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Abstract 

A GENERAL PURPOSE PROGRAM FOR ROTOR BLADE DYNAMICS 

M. Borri , M. Lanz , P. Mantegazza 

Dipartimento di Ingegneria Aerospaziale 

Politecnico di Milano - Italy 

The work is being developed within the frame of a cooperation plan between 
Costruzioni Aeronautiche Giovanni Agusta and Aerospace Department of Politec
nico of Milan, and covered by research contract n° 782. 

The purpose of such a program was to produce and certificate an unique com
puter program for rotor blade dynamics, capable of dealing both with hinged 
and hingeless rotors, suitable for steady state flight analysis and stabili
ty evaluation. 

Blade motion is represented by finite elements in the space-time domain, 
covering the span of one or more rotor revolutions, and allowing for diffe
rent nonlinearities. 

This method gives a flexible unitary approach for the very different model 
complexities required by the different design phases, such as the simplest 
rigid blade schemes, and the more sophisticated ones including nonlineariti
es arising from large blade flexibilities and large movements in control 
links. The aerodynamics, at the present development state, considers pre
scribed wake geometry and blade element theory, including stall and compres
sibility effects. 

The paper presents a short discussion of the models and of the procedures 
employed and shows the first .computed results. 

1. - Introduction 

The analysis of an helicopter rotor requires the determination of a perio
dic trim condition and the study of its stability; due to the high degree of 
nonlinearities involved in such an aeroelastic system, these studies are in 
general numerically performed with the help of a digital computer. 

Different methods are available in the literature to solve each of the pre
viously cited computational steps, but none of them provides an unified ap
proach to both trimming and stability analysis. An extensive review of all 
these methods can be found in [ lJ, [ 2J and [ 3J . 

The helicopter rotor is generally modeled with a finite number of genera
lized coordinates by variable separation in the space and time domains. 

Tipically the space shape of the motion is approximated by the natural mo
des of the blade rotating in vacuum, while the time dependency is provided 
by the time variation of their amplitudes. In this way we are led to the 
modeling of the rotor by a set of seconr1 order nonlinear ordinary differenti
al equations in the time domain. 

When a complete linearization of the problem can be accepted, a solution 
is assumed in a Fourier series form, and the unknown coefficients are deter
mined by solving the resulting linear set of equations. With this procedu
re a periodic solution is implied and, although the method seems quite gene
ral and theoretically able to deal with nonlinear problems, the analytical 
burden posed by the coefficient matrix computation becomes practically unac
ceptable in a realistic analysis. 

A second way makes use of step by step explicit numerical integration me
thod, which seems to be free from any limitation on the form of the diffe
rential equations, and thus capable of handling more general systems, pro
vided they can be reduced to the first order. 
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Halfway through the collocation and the integration method there is the pro
cedure of [4J , which seems to be sutitable only for linear equations, at le
ast in the form there presented. 

Hence a step by step method of integration seems to be the most general one 
in solving the set of nonlinear differential equations describing the motion 
of the rotor, but even such a method does not seems to be free from drawbacks. 

It must be noted that, whilst the investigation of a periodic solution cor
responds to the imposition of boundary conditions, the step by step procedure 
requires the knowledge of the initial conditions, and in general, for nonli
near equations, it may be difficult to found those initial conditions related 
to periodic so·lutions. Then the procedure is arbitrarily started and the in
tegration performed until the steady state periodic solution is reached. It 
is obvious that the computer effort, and related cost, is stricly dependent 
on the stability of the set of equations, and that the lack of stability ma
kes the method fail to converge. Such an event may be an indication of in
stability, but no systematic information is provided for a stability analysis, 
which has to be dealt with by a different approach. 

The models used for rotor dynamics range from simplified schemes, for pre
liminary design, to general purpose detailed formulations, for stress analy
sis and whole aircraft response simulation. 

The simple models are generally used in order to represent a particular de
sign facet, and many variations are developed even by different groups of peo
ple involved in the same project. 

On the other hand the overall models are often of general use only within a 
predetermined set of configurations, and in some cases, new design solutions 
cannot be evaluated. Thus both the simple and the general purpose models ha
ve to be rewritten and heavily modified in such a case. 

There is then the need for an unified way to approach the modeling of the 
rotor so that either the preliminary design, detailed analyses and flight 
test validation ·of the design process can be undertaken within·asingle program. 
This unique tool should clearly be able to model the widest possible spectrum 
of rotor configurations, with the capability of dealing both with simp·le and 
sophisticated models; moreover the basic formulation should be" open-ended ", 
in the sense of being able to fulfill new needs by simply adding new options 
to the existing ones. 

A joint effort has been established between Costruzioni Aeronautiche Agusta 
and the Politecnico of Milan in order to develop a computer program satisfy
ing these requirements. 

This paper outlines the basic concepts on which this program is being built. 
It is worth to note that the method here presented can be viewed as a nice ap
plication of the finite element method to the Hamilton'svariational principle 
since, as it will be shown, periodic solutions can be eas1ly imposed and both 
linearized stability and time response to an assigned control law can be stu
died, within an unified approach. 

Another relevant feature of the finite element application to the Hamilto
nian formulation is the capability to provide an automatic way to derive the 
system equations, with a minimum of analytical effort and with the consequent 
reduction in man hours spent to develop and check the needed formulas. 

2. - Generalized Hamilton's principle 

We assume the configuration of an arbitrary mechanical system be represented 
by a set of generalized coordinates (q} which can be submitted to a set of ho
lonomic constraints given by : 

(. (q,t) } = 0 (2.1) 

and to a set of nonholonomic constraints in the form 

36-2 



{ '¥ (q,q,t) l ; I A I {q} · + {a} ; 0 (2.2) 

It can then be shown [5J, [6J that a generalized form of the Hamilton's 
principle can be given by : 

(2.3) 

where 8£ is the virtual change of the Lagrangian function, 8£ the external 
virtual work for those forces which cannot or are not included e in the Lagran
gian function and o£ the virtual work of the forces of reaction which maintain 
the kinematical constraints. The virtual work 8£ has an expression of the ty-
pe : c 

8£c 
; {dq} T{C} (2.4a) 

where 

{C) ; I BIT{\}+ I A IT{~} (2.4b) 

I Bl ; !"<PI (2.4c) aq 
and 

{A} and {]J} are the vectors of the Lagrangian multipliers associated with the 
holonomic and nonholonomic constraints respectively. 

It is important to note that the Hamilton's principle formulation, entailed 
by Eq.(2.3), allows to use an arbitrary virtual change {8ql which does not va
nish at the end points, because of the appearance of the generalized momentum : 

{p} ; { lf } 
aq 

in the left hand side of Eq.(2.3) [7J, [8J. Moreover the time derivatives {~} 
of the Lagrangian multipliers of the nonholonomic constraints in relationship 
(2.4b) leads to constraint reactions that have congruent virtual work related 
to the {]J} vector; at last the constraint relationship (2. l) and (2.2) are ta
ken into account in the variational formulation itself by the second and third 
terms in the left hand side of Eq.(2.3). 

Thus by this approach the system response equations, the boundary conditions 
and the constraints can be all obtained directly from the same Eq.(2.3), provi
ded that the initial or boundary conditions satisfy Eq.(2.l) and (2.2) . 

3. - Discretization and incremental formulation of Hamilton's principle 

The system response is determined by a direct numerical discretization of 
Eq.(2.3). Clearly this discretization hast~ be performed simultaneously in 
space and time for the configuration unknowns and for the Lagrangian multi
pliers too; nevertheless, for sake of simplicity in notation and in hope to 
make the basic features of this approach more clear, the space dimensions and 
the constraints are not taken into account in this presentation. 

On the basis of a finite element discretization in time domain, let {q)kbe 
the generalized coordinate at any of the given N instants of time and : 

T T T {qN} ; I {q}l {q}2 {ql~ I ( 3 . l ) 

the vector describing the overall configuration of the system between ini-
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tial and final time; the generalized coordinates are then determined at any ti
me instant by means of appropriate shape functions INI 

{q(t)} = I N(t)l{qN} 

Reca 11 ing that 
• • 

{ q } = I~ I { qN} 

{&l} = N l{oqN} 
• • { oq } = N 1 { oqN} 

and by substitution of Eq.(3.2) and (3.3) into Eq.(2.3), we have 

{ o qN } T ( { L} - { BT}) = 0 

with 

(3.2) 

(3.3a) 

(3.3b) 

(3.3c) 

(3.4) 

(3.5) 

tr • 
{L£} = J (IN 1{£q}+ IN I {£q }) dt (3.6a) 

ti 
tf 

{LQ} = f IN IT{Q} dt (3.6b) 
tl 

where {Q} is the vector of the generalized external forces, {BT} is related to 
the boundary terms, and {£ } and {£'} are the derivatives of the Lagrangian fun
ction with respect to {q} q and{~}q , respectively. 

If {Q} does not contain impulsive forces, we have : 

( 3. 7) 

Eq.(3.4) can be used either for the solution of problems with given initial con
ditions or to obtain periodic solutions, if present. 

In the first case we can write : 

{L} = {BT} (3.8) 

and, as {q} and {p} 1 are assigned, Eq.(3.8) becomes a set of n x N, generally 
nonlinear, 1equat1on$ with the N-1 unknowns {q}k,(k•2, ... ,N) and {p}N. 

In the second case, because of the periodicity, we have : 

{q}1 = {qt, (3.9a) 

{p}l = {p}N (3.9b) 

and 
{oq}, = {oq}N 

then from Eq.(3.4) we can write : 

{L} = 0 

(3.9c) 

(3.10) 
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which, because of relationship (3.9a), constitutes a set of n x(N-1) equations 
with the N-1 unknowns {q}.,(i=l, ... ,N-1) . 

Clearly the functional 1of Eq.(2.3) can be discretized with many finite time 
elements by use of the well known assembly technique peculiar of the finite ele
ment method, and, in this case, Eq.(3.9a) is satisfied by trivially summing the 
contributions of the elements of closure on the same unknowns and equations. 

It ts·now important to note that the discretization of Eq.(2.3) requires the 
continuity of only the shape functions and not that of their derivatives, in or
der to insure the convergence of the discretized solution. This is due to the 
fact that the ·Hamilton's principle is a weak integral formulation of the equa
tions of dynamic equilibrium. This circumstance greatly enhances the efficiency 
of the approach, as compared to previous applications C9J,C10J of the same idea, 
since no nodal derivatives explicitly appear as unknown, and also impulsive for
ces can be correctly taken into account. 

The numerical solution of Eq.(3.8) and (3.10) requires an incremental formula
tion of the discretization, as given by : 

where 

and 

t 

I K£ 1
0 

= J f( IN IT I £qq 1
0 

I ,j I + I N IT I £qq 10 I N I) dt + 
t; 

tf 

+ J (IN IT I £qq'1 I N I + I N IT I£ I I N I) dt 
0 qq 0 

t; 

tr 
1Kql 0 = J (INIT1Qqi0 INI+INIT1Qqlo1NI)dt 

t; 

(3.11) 

(3.12a) 

(3.12b) 

(3.12c) 

where I £qq 1
0 

I £~q 1
0 

and I £qq 1
0 

are the second derivatives of the Lagrangian fun
ction, and 10ql

0
and IOq!o the derivatives of the generalized external forces . 

At a solutton point we clearly have {L} = {BT} and thus Eq.(3.ll) can afford a 
linearized response for small disturbances, i.e. 

I K 1
0 
{~qN} = {~BT} (3.13) 

With no impulsive forces we can reduce Eq.(3.13) to 

{~q} -{llp} 
= (3.14) 

{llq} {llp} 

which, having defined the incremental state vector as 

36-5 



{
{llq}i} 

{llX}i = 
{llp}i 

can be rearranged to : 

where 

(3.15) 

(3.16) 

is clearly the transition matrix, since it relates the final to the initial 
state. Eq.(3.15) is a linear matrix difference equation, a solution of which 
can be written in the form : 

(3.17) 

which after substitution in Eq.{3.15) gives rise to the following eigenproblem : 

(3.18) 

The eigenvalue of maximum modulus T is related to the stability of the gi-
ven solution, since,depending if the max modulus of maximum eigenvalue is larger, 
equal or lower than 1 ,the solution of Eq.(3.17) is diverging, neutral or stable. 

If the previous formulation is applied to a periodic solution of Eq.(3.10), we 
are led directly to a Floquet type study of the stability of linearized periodic 
set of equations [5J,C11J. 

We note now that in order to take into account the constraints, we have just 
to make appropriate discretizations for the Lagrangian multipliers as : 

{>.}=IN (t) I{>.N} 

{\1} =IN (t) 1{\lN} 

( 3. 19a) 

( 3. 19b) 

where the shape functions need neither to be the same as the previously assigned 
nor to be equivalent for holonomic and nonholonomic constraints. 

We can then arrive C6J to the same set of Eq.(3.4) with an augmented vector of 
generalized coordinates : 

and boundary terms of the type 

{BT"}
1= I {BT}! 0 ' 0 
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4. - Rotor modeling and implementation problems 

The helicopter rotor is modeled by beam, hub, scalar and kinematical constra~ 
int elements, whose degrees of freedom are referred to the rotating hub referen
ce frame. The hub frame motion can either be assigned, or its translational and 
angular speeds can be assumed as unknowns along with overall associated loads 
and other global quantities, such as the mean induced velocity and swash plate 
position and orientation. 

The beam,hub and kinematical constraint element are developed as space-time 
finite elements and their configuration is related both to their states at dif
ferent time instants or azimuthal positions and to the global independent coor
dinates[5J. 

An isoparametric beam element has newly been developed for special purpose of 
curved and twisted rotor blade modelization; it is capable to describe large dis
placements and rotations with respect to a prescribed, generally moving, referen
ce frame, and it can also include the possibility of rigid behaviour to be used 
in simplified analysesC5J. 

The hub can be modeled by the beam element itself or by a given flexibility 
and inertia matrix, which is extended as a time finite element. 

Kinematical constraint elements are used to represent, if they are present, 
flap, lead-lag and feathering hinges. These elements are developed by use of 
Lagrangian multipliers, and they impose the congruence between blade and hinges 
degrees of freedom. The pitch control is determined from the swash plate posi
tion and orientation, considering the pitch control rod as inextensible. 

The scalar elements are used to model dampers, concentrated stiffnesses and 
masses and, si'nce they have no space dimensions, only a time development is re
quired. 

By means of these elements the analyst can develop the most suitable model to 
carry out different types of ana lyses, within an unified approach. 

The development of the above e 1 ements, within the framework of the finite e 1 e
ment discretization outlined in the previous paragraph, 1 imits the hand work to 
write only the basic formulas, leaving all the integration problems to the com
puter; thus all tedious algebraic manipulations, which are prone to errors and 
difficult to check, are avoided. 

The basic analyses that can be performed are the obtainment of a trimmed pe
riodic solution for the rotor and the study of its stability. These problems 
require the solution of the nonlinear set of algebraic Eq.(3.8), which, for de
tailed elastic models, impliesalarge number of unknowns, and thus an heavy uti
lization of the computer resources is required. This circumstance is stressed 
on by the fact that a rather wide spectrum of trimmed conditions in hovering 
and forward flight are generally required. 

The problem to handle a large number of unknowns is not related to this for
mulation only, and it is one which generally suggests the use of the natural mo
des of some typical configurations, in order to reduce the elastic degrees of 
freedom, while insuring a good convergence. 
Neverthele~the use of displacements and rotations of the nodal points as un

knowns simplifies the development of a general finite element: hence this choice 
of degrees of freedom has been preferred, making use of all the appropriate tech
niques deve 1 oped to cope with the prob 1 ems with a 1 arge number of unknowns. 
Thus, for instance, the need to obtain many trimmed solutions in different fli
ght conditions is properly fulfilled by a solution in a continuation form, and 
a modal condensation technique can be viewed as a way to improve the speed of 
each iteration, without using the modes in the basic formulation; moreover full 
advantage is drawn from the sparsity of the coefficient matrix C12J,C13J,C14J, 
[1 5] '[16] . 

Many other techniques are avail ab 1 e to improve the efficiency of the nonlinear 
solver and they are intended to curtail the number of incremental steps, subse
quently reducing the coefficient matrix computations and factorizations [17J. 

The stability analysis of the trimmed motion is just a by-product of the pre
vious phases, since the obtainment of Eq.(3.13) and of the transition matrix 
can be embedded in the factorization of the IKI matrices at convergence; then 
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the solution of the eigenproblem is performed by generally available library 
routines. 

It is important to note that the explicit evaluation of the transition matrix, 
representing the perturbed motion near a tr.im condition, is a great undertaking, 
especially if flexible blades are taken into account. 

The difficulty to automatically write the governing differential equations and 
to evaluate the transition matrix by numerical integration of the differential 
equations, for a whole set of independent initial conditions, has in practice 
limited the use of the Floquet method to rather simple models of rotors [18J, 
[12] '[20] . 

An area of great concern to this approach to rotor dynamics analysis comes 
from the aerodynamic modeling, especially if the aerodynamic is taken within the 
IKI matrix. The problem of interfacing the structural to the aerodynamic model 
is common to all the aeroelastic calculations and generally different rappresen
tation are taken for each model, and an appropriate interface is established by 
the use of matrices of generalized aerodynamic forces, which are the aerodynamic 
part of the IKI matrix. Generally these matrices are full and this is a further 
reason for the use of some kind of modal coordinates in place of displacements 
of the nodal points. 

It must be noted that a correct formulation of the motion dependent incremen
tal aerodynamic matrix is more important in a correct stability analysis than 
in the trim condition search, in which it is only important to correctly deter
mine the force unbalance at the nodes, in order to assure a correct solution, 
while the contribution to the IKI matrix can be approximated in any way that does 
not damage the convergence speed. 

At the present time the program adopts a rather crude strip theory with pre
scribed induced inflow and some basic correction for unsteady effects [5J. 

The improvement of the aerodynamic model is the real crux of the formulation, 
since a correct and complete account of the historical effects related to unste
adyness, wake and dynamic stall completely couples the set of equations; this 
fact, when it is added to the cost of the aerodynamic computations, can destroy 
the efficiency of the method. 

Therefore the strip theory will be maintained, but it will be joined iterati
vely to a separate aerodynamic module, which should give improved inflow and 
unsteady corrections, on the basis of an assumed trim motion. 

The use of modal reduction techniques [14J,[15J,[16J can be of some help in 
improving the economy of the coupling procedure. 

5. - Basic validation and concluding remarks 

The development of a computer program based on the formulation outlined in 
this paper requires subs·tanti a 1 computer and manpower resources, both because the 
fairly new formulation implies the need of careful and extensive basic tests and 
because it is necessary to implement state of the art numerical techniques in or
der to obtain an acceptable efficiency of the program being produced. 

A basic complete version has been by now completely programmed and it is under
going final tests. Here we will now show some of the basic examples used to va
lidate the formulation. 

The first one is concerned with the trimming and stability analysis of periodic 
solutions of Duffing's equation : 

which has been used to check the basic concepts of this approach [21J . Fig. 1 
shows the trimmed solution in terms of the dynamic amplification factor versus the 
frequency parameter, for different dampings factor and a rather high nonlinear 
term o. This results are obtained by using six three-node elements covering 
one period and they have been checked by an accurate explicit integration method, 
iterated till a periodic motion is reached. Figures 2 and 3 show the behaviour 
of the eigenvalue of largest absolute module, as obtained by following 
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Fig. 3 -Stability behaviour 
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the stable branches of the response curves at increasing and decreasing frequen
cy parameters. 

It can be noted that the unstable branch of the response curve is well marked 
by these diagrams, while it is sometimes difficult to ascertain the stability 
by means of the explicit integration. 
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The capability of the blade beam element to correctly describe large displa
cements is shown by Fig. 4, which favorably compares with the results of Ref.C22J 
and [23J. This element is capable to represent arbitrarily curved and pretwisted 
blades with non coincident deformation ana stress resultant center points. The 
previous results are obtained within the general program by a cons-
tant forcing over an assigned periodic motion, with aerodynamic and inertia forces 
suppressed. 

£ 

R 

FH 
H 

'6 FH LH CO P. C AS L E 

36° 150 85 1630 5265 335 180 240 12 5 

AS 

Fig. 5 - Rotor geometry 

The rema1n1ng figures show some trim and stability results related to a rea
listic rigid blade of the articulated rotor, sketched in Fig. 5. 

In particular Fig. 6 demonstrates fast convergence to the hovering trim, which 
is important in establishing a base solution for a continuation approach to other 
conditions, such as the one of Fig. 7, which is related to an high advance ratio 
and presents a rather severe stall on the retreating blade. 

Fig. 8 and 9 demonstrate the stability margins for some flight conditions and 
at different rotor speeds. 

More substantial results of calculations relating to a rotor with an elastic 
blade cannot be presented yet, but nevertheless we think the results shown sub
stantiate the main features of this approach, i.e. : 
- minimum analytical development effort and almost automatic formulation of the 

response equation; 
- capability of directly trim the rotor to a periodic motion; 
- sound approach to the stability check of the periodic solution, with the tran-

sition matrix afforded as a by-product of the procedure; 
- open ended formulation usable for either simple or sophisticated analyses. 
A point that remain to be solved is the development of a procedure that can ef

ficiently interface this method with more sophisticated aerodynamic formulations 
than simple strip theory. This problem is more crucial in this formulation than 
in other ones, because it can substantially effect the sparsity of the incremen-
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