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In this paper the current state-of-the-art in subspace model
identification is reviewed, specific issues such as the esti-
mation of continuous-time models are discussed and a set
of methods suitable for time-domain, continuous-time iden-
tification of rotorcraft dynamics is presented. The proposed
technique, which can deal with data generated under feed-
back, is illustrated by means of simulation results.

INTRODUCTION

The derivation of accurate dynamic models for helicopter
aeromechanics is becoming more and more important, as pro-
gressively stringent requirements are being imposed on ro-
torcraft control systems: as the required control bandwidth
increases, accurate models become a vital part of the de-
sign problem. In this respect, system identification has been
known for a long time as a viable approach to the deriva-
tion of control-oriented dynamic models in the rotorcraft field
(see for example the recent books [28, 13] and the references
therein).

In the system identification literature, on the other hand,
one of the main novelties of the last two decades has been the
development of the so-called Subspace Model Identification
(SMI) methods (see for example the books [31, 36]), which
have proven extremely successful in dealing with the esti-
mation of state space models for Multiple-Inputs Multiple-
Outputs (MIMO) systems. Surprisingly enough, in spite of
the ease with which SMI can be exploited in dealing with
MIMO modelling problems, until recently these methods
have received limited attention from the rotorcraft commu-
nity, with the partial exception of some contributions suchas
[35, 5, 19]). SMI methods are particularly well suited for
rotorcraft problems, for a number of reasons. First of all, the
subspace approach can deal in a very natural way with MIMO
problems; in addition, all the operations performed by sub-
space algorithms can be implemented with numerically stable
and efficient tools from numerical linear algebra. Finally,in-
formation from separate data sets (such as generated during
different experiments on the system) can be merged in a very
simple way into a single state space model. Recently, see
[17], the interest in SMI for helicopter model identification
has been somewhat revived and the performance of subspace
methods has been demonstrated on flight test data. However,
so far only methods and tools which go back 10 to 15 years
in the SMI literature (such as the MOESP algorithm of [32]
and the bootstrap-based method for uncertainty analysis of
[6]) have been considered. Therefore, the further potential
benefits offered by the latest developments in the field have
not been fully exploited. Among other things, present-day
approaches can provide:

• unbiased model estimates from data generated during
closed-loop operation, as is frequently the case in ex-
periments for rotorcraft identification (see, e.g., [7, 12]);

• the possibility to quantify model uncertainty using ana-
lytical expressions for the variance of the estimates in-
stead of relying on computational statistics (see [7]);

• the direct estimation of continuous-time models from
(possibly non-uniformly) sampled input-output data (see
[2, 3, 4] and the references therein).

In view of the above discussion, this paper has the fol-
lowing objectives. First, the current state-of-the-art inSMI
is reviewed and specific issues such as the estimation of
continuous-time models are discussed. Second, a set of meth-
ods suitable for time-domain, continuous-time identification
of rotorcraft dynamics is presented. The proposed technique
can deal with data generated in closed-loop operation as it
does not require restrictive assumptions in this sense. Finally,
the achievable model accuracy is illustrated by means of sim-
ulation results for a full-scale helicopter.

SUBSPACE MODEL IDENTIFICATION:
A SHORT OVERVIEW

As recounted in [9], by the late 70s the theory of MIMO linear
systems had been completely understood, and yet from a prac-
tical point of view black-box identification of MIMO systems
remained an issue until the late 80s. The cause for this was the
estimation of the structural indices that characterize thepa-
rameterizations of MIMO systems, which is tricky and often
leads to ill-conditioned numerical problems (see e.g., [10]).
Therefore, there was a strongly felt need for simple, possi-
bly suboptimal, procedures bypassing the need for estimating
structural indices. SMI methods offered exactly the poten-
tial to overcome this difficulty. In the last twenty years or so,
SMI algorithms have been developed, which have proven ex-
tremely successful in dealing with the estimation of discrete-
time state space models for MIMO systems. Classical SMI
methods, developed in the early 90s for the estimation of
discrete-time models, are the MIMO Output-Error State sPace
(MOESP, see [32] and the references therein) class of algo-
rithms, based on the idea of estimating a basis of the observ-
ability subspace directly from data, and the N4SID algorithm
(see [29]), which relies on the estimation of the state sequence
for the system as an intermediate step for the estimation of
the state space model. A tutorial, detailed account of such
methods can be found in the textbooks [31, 36]. Besides the
possibility of dealing with MIMO problems in a simple and
natural way, one of the keys to the success of SMI methods in
applications is that all the operations performed by subspace
algorithms can be implemented with numerically stable and
efficient tools from numerical linear algebra, based on the nu-
merically robust QR factorisation and on the singular value
decomposition (see, e.g., [26]).

Not surprisingly, the problem of extending SMI methods to
the identification of continuous-time systems has been stud-
ied in a number of contributions. In [30] a frequency-domain
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approach to subspace identification of continuous-time mod-
els was proposed, while a time-domain SMI algorithm able to
identify a continuous-time model from sampled input-output
data was first proposed in [11], building on the framework
introduced in [14]. More precisely, in the cited thesis the
class of SMI algorithms was extended to the identification
of continuous-time models through the use of Laguerre fil-
ters: this allowed the development of a method that deals with
noise in a similar way as its discrete-time counterparts. More
recently, in [22] the version of the MOESP algorithm pre-
sented in [33, 34] was adopted and a discrete-time algebraic
equation was derived starting from sampled input-output data
by describing derivatives of stochastic processes in the distri-
bution sense, while in [1, 20] the combination of the MOESP
algorithm with filtering methods to avoid the need to compute
numerical derivatives of input-output signals was proposed.
In [25] a novel approach to the problem of continuous-time
SMI has been presented, based on the adoption of orthonor-
mal basis functions to arrive, again, at a MOESP-like data
equation for a continuous-time system.

All the above mentioned contributions, however, assume
that the system under study is operating in open-loop. This
assumption is frequently restrictive in practice and is typi-
cally violated in aerospace applications, in which partialloop
closures must be retained during identification experiments,
primarily for safety issues (see, e.g., [13, 16, 28]). The prob-
lem of closed-loop SMI has been studied extensively in re-
cent years due to its high relevance for practical applica-
tions (see, e.g., [18, 8, 7, 12] and the references therein).
The present state-of-the-art is represented by the so-called
Predictor-Based Subspace IDentification (PBSID) algorithm
(see, again, [7]) which, under suitable assumptions, can pro-
vide consistent estimates of the state space matrices for a
discrete-time, linear time-invariant system operating under
feedback. The problem of closed-loop subspace identifica-
tion in continuous-time has been first considered in the litera-
ture in [21], where the application of the errors-in-variables
approach of [8] is proposed to deal with correlation in a
continuous-time setting. More recently, see [2, 3, 4], novel
continuous-time SMI schemes, based on the derivation of
PBSID-like algorithms within the all-pass domains proposed
in [11] and [25] and relying, respectively, on Laguerre filter-
ing and Laguerre projections of the sampled input-output data
have been proposed.

PROBLEM STATEMENT AND PRELIMINARIES

Consider the linear, time-invariant continuous-time system

ẋ(t) = Ax(t) +Bu(t) + w(t), x(0) = x0

y(t) = Cx(t) +Du(t) + v(t) (1)

wherex ∈ Rn, u ∈ Rm andy ∈ Rp are, respectively, the
state, input and output vectors andw ∈ Rn andv ∈ Rp are
the process and the measurement noise, respectively, with co-
variance given by

E

{

[

w(t1)
v(t1)

] [

w(t2)
v(t2)

]T
}

=

[

Q S
ST R

]

δ(t2 − t1).

The system matricesA, B, C andD are such that(A,C) is
observable and(A, [B,Q1/2]) is controllable. Assume that a
dataset{u(ti), y(ti)}, i ∈ [1, N ] of sampled input/output data

(possibly associated with a non equidistant sequence of sam-
pling instants) obtained from system (1) is available. Then,
the problem is to provide estimates of the state space matrices
A, B, C andD (up to a similarity transformation) on the ba-
sis of the available data. Note that unlike most identification
techniques, in this setting incorrelation betweenu andw,v is
not required, so that this approach is viable also for systems
operating under feedback.

In the following Sections a number of definitions will be
used, which are summarised hereafter for the sake of clarity
(see, e.g., [37, 14, 23] for further details).

Let L2(0,∞) denote the space of square integrable and
Lebesgue measurable functions of time0 < t < ∞. Con-
sider the first order all-pass (inner) transfer function

w(s) =
s− a

s+ a
, (2)

a > 0, together with the associated realisation

w(s) =
cwbw
s− aw

+ dw, (3)

whereaw = −a, bw = −
√
2a, cw =

√
2a, dw = 1. w(s)

generates the family of Laguerre filters, defined as

Li(s) = wi(s)L0(s) =
√
2a

(s− a)i

(s+ a)i+1
. (4)

Denote withℓi(t) the impulse response of thei-th Laguerre
filter. Then, it can be shown that the set

{ℓ0, ℓ1, . . . , ℓi, . . .} (5)

is an orthonormal basis ofL2(0,∞), i.e., all signals in
L2(0,∞) can be represented by means of the set of their pro-
jections on the Laguerre basis.

FROM CONTINUOUS-TIME TO DISCRETE-TIME
USING LAGUERRE PROJECTIONS

The continuous-time algorithms discussed in this paper are
based on the results first presented in [25, 23], and further
expanded in [15, 24], which allow to obtain a discrete-time
equivalent model starting from the continuous-time system
(1), along the following lines.

First note that under the assumptions stated in the previous
section, (1) can be written in innovation form as

ẋ(t) = Ax(t) +Bu(t) +Ke(t)

y(t) = Cx(t) +Du(t) + e(t) (6)

and it is possible to apply the results of [25] to derive a
discrete-time equivalent model, as follows. Consider the first
order inner functionw(s) defined in (2) and apply to the input
u, the outputy and the innovatione of (6) the transformations

ũ(k) =

∫ ∞

0

ℓk(t)u(t)dt

ỹ(k) =

∫ ∞

0

ℓk(t)y(t)dt (7)

ẽ(k) =

∫ ∞

0

ℓk(t)e(t)dt,



whereũ(k) ∈ Rm, ẽ(k) ∈ Rp and ỹ(k) ∈ Rp. Then (see
[25] for details) the transformed system has the state space
representation

ξ(k + 1) = Aoξ(k) +Boũ(k) +Koẽ(k), ξ(0) = 0

ỹ(k) = Coξ(k) +Doũ(k) + ẽ(k) (8)

where the state space matrices are given by

Ao = (A− aI)−1(A+ aI)

Bo =
√
2a(A− aI)−1B

Ko =
√
2a(A− aI)−1K (9)

Co = −
√
2aC(A− aI)−1

Do = D − C(A − aI)−1B.

CONTINUOUS-TIME PREDICTOR-BASED
SUBSPACE MODEL IDENTIFICATION

In this Section a summary of the batch continuous-time PB-
SID algorithm proposed in [2, 4] is provided, and its imple-
mention is discussed.

Starting from system (6), in this Section a sketch of the
derivation of a PBSID-like approach to the estimation of the
state space matricesAo, Bo, Co, Do, Ko is presented. Con-
sidering the sequence of sampling instantsti, i = 1, . . . , N ,
the inputu, the outputy and the innovatione of (6) are sub-
jected to the transformations

ũi(k) =

∫ ∞

0

ℓk(τ)u(ti + τ)dτ

ỹi(k) =

∫ ∞

0

ℓk(τ)y(ti + τ)dτ (10)

ẽi(k) =

∫ ∞

0

ℓk(τ)e(ti + τ)dτ

(or to the equivalent ones derived from (7)), whereũi(k) ∈
Rm, ẽi(k) ∈ Rp andỹi(k) ∈ Rp. Then (see [25] for details)
the transformed system has the state space representation

ξi(k + 1) = Aoξi(k) +Boũi(k) +Koẽi(k), ξi(0) = x(ti)

ỹi(k) = Coξi(k) +Doũi(k) + ẽi(k) (11)

where the state space matrices are given by (9).
Letting now

z̃i(k) =
[

ũT
i (k) ỹTi (k)

]T

and

Āo = Ao −KoCo

B̄o = Bo −KoDo

˜Bo =
[

B̄o Ko

]

,

system (11) can be written in predictor form as

ξi(k + 1) = Āoξi(k) + ˜Boz̃i(k), ξi(0) = x(ti)

ỹi(k) = Coξi(k) +Doũi(k) + ẽi(k), (12)

to which the PBSIDopt algorithm, summarised hereafter, can
be applied to compute estimates of the state space matrices
Ao, Bo, Co, Do, Ko. To this purpose note that iteratingp− 1
times the projection operation (i.e., propagatingp−1 forward

in the indexk the first of equations (12), wherep is the so-
called past window length) one gets

ξi(k + 2) = Ā2
oξi(k) +

[

Āo
˜Bo

˜Bo

]

[

z̃i(k)
z̃i(k + 1)

]

... (13)

ξi(k + p) = Āp
oξi(k) +KpZ0,p−1

i

where

Kp =
[

Āp−1
o

˜B0 . . . ˜Bo

]

(14)

is the extended controllability matrix of the system in the
transformed domain and

Z0,p−1
i =







z̃i(k)
...

z̃i(k + p− 1)






.

Under the considered assumptions,Āo has all the eigenvalues
inside the open unit circle, so the term̄Ap

oξi(k) is negligible
for sufficiently large values ofp and we have that

ξi(k + p) ≃ KpZ0,p−1
i .

As a consequence, the input-output behaviour of the system
is approximately given by

ỹi(k + p) ≃ CoK
pZ0,p−1

i +Doũi(k + p) + ẽi(k + p)

... (15)

ỹi(k + p+ f) ≃ CoK
pZf,p+f−1

i +Doũi(k + p+ f)+

+ ẽi(k + p+ f),

so that introducing the vector notation

Y p,f
i =

[

ỹi(k + p) ỹi(k + p+ 1) . . . ỹi(k + p+ f)
]

Up,f
i =

[

ũi(k + p) ũi(k + p+ 1) . . . ũi(k + p+ f)
]

Ep,f
i =

[

ẽi(k + p) ẽi(k + p+ 1) . . . ẽi(k + p+ f)
]

Ξp,f
i =

[

ξi(k + p) ξi(k + p+ 1) . . . ξi(k + p+ f)
]

Z̄p,f
i =

[

Z0,p−1
i Z1,p

i . . . Zf,p+f−1
i

]

(16)

equations (13) and (15) can be rewritten as

Ξp,f
i ≃ KpZ̄p,f

i

Y p,f
i ≃ CoK

pZ̄p,f
i +DoU

p,f
i + Ep,f

i . (17)

Considering now the entire dataset fori = 1, . . . , N , the data
matrices become

Y p,f = [ỹ1(k + p) . . . ỹN(k + p) . . .

ỹ1(k + p+ f) . . . ỹN(k + p+ f)], (18)

and similarly forUp,f
i , Ep,f

i , Ξp,f
i andZ̄p,f

i . The data equa-
tions (17), in turn, are given by

Ξp,f ≃ KpZ̄p,f

Y p,f ≃ CoK
pZ̄p,f +DoU

p,f + Ep,f . (19)

From this point on, the algorithm can be developed along the
lines of the discrete-time PBSIDopt method, i.e., by carrying
out the following steps. Consideringp = f , estimates for



the matricesCoK
p andDo are first computed by solving the

least-squares problem

min
CoK

p,Do

‖Y p,p − CoK
pZ̄p,p −DoU

p,p‖F , (20)

where by‖ · ‖F we denote the Frobenius norm of a matrix.
Defining now the extended observability matrixΓp as

Γp =











Co

CoĀo

...
CoĀ

p−1
o











(21)

and noting that the product ofΓp andKp can be written as

ΓpKp ≃











CoĀ
p−1

˜Bo . . . Co
˜Bo

0 . . . CoĀ ˜Bo

...
0 . . . CoĀ

p−1
˜Bo











, (22)

such product can be computed using the estimatêCoKp of
CoK

p obtained by solving the least squares problem (20).
Recalling now that

Ξp,p ≃ KpZ̄p,p (23)

it also holds that

ΓpΞp,p ≃ ΓpKpZ̄p,p. (24)

Therefore, computing the singular value decomposition

ΓpKpZ̄p,p = UΣV T (25)

an estimate of the state sequence can be obtained as

̂Ξp,p = Σ1/2
n V T

n = Σ−1/2
n UT

n ΓpKpZ̄p,p, (26)

from which, in turn, an estimate ofCo can be computed by
solving the least squares problem

min
Co

‖Y p,p − ̂DoU
p,p − Co

̂Ξp,p‖F . (27)

The final steps consist of the estimation of the innovation data
matrixEp,p

Ep,p = Y p,p − ̂Co
̂Ξp,p − ̂DoU

p,p (28)

and of the entire set of the state space matrices for the system
in the transformed domain, which can be obtained by solving
the least squares problem

min
Ao,Bo,Ko

‖̂Ξp+1,p −Ao
̂Ξp,p−1 −BoU

p,p−1 −KoE
p,p−1‖F .

(29)
The state space matrices of the original continuous-time sys-
tem can then be retrieved by inverting the (bilinear) transfor-
mations (9).

SIMULATION STUDY: MODEL IDENTIFICATION
FOR THE BO-105 HELICOPTER

We consider the BO-105, possibly the most studied helicopter
in the rotorcraft system identification literature. The BO-105
is a light, twin-engine, multi-purpose utility helicopter. In
this example it is considered in forward flight at80 knots,

a flight condition which corresponds to unstable dynamics,
with the aim of demonstrating the identification of a six-DOF
state-space model with test data extracted from a simulator
based on the nine-DOF model from [27]. As described in the
cited reference, the model includes the classical six DOF and
some additional states to account for some additional effects,
namely:

• The BO-105 exhibits highly coupled body-roll and rotor-
flapping responses; their interaction is represented in the
model with a dynamic equation that describes the flap-
ping dynamics using the cyclic controls.

• A second order dipole is appended to the model of roll
rate response to lateral stick in order to account for the
effect of lead-lag rotor dynamics.

Therefore, the simulator includes a nine-DOF model includ-
ing the six-DOF quasi steady dynamics, the flapping equa-
tions and the lead-lag dynamics modelled with a complex
dipole. Delays at the input of the model are also taken into
account in the simulation, though they are not estimated. The
helicopter is considered in forward flight at80 knots. The
state vector and the trim values are

x =
[

u v w p q r φ θ a1s b1s x1 x2

]

and, respectively,

u0 = 40 m/s, v0 = 3 m/s, w0 = −5 m/s, θ0 = 0.
(30)

The state vector includes the longitudinal flappinga1s, the
lateral flappingb1s and two state variablesx1 andx2, com-
ing from the lead-lag dynamics complex dipole. Finally, the
output vector is

y =
[

u v w p q r φ θ
]

, (31)

i.e., the state variables related to quasi steady dynamics are
measured. Note that in this example it has been chosen to
identify only the six-DOF quasi steady dynamics of the heli-
copter. The identification experiment is performed in closed-
loop because of the instability of the model. The input vari-
ables (δlat,δlon,δped,δcol) have been excited in the same ex-
periment with pseudorandom binary signals with a duration
of 60 s. The perturbation of the control inputs has a1% ampli-
tude and the sampling time is0.008s. The parameters of the
algorithm presented in the previous Section have been chosen
asp = 40 anda = 45. The obtained results are illustrated
in Figures 1-12, which provide a comparison between the fre-
quency response of the nine-DOF model (solid lines in the
figures) and the frequency response of the identified model
(dashed lines in the figures). As can be seen from the fig-
ures, the agreement is quite satisfactory. In particular, some
discrepancies between the nine-DOF model and the reduced
order identified one appear only at frequencies where either
the neglected modes start playing a significant role in the dy-
namics of the system and/or the excitation level provided by
the perturbation inputs starts to prove insufficient.

Finally, a time-domain validation of the identified model
has been also carried out, by measuring the accuracy of the
model in response to a doublet input signal on each input
channel. The input sequence used in the validation experi-
ment is illustrated in Figure 13, while the time history for two
of the outputs (u andw) is presented in Figure 14. Again,
even though the open-loop system is unstable, the simulated
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Fig. 1. Frequency response from collective input to linear
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Fig. 2. Frequency response from lateral cyclic input to linear
velocities. (real: solid line; estimated: dashed line)
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Fig. 3. Frequency response from longitudinal cyclic input to
linear velocities. (real: solid line; estimated: dashed line)
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Fig. 4. Frequency response from pedal input to linear veloci-
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Fig. 5. Frequency response from collective input to angular
velocities. (real: solid line; estimated: dashed line)
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Fig. 6. Frequency response from lateral cyclic input to angu-
lar velocities. (real: solid line; estimated: dashed line)
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Fig. 7. Frequency response from longitudinal cyclic input to
angular velocities. (real: solid line; estimated: dashed line)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−5

10
0

Angular velocities − Input Dped

p 
[r

ad
/s

]

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−5

10
0

q 
[r

ad
/s

]

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−5

10
0

r 
[r

ad
/s

]

Frequency [rad/s]

Fig. 8. Frequency response from pedal input to angular ve-
locities. (real: solid line; estimated: dashed line)
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Fig. 9. Frequency response from collective input to attitude
angles. (real: solid line; estimated: dashed line)
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Fig. 10. Frequency response from lateral cyclic input to atti-
tude angles. (real: solid line; estimated: dashed line)
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Fig. 11. Frequency response from longitudinal cyclic inputto
attitude angles. (real: solid line; estimated: dashed line)
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Fig. 12. Frequency response from pedal input to attitude an-
gles. (real: solid line; estimated: dashed line)



outputs obtained from the identified model (dashed lines)
match very well the ones computed from the nine-DOF model
(solid lines). In quantitative terms, considering the relative
error norm, defined as‖e‖2

‖y‖2

, its value is below5% on all the
considered output variables.

0 2 4 6 8 10 12 14 16
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Doublet Inputs

Time [s]

δ lo
n, δ

la
t, δ

pe
d, δ

co
l [%

]

 

 

δ
lon

δ
lat

δ
ped

δ
col

Fig. 13. Doublet input signal used for model validation.
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dashed line).

CONCLUDING REMARKS

The problem of continuous-time subspace model identifica-
tion has been considered and a batch algorithm based on La-
guerre projections of the input-output variables followedby
a PBSID identification step has been proposed. Simulation
results show that the proposed schemes are viable for rotor-
craft applications and can deal successfully with data gener-
ated during closed-loop experiments.
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