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Abstract 

This paper describes a study in which structural optimization techniques 
are used to minimize then/rev vertical hub shears in forward flight, subject 
to aeroelastic stability constraints and frequency placement constraints. A 
special technique is used to build a sequence of approximate, inexpensive to 
solve optimization problems, the solutions of which converge to the solution 
of the exact, expensive to solve optimization problem. Blade configurations 
with both straight and swept tips, and single- and double-cell cross sections 
are analyzed. The results show that the approach used in this study is very 
efficient, and produces improved designs with a very small number of blade 
aeroelastic analyses. 
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Vector of behavior constraints 
Height of the single cell cross section 
Hessian of objective function or behavior constraints 
Mass moment of inertia of the blade in flapping 
Mass polar moment of inertia of the rotor 
Length of the elastic portion of the blade 
Thickness of the cross section 
Peak-to-peak value of the 4/rev vertical hub shears, 
nondimensionalized through division by 211 2 lb/£ 
Offset between the elastic axis and the aerodynamic center, 
positive for aerodynamic center ahead of the elastic axis 
Offset between the elastic axis and the center of gravity, 
positive for center of gravity ahead of the elastic axis 
Distance between leading edge and internal wall in double 
cell cross section 
Chordwise length of the cross section 
Blade Lock number 
Real part of hover stability eigenvalue for the k-th mode 
Tip sweep angle, positive for backward sweep 
Advance ratio 
Rotor solidity 
Rotor angular velocity 

1. Introduction and Problem Statement 

One of the most cost effective solutions to the problem of vibration in 
rotorcraft is to design rotor blades with an inherently low vibration level. 
This can be accomplished by aeroelastic tailoring the blade, using structural 
optimization. This implies that the blade mass and stiffness distributions 
and its geometry are determined in such a manner that the vibration levels 
at the rotor hub are minimized. In this paper the word "optimization" 
indicates an approach in which the design problem is cast in mathematical 
programming form, and does not include, for example, studies in which the 
best design is chosen as the result of parametric studies. 
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A thorough review of the literature concerning the use of optimum de
sign techniques in dynamic problems, and particularly in helicopter rotor 
blade dynamic design, is presented in Ref.[1]. A more recent survey has 
been presented by Friedmann [2]. These reviews reveal the existence of a 
very limited amount of work devoted to the structural optimization of rotor 
blades for vibration reduction. 

In another recent survey Miura [3] states that it is not unreasonable 
to pursue design optimization in areas, such as helicopter vibration reduc
tion, in which reliable prediction capabilities do not exist yet. Better opti
mization technology can be developed, and implemented in highly modular 
computer codes so that new, improved analysis codes can be easily incor
porated as they become available, and the optimization program can work 
with the best predictive capability available at any particular time. 

When the mass and stiffness distributions of the blade are changed to 
reduce the vibration levels it is very important to be sure that no degrada
tion of the aeroelastic stability occurs. This is even more important when 
tip sweep is added as a design variable, because of its powerful influence 
on both blade response and stability [4]. Prudence mandates the introduc
tion of aeroelastic stability constraints in the optimum design process. This 
complicates the design problem because a fully coupled aeroelastic stability 
and response analysis has to be combined with the structural optimization 
program. Only a few studies having this capability are available [1,5,6]. 
In [1,5,6] the objective was the minimization of the 4/rev oscillatory ver
tical hub shears at an advance ratio µ = 0.3. The aeroelastic stability 
constraints required that the hover stability not be degraded by more than 
a specified amount in the course of the optimization process. Additional 
constraints required that the fundamental frequencies in flap, lag, and tor
sion fall between preassigned upper and lower bounds. 

In a study by Peters et al. [7] two different objective functions were 
used, to minimize blade weight in one case, and the discrepancy between 
desired and actual natural frequencies of the blade. A simplified forced 
response analysis leads the authors to conclude that the objective func
tions used in the study are "adequate" for vibration reduction purposes, 
but no comprehensive aeroelastic analysis is performed, and no stability 
constraints are imposed on the design. 

Davis and Weller [8] used structural optimization technique to solve four 
different dynamic problems, namely: (a) 'ffiaximization of the inplane struc-
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tural damping of a bearingless rotor with elastomeric dampers; (b) place
ment of blade natural frequencies; ( c) minimization of the vibratory hub 
shears using a simplified rotor aerodynamic model; and (d) minimization 
of certain rotor vibration indices. The rotor analysis codes were directly 
coupled to the optimization codes. No aeroelastic stability constraints were 
considered. 

A serious problem encountered in the direct coupling of a comprehen
sive aeroelastic stability and response analysis code with an optimization, 
or nonlinear mathematical programming code is the very large computa
tional effort required for the solution. This problem can be alleviated by 
constructing an approximate, computationally easier to solve, optimization 
problem [9]. The approximate problem is updated frequently, so that the 
sequence of solutions of the approximate problems converges to the solution 
of the original, exact optimization problems. 

One typical method of constructing the approximate problem is to ex
pand the objective function and the behavior constraints in first or second 
order Taylor series in terms of the design variables, and in the neighbor
hood of the current design [9]. This method originated in the field of static 
structural analysis, in which the gradient information required to construct 
the Taylor series expansions can be obtained at a fraction of the cost of one 
analysis, through implicit differentiation [10]. This is difficult to achieve in 
helicopter aeroelastic optimization, and the gradient information has to be 
constructed using expensive to compute finite difference approximations. 
References [1,5,6] utilized an expensive approach based on finite differences 
for generating approximations to the objective function and aeroelastic con
straints. The generation of the approximate problem was cumbersome and 
had to be carried out in an interactive manner, during the optimization 
process. It is also possible to construct approximate problems using deriva
tives, or the sensitivity of the objective function. A sensitivity study which 
is potentially useful in this context has been carried out by Lim and Chopra 
[11]. 

This paper has two main objectives: 

1. To present a new formulation of the structural optimization problem, 
for a helicopter rotor blade in forward flight. The objective is the min
imization of the n/rev vertical hub shears. The behavior constraints 
express mathematically the requirements that the blade be aeroelas
tically stable, that its natural frequencies fall between preassigned 
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upper and lower bounds, and that the autorotation performance not 
be degraded during the aeroelastic tailoring process. A new formu
lation of the approximate problem allows increases in efficiency, in 
the complete solution of the optimum design problem, of at least one 
order of magnitude, compared with existing procedures. 

2. To present results obtained by letting the t£p sweep angle be one 
of the design variables in the optimization procedure. Tip sweep 
has a powerful influence on the dynamic behavior of the blade, and 
when included in the aeroelastic tailoring process, can lead to further 
reductions in blade vibration levels. 

2. Aeroelastic Stability and Response Analysis 

This section describes briefly the aeroelastic stability and response anal
ysis and the procedure to calculate the vertical hub shears, that is the 
analysis portion of the optimum design process. The equations of motion 
of the straight blade are similar to those derived in Ref.[12]. The modeling 
of the swept tip is described in Ref.[4]. The equations describe the cou
pled flap-lag-torsional motion of a flexible, homogeneous, isotropic blade, 
modeled as a Bernoulli-Euler beam undergoing small strains and moderate 
deflections. Geometrically nonlinear terms are present in the structural, in
ertia, and aerodynamic operators, due to nonlinear beam kinematics. The 
inertia loads are obtained using D'Alembert's principle. Quasi-steady strip 
theory, with uniform inflow, is used to derive the aerodynamic loads. Stall 
and compressibility effects are not included. In the modeling of the swept 
tip the independence principle is assumed to apply, that is the aerodynamic 
loads depend only on the component of the flow contained in the plane of 
the cross section, and radial flow effects are neglected [4]. 

The spatial dependence of the partial differential equations of motion 
of the blade is eliminated by using a Galer kin method of weighted residuals 
[12]. This results in a finite element discretization. Cubic interpolation 
polynomials are used for the modeling of flap and lag bending, quadratic 
interpolation polynomials for the modeling of torsion. The resulting finite 
elements have a total of 11 degrees of freedom: displacement and slope at 
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each end of the element, for flap and lag bending, rotation at each end of the 
element and at a mid-element node, for torsion. The axial degree of freedom 
is eliminated by making the assumption that the blade is inextensional. The 
partial differential equations of motion of the blade are thus transformed 
into a set of nonlinear, coupled, ordinary differential equations with periodic 
coefficients. A modal coordinate transformation is performed, to reduce the 
number of degrees of freedom. Six rotating coupled blade normal modes are 
used to perform the modal coordinate transformation. The coupled modes 
are calculated for a root pitch angle equal to the collective pitch. 

In forward flight, the equilibrium position of the blade is time depen
dent, and is obtained by solving a sequence of linear, periodic response prob
lems, using quasilinearization. The stability of the system is determined us
ing Floquet theory. A special, implicit formulation of quasilinearization[13] 
which reduces considerably the implementation effort is used. The alge
braic expressions that define the aerodynamic loads are not expanded ex
plicitly. They are coded separately in the computer program, and combined 
numerically during the solution procedure. Quasilinearization is a Newton
Raphson type procedure, and the derivative matrices that are required by 
the algorithm are computed using finite difference approximations. 

The overall helicopter trim procedure used in this study is a propulsive 
trim procedure identical to that used in Ref.[14]. 

The calculation of the hub loads-forces and moments-is performed 
using the direct force integration method. The response of the blade is 
provided by the aeroelastic response calculation code in the form of az
imu thwise Fourier series expansions of the generalized coordinates. The 
calculation of the hub loads then proceeds as follows: 

1. Aerodynamic and inertia loads are calculated at a certain number of 
azimuth angles and spanwise stations of a reference blade. 

2. Aerodynamic and inertia root loads for the reference blade are com
puted in the rotating coordinate system using a numerical spanwise 
integration of the local loads. The root loads are functions of azimuth 
only, and are expanded in Fourier series. 

3. Fourier expansions of the total hub loads in the nonrotating coordi
rrate system are obtained by summing the inertia and aerodynamic 
contributions from all the blades. The assumption is made that all the 
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blades are identical, and perform identical motions. Thus the loads 
on all the blades are known once the loads on the reference blade are 
known. 

The details of the numerical integration procedures and of the Fourier series 
expansions, as well as of the various coordinate transformations required 
for the calculation of the hub loads, are omitted in this paper for brevity 
and can be found in Ref.[15]. 

3. Formulation of the Optimum Design Problem 

The optimization problem is cast in nonlinear mathematical program
ming form. Thus the objective is to minimize a function f(D) of a vector 
J3 of design variables, subject to a certain number of constraints g(D) ::; 0: 

minimize f ( D) (3.1) 

subject to: 
if(D) ::; o (3.2) 

To reduce the computational requirements, the computer program per
forming· the aeroelastic analysis is not connected directly to the optimiza
tion program. Instead, the optimization is conducted on an approximate 
problem, which reproduces the characteristics of the actual problem in a 
neighborhood of the current design, and which is continuously updated as 
the optimization progresses. 

An effective method of building an approximate problem is to expand 
the objective function and the behavior constraints in Taylor series in terms 
of the design variables [9]: 

-+ -+ - -+ 1-T - -+ 

F(D) ~ F(Do) + 'v F(Do) 8D + 28D [H(Do)] 8D (3.3) 

where F(D) is taken to be any objective or constraint function, .D0 is the 
current design, and 'v F(Do) and [H(.Do)] are respectively the gradient and 
the Hessian matrix at the current design. The Hessian matrix is the matrix 
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of the second partial derivatives of the objective function with respect to 
the design variables. The perturbation vector 8D is defined as: 

8b = D - Do (3.4) 

The most expensive function to evaluate is the objective function. The 
cost of one evaluation of the objective function is two orders of magnitude 
higher than the total cost of evaluating the behavior constraints. No ana
lytic expressions for the gradients are available for the objective function, 
and finite difference approximations are required for the construction of 
the derivative information in Eq.(3.3). Therefore, if n design variables are 
used in the optimization, n additional aeroelastic analyses are required to 
compute the gradient, and an additional n( n + 1) /2 for the calculation of 
the Hessian, making the cost of building the Taylor series approximation 
to the objective function extremely high. For this reason an alternative 
approximation technique, introduced by Vanderplaats [16,17], was used in 
this study. 

This alternative technique is based on the idea of approximating the 
gradient and the Hessian in Eq.(3.3), not by using small finite difference 
steps, but by using whatever design information is available at the time. 
Eq.(3.3) can be rewritten, in expanded form, as [16,17]: 

i:l.F = "v Fi 8D1 + "v F28D2 + ... + "v Fn8Dn 

In which: 

and 

1( 2 2 2) + 2 H118D1 + H228D2 + · · · + HNN8Dn 

+ H128D18D2 + H138D18D3 + ... + H1n8D18Dn 

+ H238D28D3 + ... + Hn-1,n8Dn-18Dn 

i:l.F = F(D) - F(D0 ) = F - F0 

(3.5) 

(3.6) 

(3.7) 

Assume that a baseline design Do has been analyzed to give F0 , and that 
other designs D1 , D2 , •• • , Dk have been previously analyzed, to provide Fi, 
F2, ... , Fk. Let 

i = 1,2, ... ,k (3.8) 
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and 
i = 1,2, ... ,k (3.9) 

If k designs are available, Eq.(3.5) can be written k times. The unknowns 
of the resulting linear system are v' F1 , v' F2 , ••• , v' Fk, and H 11 , H 12 , ••• , 

Hnn· If exactly l = 1 + n + n(n + 1)/2 designs are available, and if all 
the designs are linearly independent, the system of l equations (3.5) will 
provide all the coefficients required for the quadratic polynomial approx
imation Eq.(3.3). If all the designs are very closely spaced, the solution 
of the system of Eqs.(3.5) will provide the finite difference approximations 
to gradient and Hessian matrix at D0 • Equation (3.3) will then represent 
a truncated Taylor series expansion of F, valid in a neighborhood of Do. 
If the designs are dispersed in the design space, Eq.(3.3) will simply be 
a quadratic polynomial approximation, defined over a wider region of the 
design space. 

An important characteristic of this technique is that the system of 
Eqs. (3.5) can be written with less than l equations. If at least n + 1 designs 
are available, the solution of the system will provide the linear portion of 
the approximation, Eq. (3.3). An approximate optimization can be con
ducted, based on this linear approximation. The resulting optimum is then 
analyzed precisely, and provides an additional design: a system of n + 2 
equations (3.5) can then be written. Its solution will provide a new approx
imation, Eq. (3.5), with all the linear terms plus one pair of quadratic terms 
of the symmetric Hessian matrix. The process can then be repeated, with 
each new approximate optimum providing an additional design point to 
increase the number of terms in the quadratic approximation to objective 
function and behavior constraints. 

One iteration of the optimum design process thus consists of the follow
ing 6 steps: 

1. Calculation of the blade properties, including natural frequencies and 
mode shapes; 

2. Aeroelastic analysis in hover; 

3. Aeroelastic analysis in forward flight, including calculation of hub 
loads; 

4. Calculation of objective function and behavior constraints; 
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5. Calculation of a new approximation (linear or incomplete quadratic) 
to objective function and behavior constraints; 

6. Solution of the approximate constrained optimization problem, using 
the feasible direction code CONMIN [19], to obtain a new, improved 
blade design. 

The process is terminated when a feasible, optimum design has been reached, 
or arbitrarily, when the improvement in the design is considered "ade
quate". 

The first n + 1 iterations of the procedure are not true optimization 
iterations, because Steps 5 and 6 above are not performed. In fact, these 
initial iterations are used to generate a sufficient number of designs, to build 
at least an initial linear approximation to objective function and behavior 
constraints. 

S£de constra£nts are placed on the design variables, to prevent them from 
reaching impractical values which violate practical, physical constraints. 
Thus all the thicknesses and distances are assumed to be nonnegative num
bers. No side constraints were placed on the tip sweep angle A, which could 
assume positive (swept back tip) or negative angles, as determined by the 
optimizer. 

Three different types of behavz"or constraz"nts are placed on the design: 

1. Frequency placement constraz"nts. The fundamental frequencies in 
flap, lag and torsion are required to fall between preassigned upper 
and lower bounds. If w is one of the three frequencies, and WL and Wu 

are the preassigned lower and upper bound respectively, the frequency 
placement constraint is expressed mathematically in the form: 

- w2 
g(D) = -

2 
- 1 ::; O 

Wu 
(3.10) 

- w2 
g(D) = 1 - - 2 ::; O 

WL 
(3.11) 

Eqs.(3.10) and (3.11), written for each of the three fundamental fre
quencies of the blade, provide a total of six behavior constraints. Fur
thermore the frequencies are also constrained so as to be sufficiently 
removed from the n/rev frequencies. 
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2. Aeroelastic stability constraints. The blade is required to be aeroelas
tically stable in hover. No constraints are placed on the stability in 
forward flight, because all the blade configurations considered in this 
optimization study are soft-in-plane blade configurations, and the ef
fect of forward flight is usually stabilizing for this type of blades [14]. 
The aeroelastic stability constraints are expressed mathematically in 
the form: 

k=l,2, ... ,m (3.12) 

If m modes are used to perform the modal coordinate transformation 
in the solution of the equations of motion, there are m constraint 
equations like Eq.(3.12), where the quantity ~k is the real part of the 
hover stability eigenvalue for the k-th mode. 

3. A utorotation constra£nts. The autorotation constraint expresses the 
requirement that possible mass redistributions produced in the opti
mization process do not degrade the autorotation properties of the 
rotor. Several indices have been formulated to provide a measure of 
the autorotation qualities of a helicopter [20, pp.346-364]. Of all the 
parameters that may affect such qualities, the only one that could be 
changed during the optimization process considered in this study is 
the mass polar moment of inertia of the rotor. Therefore the autoro
tation constraint is expressed mathematically in the form: 

-, J 
g(D) = 1 - --- < O 

0.9J0 -
(3.13) 

The constraint equation (3.13) requires that the mass polar moment 
of inertia J of the rotor maintain, during the optimization, at least 
90% of its initial value J0 • 

Therefore, a total of thfrteen behav£or constraint equations are placed on 
the design variables. 
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4. Results 

The basic blade configuration considered in this study is a soft-in-plane 
hingeless blade configuration, sketched in Figure 4.1, with uncoupled fun
damental lag, flap, and torsion frequencies for zero tip sweep of 0.732/rev, 
1.125/rev, and 3.17 /rev respectively. The Lock number is 1 = 5.5, the 
thrust coefficient Gr = 0.005, and the rotor solidity a = 0.07. For the 
swept tip configurations, the outermost 10% of the blade is swept. The 
blade precone angle f3v, the root offset e1 , the offset x A between the elastic 
axis and the aerodynamic center, and the offset xr between the elastic axis 
and the cross sectional center of gravity are all set to zero, unless specified 
otherwise. The modal coordinate transformation is based on the six lowest 
frequency, rotating, coupled modes of the blade. In all cases the six modes 
were: one torsion, two lag, and three flap modes. The blades were modeled 
using 5 finite elements, with nodes at 0%, 22.5%, 45%, 67.5%, 90%, and 
100% of the span. Selected results are presented here. Numerous additional 
results can be found in Ref.[15]. 

Two types of cross sections are considered in this study, namely a single 
cell, rectangular cross section, and a double cell cross section. Both cross 
sections are shown in Figure 4.2. Up to five, and up to nine independent 
design parameters can be specified for the single cell and the double cell 
cross section respectively [15]. In this study the cross sectional design pa
rameters are linked in such a way as to reduce the number of independent 
design parameters to two, for both the single and the double cell cross sec
tions. The first independent design variable is the thickness t 1 of all the 
elements of which both cross sections are composed. The second indepen
dent design variable is the chordwise width x 2 for both cross sections. In 
the single cell cross section the ratio between the width x 2 and the height 
h8 is kept constant, with xd h8 = 4.5. In the double cell cross section the 
internal wall is placed halfway between the leading edge and the rear wall, 
so that x1 = x 2 /2. The outside wall of the double cell cross section has the 
shape of a NACA 0012 airfoil. The properties of both cross sections are 
presented in Ref.[15]. 

As a preliminary to the optimization studies, the effect of tip sweep on 
the peak-to-peak values of the 4/rev vertical hub shears was investigated 
for both a soft- and a stiff-in-plane blade. The design parameters of the 
stiff-in-plane blade were identical to those of the soft-in-plane blade, except 
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for the fundamental uncoupled lag frequency for zero tip sweep, which was 
equal to 1.42/rev, and the blade precone angle, set to f3v = 3° to make the 
blade aeroelastically stable in hover[4]. 

Figures 4.3 and 4.4 show the peak-to-peak value Vzpk of the vertical hub 
shears as a function of the tip sweep angle A, for four different values of the 
advance ratio µ, for the soft- and the stiff-in-plane blade configuration re
spectively. Figure 4.4 clearly shows that tip sweep increases the oscillatory 
vertical hub shears for the stiff-in-plane configuration, for all the values of 
µ and A taken into consideration. Figure 4.3 shows that tip sweep may 
or may not be beneficial for the soft-in-plane configuration, depending on 
the advance ratio and the tip sweep angle. At an advance ratio µ = 0.3 
the oscillatory loads rapidly increase with tip sweep. At µ = 0.4, instead, 
tip sweep has a beneficial effect. Based on the results of this preliminary 
investigation, only the soft-in-plane blade configuration was taken into con
sideration for the optimization studies, and the advance ratio at which the 
4/rev vertical hub shears were to be minimized was set at µ = 0.4. 

Three optimization studies were conducted using the general procedure 
outlined in the previous section, namely: 

1. Optimization of a completely straight blade, having a two-cell cross 
section. The objective function is the peak-to-peak value of the 4/rev 
vertical hub shears at an advance ratio µ = 0.4. Because the cross 
section is not doubly symmetric, the blade generally has nonzero val
ues of the aerodynamic center-elastic axis offset xA and of the center 
of gravity-elastic axis offset x 1 . 

The design variables are defined at three distinct cross sections of 
the blade: the root section, the tip section, and the cross section 
at the 67 .5% span, for a total of s£x £ndependent desi'gn vari'ables. 
The 67.5% station, at which two design variables are defined, is the 
junction section between the third and the fourth finite element. The 
blade properties are assumed to vary linearly between two consecutive 
stations at which the design variables are specified. 

2. Optimization of a completely straight blade, having a single cell cross 
section. As in the previous case, the objective function is the peak
to-peak value of the 4/rev vertical hub shears at an advance ratio 
µ = 0.4. 
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As in Case 1, the design variables are defined at three distinct cross 
sections of the blade: the root section, the tip section, and the cross 
section at the 67.5% span, for a total of s£x £ndependent des£gn var£
ables. 

The cross section is rectangular, therefore doubly symmetric. Because 
leading edge masses have not been used in this particular example, 
the center of gravity and the aerodynamic center are located on the 
elastic axis of the blade-which is taken to be coincident with the 
pitch axis. Therefore the associated offsets are equal to zero. 

3. Straight blade with a swept tip. The objective function is the peak
to-peak value of the 4/rev vertical hub shears divided by the thrust 
coefficient GT, at an advance ratio µ = 0.4. This particular choice 
of objective function is an attempt to compensate for the inaccuracy 
of the trim program, which neglects the torsional deformation of the 
blade, and thus overestimates the thrust that the rotor is actually 
capable of developing. 

The outermost 10% of the blade is swept, with the sweep angle being 
a design variable of the optimization procedure. The cross section is 
rectangular, and therefore the offsets xr and XA are equal to zero. The 
cross sectional design variables are defined as in Case 2. Therefore a 
total of seven des£gn var£ables is used in this case. 

The initial blade configuration, for all three cases, is the baseline soft
in-plane configuration. 

Optimization case 1 
The iteration history of the objective function for case 1 is shown in 

Figure 4.5. It should be noted that for all three optimization cases, design 
n is defined as the design produced at the end of the optimization step 
n. Step O and the first six steps are not true optimization steps: they are 
required to obtain enough information to build linear approximations to 
the objective function and behavior constraints. Step O is the analysis of 
the baseline design. In steps 1 through 6 each of the six design variables is 
perturbed, one at a time. Because the perturbations were relatively small-
1 % of the baseline value-the linear approximations obtained at the end 
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of step 6 can be considered as gradients calculated using forward finite 
difference approximations. 

Step 7 is the first true optimization step, and consists of the solution 
of a linear optimization problem. Move limits were placed on the design 
variables, which could not change by more than 25% of the baseline value. 
The optimization continues for three additional steps (8-10). Each new 
proposed design is analyzed precisely, and used to improve the polynomial 
approximations to objective function and behavior constraints. The di
agonal of the Hessian matrix is built first, as more function evaluations 
become available. (The term "Hessian" is used in this section with the 
general meaning of "matrix of coefficients of the quadratic terms of the 
approximation"). Figure 4.5 shows that, after reaching a minimum at step 
8, the objective function slightly oscillates. 

At the constrained optimum of the approximate problem, the approx
imate flap damping constraint for the first flap mode was active. In most 
helicopter blades the first flap mode tends to be highly damped, and a 
precise analysis of the proposed design showed that this indeed was the 
case, and that the precise first flap stability constraint was satisfied. The 
constraint was therefore reformulated as: 

~FI - 0.3 < 0 (4.14) 

The subsequent optimization steps were performed with this new form of 
the constraint, which prevents the approximate constraint from becoming 
critical. Two more steps (11 and 12) are performed with the relaxed flap 
constraint. The design of step 12 is a local, unconstrained minimum of the 
approximate problem. The corresponding blade is such that a reduction 
of 54.3% is achieved in the objective function, compared with the baseline 
configuration. The design suggested by the optimizer for step 13 is practi
cally the same as that for step 12. A different design was instead arbitrarily 
selected for step 13. This design was "close" to that of step 12, and was 
selected for the only purpose of adding one design to the design data base 
and try to improve the accuracy of the approximations in the neighborhood 
of design 12-with the design of step 13 the full diagonai of the Hessian 
can be built. Step 14 is the last optimization step, and it produces a value 
of the objective function that is slightly higher than the minimum of step 
12. The optimization was arbitrarily stopped at this point. All the designs 
generated during the optimization were feasible. With the only exception 
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of the damping constraint on the first flap mode at step 10, no behavior 
constraints were active. 

The iteration history of the design variables is presented in Figures 4.6 
and 4.7. Figure 4.6 contains three plots, one for the value of the thickness 
t 1 at each of the three preassigned spanwise stations, and shows that the 
optimizer designs a blade which is thicker than the baseline at the root and 
the tip, and thinner at the 67.5% station. Figure 4. 7 shows, for each of the 
three blade stations, the chord wise extension of the two-cell spar. (Recall 
that the front internal wall is located halfway between the leading edge 
and the rear internal wall.) Figure 4.7 shows that the optimizer makes the 
structural cross section wider, and therefore stiffer, going from the blade 
root toward the tip. 

Figures 4.8 and 4.9 show the iteration history of the cross sectional 
offsets between the elastic axis and the aerodynamic center, and the center 
of gravity respectively. The relative placement of these points is not a 
design variable, but is affected by the values of the design variables because 
the cross section is not doubly symmetric. Figure 4.8 shows that, as the 
optimization progresses, a relatively large forward shift of the aerodynamic 
center is introduced in the outboard portion of the blade. The offset is 
about 4% of the blade chord at the optimum, for the tip section. Figure 
4.9 shows that the baseline design has a slightly forward placed center of 
gravity (x1 = 0.0014£), and the optimizer moves it further forward by small 
amounts. 

Optimization case 2 
The iteration history of the objective function for case 2 is shown in Fig

ure 4.10. Steps O through 6 are not true optimization steps. These steps 
are required to generate enough designs to construct at least linear approx
imations to objective function and behavior constraints. The design at step 
0 is the baseline blade design. The designs analyzed in steps 1 through 6 
are obtained by changing one design variable at the time. Since the change 
in each variable was equal to 10% of its baseline value, the resulting linear 
approximations to objective functions and behavior constraints cannot be 
strictly considered as gradients. 

The first true optimization step is step 7, which consists of a linear, 
constrained optimization problem. A reduction of 37.6% is achieved, com
pared with the baseline design. In the next step the objective function 
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increases slightly. Because this behavior is somewhat similar to the one ob
served in case 1, the optimization was arbitrarily concluded at this point, 
and restarted with a new set of behavior constraints. 

The aeroelastic stability constraints used in case 1, and up to this point 
in case 2, consist of requiring that the blade be aeroelastically stable in 
hover. It is prudent to require that the optimization process do not degrade 
too much the stability of the baseline design. The optimization was thus 
restarted from step 9 with these more stringent behavior constraints. The 
aeroelastic constraints of Eq.(3.12) are reformulated as: 

k=l,2, ... ,m (4.15) 

Eq.(4.15) expresses the requirement that the loss of stability of a given 
mode do not exceed 5% of the baseline value ~kB. 

The optimization is not restarted with a new calculation of an initial 
linear approximation. Rather, the previous designs are reused to provide 
the initial approximation for the new case. While designs O through 8 were 
all feasible with respect \o the old set of behavior constraints, some of these 
designs are now infeasible with respect to the tightened aeroelastic stability 
constraints. In particular, design 8, which becomes the initial design for 
the second phase of this optimization, is infeasible. 

The first design produced by the optimizer with the new set of con
straints is feasible with respect to the approximate behavior constraints. 
When this design is a:p.alyzed precisely, it proves to be infeasible with re
spect to the exact behavior constraints. The successive design (step 10) 
is feasible with respect to both the approximate and the exact behavior 
constraints. The next design (step 11) is again feasible with respect to the 
approximate, but not the exact behavior constraints. In steps 9 through 
11 the objective function is constantly at a value higher than the baseline 
value, and does not show any signs of convergence to the optimum. In 
other words, the optimizer does not seem to be able to produce a feasible 
design that improve on the baseline design-which obviously satisfies the 
new constraint equations, Eq.( 4.15). 

The apparently erratic behavior of the objective function required a 
reconsideration of the optimization strategy which, starting from step 14, 
was modified as follows: 
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1. At each optimization step, take as the baseline design Do the design 
with the lowest value of the objective function, whether or not that 
design is the latest analyzed, and whether or not that design is fea
sible. Impose relatively tight move limits on the design variables, for 
example allowing a maximum change of 10% of the baseline value. 

2. If the new design generated by the optimizer has a lower value of 
the objective function, use it as the starting point for the next opti
mization step. Otherwise, retain the new design, but again start the 
next optimization step with the design with the lowest value of the 
objective function. Tighten the move limits further. 

3. When a good design is obtained, use it as the starting point for the 
next optimization step, and progressively widen the move limits. 

4. If the design with the lowest value of the objective function is infea
sible, and the optimizer consistently fails to produce a design that is 
both feasible, and with a value of the objective function lower than 
that of the initial design, restart the optimization from the initial de
sign. Do not discard any of the previous designs, unless enough func
tion evaluations have already been performed to construct a complete 
quadratic approximation. 

The new strategy is applied starting from step 14, shown in Figure 4.10. 
The starting design is design 2, which is infeasible and has the lowest value 
of the objective function. Move limits are placed on the design variables. 
The maximum allowable change is 10% of the values of design 2. The design 
produced by CONMIN is still infeasible, but already shows a large decrease 
in the objective function. The next step (step 15) again uses design 2 as the 
starting design. The same move limits as in the previous step are imposed. 
Design 15 is now feasible, although the objective function has increased. 
Step 16 again starts from design 2, but the move limits are tightened. A 
maximum change of only 5% in the value of the design variables is now 
allowed, with respect to design 2. The design produced by the optimizer 
has a value of the objective function which is still higher than that of design 
2, but lower than the baseline value of design 0. Furthermore design 16 is 
feasible whereas design 2 was not. Design 16 is constrained by the move 
limits. The reduction in the peak-to-peak value of the 4/rev vertical hub 
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shears is of 16.6% compared with the baseline value. Thus the imposition 
of the tightened aeroelastic constraints reduces the gains in the objective 
function by more than 50%. 

This design is used as the starting design for step 1 7. The move limits 
are widened from 5% to 10%. The design produced by CONMIN is so close 
to that of step 16 that a new precise analysis is not performed-for this 
reason step 17 is not included in Figures 4.10 through 4.12. The design 
is now constrained by the approximate aeroelastic constraints. The first 
lag, second flap, and second flap constraints are active. The second lag 
constraint is slightly violated, but it remains within the narrow numerical 
band that straddles the exact value of the constraint-constraints are usu
ally defined in CONMIN as narrow strips instead of strictly as lines [18,19]. 
The side constraints are no longer active. 

Design 17 is at least a local minimum for the approximate problem. It 
is not necessarily a local minimum for the exact problem. Whether or not 
this is the case depends on the quality of the approximations to objective 
function and behavior constraints. If it is important to get as close as 
possible to the local minimum of the exact problem, a certain number of 
designs should be analyzed in the neighborhood of the approximate mini
mum to improve the quality of the approximations, and the optimization 
should be continued with the improved approximations. Because some of 
the assumptions made in the derivation of the blade stability and response 
analysis are relatively crude, such refinements are not warranted, and the 
optimization is stopped at design 17. 

Optimization case 3 
Figure 4.13 shows the iteration history of the objective function for case 

3, which is the peak-to-peak value of the 4/rev vertical hub shears divided by 
the thrust coeffic£ent er. The tightened aeroelastic constraints of Eq.(4.15) 
are enforced. 

Design O is the baseline soft-in-plane straight blade configuration. The 
first seven steps are not true optimization steps. As in cases 1 and 2, they 
provide enough precise values of the objective function and behavior con
straints to build at least a linear approximation of objective and constraints. 
In the designs 1 through 7 each of the seven design variables is perturbed, 
one at the time. Design 7 is the only swept blade design. Designs O through 
6 are straight blade designs, and are identical to the corresponding designs 
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of case 2. Thus these designs are not reanalyzed, and the values obtained 
in case 2 are reutilized. The swept tip blade of design 7 is one of the blade 
configurations analyzed to derive the results of Figure 4.3, and need not be 
recalculated. 

Thus the optimization process of case 3 begins without the need for 
any precise analyses, in the sense that the eight precise analyses required 
to start the procedure were already available from previous parts of this 
study, and could be directly reutilized. The ability to make use of previously 
analyzed designs, even if not very close to the expected optimum in the 
design space of the current problem, is one of the most important features 
of the optimization algorithm used in this study. 

The first true optimization step-step 8-produces a design with a re
duction of 27.2% of the objective function with respect to the baseline 
straight blade. This also corresponds to a reduction of 14.5% with respect 
to the best swept tip design obtained without applying formal optimization 
techniques, that is design 7. When analyzed precisely, the design proves 
feasible, with no constraints active. Compared with the final result of case 
2, in which the blade is straight, the use of tip sweep as an additional design 
variable allows a further reduction of the objective function of almost 10%. 

The next two steps (9 and 10) produce much higher values of the ob
jective function. Starting from step 11 the "modified" strategy previously 
outlined is employed. The nest two steps (11 and 12) provide considerable 
reductions of the objective function, but the best design is still design 8. 
The optimization is arbitrarily stopped at this point, both for cost reasons, 
and because the design appears to converge towards design 8. 

The iteration histories of the thickness t 1 , the chordwise extension of 
the spar, and the tip sweep angle A are shown in Figures 4.14, 4.15, and 
4.16 respectively. The tip sweep angle corresponding to the best design is 
A= go_ 

Computational requirements 
All the.results presented in this study were obtained on an IBM 3090-200 

computer. Each precise aeroelastic analysis required three or four iterations 
of quasilinearization [15]. Each iteration of quasilinearization required 80-
110 CPU seconds for a straight blade and 140-180 CPU seconds for a swept 
tip blade. Because a variable step, Adams-Bashforth technique was used 
to integrate the equations of motion [4], the exact CPU time required to 
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complete an iteration of quasilinearization was problem dependent. 
The remaining portions of a complete optimization step, namely the cal

culation of the cross sectional properties of the blade, the calculation of the 
vertical hub shears from the aeroelastic response of the blade, the deriva
tion of the polynomial approximations to objective function and behavior 
constraints, and the solution of the approximate constrained optimization 
problem, required an average total of 1-2 CPU seconds. 

5. Conclusions and Recommendations 

The main conclusions obtained in the present study are summarized 
below. Their application to the structural optimization of a helicopter 
blade should be limited by the assumptions used in obtaining the numerical 
results presented in this study. 

1. The optimum design procedure described in this study is very effi
cient, and can produce improved designs with a very limited number 
of precise analyses. The method of constructing the approximate 
problem is such that previously conducted aeroelastic analyses can 
be reused in a new optimization problem. For example, if an opti
mization study is preceded by a parametric study in which the effect 
of various combinations of blade design parameters is examined, all 
the aeroelastic analyses performed for the parametric study can be 
reutilized in the optimization study. This is not possible when the 
approximate problem is built from Taylor series expansions. 

2. The results of the optimization are quite sensitive to the aeroelastic 
stability margins required of the blade. In the optimization of case 
2, changing the aeroelastic stability constraints from simply requiring 
that the blade be stable in hover, to requiring that the stability mar
gins be maintained during the course of the optimization, reduced the 
gains in n/rev vibration levels by more than 50%. 

3. The introduction of tip sweep can reduce then/rev vertical hub shears 
beyond the level that can be obtained by just modifying the mass and 
stiffness distributions of the blade. 
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4. The optimization process described in this study would greatly bene
fit from improved and more accurate ways of building the polynomial 
approximations to objective function and behavior constraints. This 
could be accomplished by deriving analytical gradient information 
at a fraction of the cost of one aeroelastic analysis, or by identify
ing appropriate intermediate design variables that would make the 
polynomial approximations more accurate. For example, polynomial 
expansions in terms of reciprocal blade section properties might be 
used in place of cross sectional dimensions. 
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