

Cm2 l 
c, c, "" -1r 14 l 
c2 c2 ::::::::: c1 l 
C3 C3 "=' -37r /16 l 
ii l 
• 
B E 

1c/6a. ~ .02 E2 

U2
Cml E2 

U2C m2 E2 

- . 
c1bUy ,z 
c 2U€ ,z 

-2*"' c3 b a ,. 

3 Auto-Pilot Equations 

3.1 Trim Formulation 

Any flight vehicle should be able to maintain equilibrium during steady flight 
conditions. This means that the resultant. forces and moments on the aircraft. are 
equal t.o zero. In a. fixed-wing aircraft, external aerodynamic control surfaces (such as 
ailerons, elevators, and rudders) perform this function. 

In a helicopter, trim is performed by variation of blade angle as a function of 
the azimuth angle of the blade so that. rolling and pitching of the aircraft is avoided. 
This is accomplished through pilot-controlled inputs of collective pitch ( 80 ) and cyclic 
pitch (B, B,). The pitch mechanism produces the pitch setting for a helicopter trimmed 
condition which is expressed as follows 

B = 80 + B, sin ..p + B, cos '1/> (21) 

In the trimmed condition, the rotor is maintained at. a fixed thrust. coefficient. Cr 
in forward flight. Thus, the trim procedure requires the knowledge of the helicopter 
control settings as the azimuth angle varies, depending on the flight condition. 

3.2 Automatic Feed-Back Controls 

One way of trimming the helicopter is to use an automatic feed-back system 
that would trim the helicopter automatically as. the rotor equations are integrated in 
time. Here, the control settings are assumed unknown. Hence, they are calculated 
simultaneously along with the generalized coordinates of the blade equations. One 
possible form of the auto-pilot equations is derived in Ref. [6]. These equations can be 
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expressed in either of the following two forms 

[ : ; ! ]j ~: H !: ) = [ T 
0 

K, 
0 

~ ] [ ~ 
K 1 0 

0 
B(p2-1) 

1' 

1 

0 
-16 
ua 

-2?' 
ua(p2-1) 

-1 b../3 0 l { b../3
0 

} 

B(p~ -1) . A/3: 

(22) 

(23) 
where b..ts represent the error between desired and actual values of flapping angles 
or hub forces. For rigid-blade flapping, these can be approximated by instantaneous 
"measurements" 

and 
31-

b..f3o = --CT- f3 
4p2 

-2-.· -
b../3, = ( , ' )CL- 2f3sin'¢• 

p-- 1 

-2'")' -
A/3, = ( 2 ) C M - 2{3 cos 'lj' 

p -1 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

This automatic feed-back system is used to provide control t.o the helicopter for 
numerical purposes. It adjusts the pitch of the blade to maintain thrust, roll moment, 
<md pitching moment. The parameters K 0 and K 1 are controller gains. The parameters 
To and r 1 are time constants. 

Application of the above equations has shown unsatisfactory performance for 
high advance ratios or high lifting conditions. One explanation for this deficiency can 
be linked to the hover assumption inherent in the above gains and couplings. A more 
accurate formulation of the above couplings is found in Ref. [2]. These equations are 
verified, in the same reference, to give accurate results for response derivatives at low 
advance ratios. Use of these equations to formulate the coupling of the feed-back 
controller is expected to expand the range of accurate trimming performance. 

In general, the static derivatives between controls and loads can be written in a 
matrix form as follow 

(30) 
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in hover, J1 = 0, we have 

[Ao]~[! ~' _oc l 
16(!+C2 ) 16(1+c') 

C C2 

16(!+C2 ) -16(J+C') 

(31) 

of-'-" and where. C = =-=.~. 
' 0 

These are the couplings implicit in Eqs. (24-25). 

The more accurate form of these response derivatives in forward flight is given 
in Ref. [2} and is 

[ 

1(1+"-IL2) c • 2 [ Ap] = -6J.tc>{C- Ji,;;} 
~1:c,{1 + c,;~,} 

16(1~C'J { C[1 + ~!1 2}- ~f1 2 ~H 16ll~C'J ~IL 0 l 
1s1 ,~c'l { (1 + 2~L2 ) + ~IL2 C;7} -ls(~;c'J (1 + if) 

(32) 
Hence, from the above matrix, a feed-back system can be formed in a similar manner 
as described previously. 

[: ; ! H t H !J [ 1" ~· 
!2:r_- 1~f.l )' (TQ 3 1' tJ 

f2.L. + •' _, ,, sin 1/• 
(TQ 1' f-J 

!2M. + p'-l f3 cos ..p 
oa 7 

(33) 

The above system of equations (33) reduces to equations (23) when the hover 
assumption is used. This implies the substitution of an advance ratio IL = 0 in the 
above system. 

3.3 Optimized Controller 

Past studies to optimize the controller have resulted in a variety of combinations 
of gains and time constants, each resulting in a minimum settling time of about 5 to 
8 rotor revolutions. In those stuilies, Refs. [6} and [14}, settling time was minimized 
subject. to constraints on stability and limits on the oscillations of the final control 
positions due to higher-harmonic input signals from {3. To understand these results, it 
is useful to write equations for a general controller of the type specified in Eq. (33) 

[""' j ~ ~;Hi, H"K,,J I A]'~ Cn- C, ) (34) 

\i\There T; are time constants (to filter out oscillatory inputs), 0; are the controls, K; 
are gains, [A} is a matrix of control couplings, C A are computed trim variables, and 
Cn are the desired values of CA. A crucial step in understanding these equations is to 
understand that C A is related to the controls in the following way 

{CA} = {CA}o + [B]{O;} (35) 
Thus, the closed-loop control equations become 

["", ,]j ,, H ;, H'K, ,] I A r'l B I l ;, ) ~ 
["x, ,] I A ]' l Cn- c'" ) (36) 
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In past studies (and this present one), the controller is designed such that [A] is taken to 
be as close to [BJ-1 as possible. When this is done exactly, the homogeneous equations 
for each control become uncoupled, 

•• • 
T;8; + 8; + K;8; = 0 (37) 

This gives a natural frequency Wn = )K;/r;, a damping ratio ( = 1/(2~), and a 
settling timet,= 1.46/K; (revolutions) for ( < 1. It is clear that an optimum controller 
would have infinite gain. However, there are actually higher-order blade dynamics 
implicit in the B matrix that are not. included in the approximation of Eq. (35) nor in 
the quasi-steady [A] couplings. Thus, large K can drive the system unstable. Therefore, 
optimum designs have tended to increase K to near the stability boundary and then 
to pick T large enough to filter out oscillatory response but small enough to keep wn 
around .25 to .33 (3 to 4 rotor revolutions per controller cycle). 

Nevertheless, despite these fairly successful efforts, oscillations in final control 
settings have not been completely satisfactory due to the fact that only a single blade 
is modeled, which gives large 2/rev oscillations in CT ( 80 ) and large 1 /rev oscillations 
in CL and eM (8, and 8,). To solve this problem, we have, by taking information from 
past time history as "other" blades, modified the controller to assume that Q blades 
are present. Thus, rather than feeding back CA(t), we feed back 

- - CA(t) + CA(t- 2
") + CA(l- 2 2

") + ... + CA(t- ~271') 
CA(t) = Q Q Q (38) 

Q 
This essentially filters out from CA all harmonics not. integer m:ultiples of Q . However, 
it also introduces additional time delays into the system. For example, for Q = 2, if we 
use the Pade approximate to the time delay, we obtain for the homogeneous equation 

7r••• 1f •• • 
z8;+(r;+z)8;+8+K8;=0 (39) 

••• 
Thus, there is a higher-order 8 term (negligible for small values of Wn) and an added 

** •• 
7!' /2 on the 8 term. In general, for Q blades, the equivalent total T on the 8 term is, 

Q -1 
Teq = Q1!' + T; (40) 

In the limit as Q goes to infinity, we can define the limit of Eq. (38) 

(JA = ~ ( CA(t)dt 
21i lt-27r 

(41) 

Thus, for T; = 0 and Q = oo, we have Teq = 7!' which is about the optimum from 
•• 

previous work. Thus, for Q = oo, the 8 term could be removed Eq. (34). 

(42) 

Fig. 4 shows the settling time for such a controller as a function of gain, K 0 = K 1 • 

(Discontinuities occur when the settling time moves off of a given peak to a new peak.) 
Thus, the optimum gain is about .15. However, as we shall see, when additional 
unmodeled dynamics enter the problem, K must be reduced for stability. In the work 

•• 
below, we use the Q = 2 controller so that the 8 term must be retained, with a small 
added time-constant, r;. We have found that the Q = 2 controller: 1) filters out. all 
unwanted control oscillations, 2) is easy to program, and 3) allows more flexibility in 
the choice of Teq. 

44-10 



4 Results 

4.1 Solution Method 

In this section, approximate solution methods are applied to the elastic Eqs. (1 ), 
(3), and (5), then combined with Eqs. (33). The aerodynamic circulations are ex
pressed by Eqs. (ll), (12), and (17). Only lower order terms of this equations are 
to be considered in the following analyses in order to reduce complexity. This allows 
the investigation of the general trends of the results, without going into cumbersome 
computation. 

The application of the llitz-Galerkin procedure transforms the flap, lag, and 
torsion Eqs. (1), (3), and (5) to ordinary differential equations. The coefficients of the 
equations have integral forms which can be determined after selection of comparison 
functions. These coefficients are presented in Ref. [16]. The resultant equations are: 
Flap equation 

N N M 
'\' s •• '\' · 10 s -- 1 I '\' - - · 4 5 L.I;;q; + L)I;; + A,I;; + E.f3B;;)q; = 6 L,(rli + r,z)(J.Lsm'if;I;1 + I;1) 
j=1 j=l a~ 

( 43) 

Lag equation 
N N N N 
'\' 6 *' "'( 10 6 Js c- 1 "\' "\' 13 • L. l;;P; + L. l;; - l;; + A1 ;; + E.<B;;)P;- 2 L. L. I;;kqkq; 
j::;::l j=:l j=l k=l 

N N .M 

( )( (I ) "" s I "\' ""(- - 12 11 • + A, -A, + ¢ L l;;q; = --
6 

. L- L f11 + f,z){J;;zJ.L ccwzf;q; + l;;1q; 
j=l a j:=l l=l 

+o:eJ.LJfz + ( ~vo + lie cos 'if; )JD + Cn 
6
:( J,S + 2J.L sin ,PJ;' + 11 2 sin2 ,PJ;') ( 44) 

Torsion equation 

( 45) 

where the induced velocity is assumed to be If; = O:eJ.L + 4/3vox + VeX cos ,P. After 
selection of N comparison functions, it is possible to compute the coefficients of the 
above equations. This results in 3N linear differential equations to be solved for the 
generalized coordinate in time domain. 

Before moving to the aerodynamic equations, it is convenient to discuss the 
selection of comparison functions required for the above equations. The results obtained 
in this section are based on the rigid blade assumption. This approximation is used in 
the early stages of this work in order to validate the aeroelastic model and to trace its 
efficiency and drawbacks in less complicated cases. An elastic blade may be treated in 
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Table 3: Baseline Parameters 

Parameter Numerical Value Physical Description 

'Y 6.63 Lock number 
a 6.461 lift curve slope 

CD O.Ql drag coefficient 
A, 0.014 _g,_ 

mlt2R.f 
A, 0.002 ~ 

m0 2 R" 
b 0.05 b 

li 
p 1.03 flap frequency 

f 0.01 fiat plate drag 
(f 0.1 solidity 

Kf3 0.0203 stiffness of flap root 
K, 0.02083 stiffness of lag root 
c, 0.025 damping coefficient 
To 2.94 time constant 
TJ .31 time constant 
Ko .27 gain 
K, .18 gain 

a. similar manner, but more degrees of freedom need to be included. This implies more 
equations to be solved because of the extra degrees of freedom. 

Table 3 gives the common parameters used in the cases discussed in this section. 
These parameters are selected from current helicopter data and used for illustration 
purposes. The drag coefficient is assumed constant in the work presented here. The 
authors ha.ve already reviewed a few nonlinear drag models and implemented them for 
simple problems. In future work, we intend to include a nonlinear drag model and 
to include a variable CD based on the stall assumption. The study conducted so far 
concentrates on the effect of stall on lift but not on drag. The controller gains and 
time constants were chosen from a formal optimization procedure applied to linear, 
rigid-blade flapping equations at p = 0.3. 

4.2 Steady State Response 

The determination of the steady state response of rotor blades is necessary for 
the prediction of loads and vibrations. The differential equations describing the blade 
response are integrated in time until all the transients have died out and a periodic 
and trimmed response is obtained. A case is considered to be trimmed when the 
control settings 1!0 , li., and li, reach stable positions. The control angles are thought. 
of as converged when they reach a. value within + /- 0.5 degree of their final value 
in a limited number of cycles. Here, the integration is limited to 24 cycles to avoid 
unreasonnable computational cost. The trim procedure supresses the first. harmonic 
vibrations of the flap response through the Q = 2 time delay. 

The flap and lag angles are set initially to zero. The initial values of the control 
settings, on the other hand, are computed using approximate trim equations. This 
method allows a resonable initial guess of the controllers which reduces the convergence 
time. 
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Results have been obtained for a variety of advance ratios and thrust coeffi
cients. The results are given for the twenty-fourth revolution. Though the majority of 
cases converge in less than ten cycles, it takes longer for those conditions close to the 
convergence boundaries of the controller. 

4.3 Effect of Advance Ratio 

Advance ratio is the normalized free stream velocity with respect to the blade 
tip speed. At high advance ratios, the retreating blade encounters large angles of 
attack. This causes a region of the rotor to enter the stall regime. We will now present 
rotor response for four moderate to high values of advance ratio at a constant thrust 
coefficient, Cr = 0.01. A single Cr is chosen so that it illustrates the response at the 
trim boundaries. The convergence speed becomes slower as the advauce ratio increases. 
Fig. 5 gives time histories of the control angle, 00 • Ideally, the control settings should 
reach a steady state. At an advance ratio of p, = 0.38, large once per-rev oscillations 
start to have a significant effect. on the controllers. Also, the amplitude of the response 
becomes larger; and the convergence rate is poor. At higher advance ratio, these effects 
take a more significant. role. Smoothly converging response becomes impossible. 

The contribution of a single blade section to the total lift is plotted versus its 
local angle of attack, Fig. 6. The figure shows a hysteresis loop, typical of dynamic 
stall. Large negative angles of attack can occur at the most inboard element due to 
reversed flow. This element, however, has a positive angle of attack along the total 
revolution. 

4.4 Effect of Thrust on Trim 

Rotor response may be effected considerably by stall either when the advance ra
tio increases or when the gross weight is increased for the same rotor. Fig. 7 illustrates 
the time history of the control response for a constant. advance ratio, 11· = 0.3, and vari
ous values of the thrust coefficient. As the thrust coefficient increases, the convergence 
becomes slower and the effect. of the once-per-rev component appears more significant. 
At a thrust. coefficient of Cr = 0.015, the convergence is very slow compared to the 
other cases. Fig. 8 shows the limits of Cr and p, for which the rotor can be trimmed. 
The dashed curve is with the hover control couplings, [Ao]-1

, and the ·solid line is for 
the more accurate couplings, [A~J-'. The main effect of improved couplings is to shift 
the trim limits from p, = 0.4 to 11· = 0.6. There is much less change on the Cr boundary. 
This implies that the Cr boundary may be a physical limitation to trim rather than a 
numerical limit. 

In Figs. 9-11, the control settings are plotted as functions of the advance ratio 
for various thrust levels both for the complete dynamic stall model and for a linear 
aerodynamic model. The later model is similar to the former one but the nonlinear 
aerodynamic component is ignored in the later. Thus, it is a linear aerodynamic model 
in which the linearity continues even beyond the critical angle of attack. The collective 
pitch, eo, decreases to a minimum due to induced flow effects and then increases slowly 
as the advance ratio reaches higher values. This variation is in conjunction with the 
typical variation of the power required with cruise speed. On the other hand, the cyclic 
pitch is zero at hover, p, = 0. This is because of the symmetry of the blade coning at 
hover. The longitudinal cyclic pitch, e, increases in magnitude with advance ratio to 
account for the loss of free-speed velocity on the retreating blade. The lateral cyclic 
pitch, Be, is associated with the trim of aerodynamic coupling due to coning. Thus, it 
increases until it reaches a nearly stationary value. 

For low values of thrust coefficients, both models predict the same control set-
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tings. At high loadings, such as CT = 0.014, the controls have higher values when stall 
is modeled. In particular, the longitudinal cyclic pitch increases more significantly at 
the begirnng of the stall regime. This is because the loss of lift is more pronounced in 
the neighborhood of "if-• = 270°. For f-L = 0.35, the response is close to trim but not fully 
trimmed. 

4.5 Effect of Torsion on Trim 

When the torsional degree of freedom and elastic modes are included in the 
aero elastic model, the controller, with the previous gains and time constants ( To = 
2.94, r 1 = .31, K 0 = .27, K 1 = .18) fails to attain a trimmed condition for torsional 
frequencies lower than 8/rev. This failure occurs for any choice of advance ratio f-L and 
thrust coefficient CT. Torsional deflections enter into the blade dynarrncs through a 
variable torsionl angle (for an elastic blade) which is added to the blade pitch. High 
torsional frequency corresponds to a blade with high torsional rigidity for which the 
effect of torsion is not important. A blade which is torsionally soft, however, causes the 
torsional defections to have a more significant effect on the controller. Therefore, the 
trimrrnng errors were exarrnned at. low torsional frequencies. This exarrnnation revealed 
large oscillations in these errors. Since the system stability depends directly on the 
cyclic gains, these gains have been lowered to a K 1 value of 0.05. The new choice of 
gains allows the controller to trim successfully for torsional frequencies as low as 5/rev. 
However, for torsional frequencies lower than 5/rev, numerical experiments with gains 
do not bring any sigrnficant improvement to trim. Thus, an adaptive [A]= [Br' may 
be required. 

The collective and cyclic pitch produced by the low-gain controller are shown 
in Figs. 12-14. The torsional angle is shown in Fig. 15. Several observations can be 
drawn from these figures. First, the variation of the torsional deflection agrees with 
the physical expectation. Both the average and the oscillatory amplitude of torsional 
deflections increase as the torsional frequency decreases. Since this average is negative, 
the collective pitch must. increase, Fig. 12, in order to maintain the desired lift. Sim
ilarly, the longitudinal and lateral pitch angles decrease for lower freqencies. This is 
due to the fact that torsional deflection oscillations are domrllinated by once-per-rev 
oscillations. 

In addition, numerical experiments and theoretical observations confirm that a 
trimmed condition for low torsional frequencies cannot be achieved by a simple ad
justment of the gains and time constants, since some approximations are inherit in the 
auto-pilot couplings. One approximation is the neglect of the torsional deflection in the 
angle-of-attack expression used during the derivation of the coupling matrix. Thus, as 
these deflections play a more important role, the coupling matrix may have to include 
the effect of torsion. Though approximate theoritical methods may lead to the addition 
of the effect of torsion to the coupling matrix, an adaptive numerical method may be 
necessary for the general case. For more details, the reader is referred to Ref. [16]. 

5 Conclusions 

A more general rotor auto-pilot has been developed that can be used to control 
any number of trim variables. Although it can be applied to rotors with an arbitrary 
number of blades, it is most often applied to a single blade, with other blades simulated 
through time delay functions. In this case, optimum gain is about .05- .18 with the 
maximum value deterrrnned by stability of higher-order dynarrncs. The equivalent time 
constant for best results is about 1f / Q. 

The state-space stall model is a viable means of accounting for dynarrnc stall, 
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and stall does not seem to affect the controller adversely. However, torsional frequencies 
below 5/rev cause controller instability at any gain. It is suggested that an adaptive 
controller be used which could result in stable trim at all values of thrust and advance 
ratio, and with elastic blade dynamics. 
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