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CONTINUOUS-TIME PREDICTOR-BASED SUBSPACE IDENTIFICATION
FOR HELICOPTER DYNAMICS

Marco Bergamasco, Marco Lovera
Dipartimento di Elettronica e Informazione, Politecniddvillano

In this paper the current state-of-the-art in subspace mode e the possibility to quantify model uncertainty using ana-
identification is reviewed, specific issues such as the esti- lytical expressions for the variance of the estimates in-
mation of continuous-time models are discussed and a set  stead of relying on computational statistics (see [7]);
of methods suitable for time-domain, continuous-time iden
tification of rotorcraft dynamics is presented. The propose  © the direct estimation of continuous-time models from
technique, which can deal with data generated under feed-  (Possibly non-uniformly) sampled input-output data (see
back, is illustrated by means of simulation results. [2, 3, 4] and the references therein).

In view of the above discussion, this paper has the fol-
INTRODUCTION lowing objectives. First, the current state-of-the-arSii|
is reviewed and specific issues such as the estimation of
The derivation of accurate dynamic models for helicopter CONtinuous-time models are discussed. Second, a set of meth
ods suitable for time-domain, continuous-time identifimat

aeromechanics is becoming more and more important, as pro ¢ e .
gressively stringent requirements are being imposed on ro-° rotorcraft dynamics is presented. The proposed teckniqu

torcraft control systems: as the required control bandwidt €20 deal with data generated in closed-loop operation as it
increases, accurate models become a vital part of the degoes not require restrictive assumptions in this sensallizin

sign problem. In this respect, system identification hasibee the achievable model accuracy is illustrated by means of sim

known for a long time as a viable approach to the deriva- Ulation results for a full-scale helicopter.
tion of control-oriented dynamic models in the rotorcradtdi
(see for example the recent books [28, 13] and the referenceSUBSPACE MODEL IDENTIFICATION:
therein). A SHORT OVERVIEW
In the system identification literature, on the other hand,
one of the main novelties of the last two decades has been thés recounted in [9], by the late 70s the theory of MIMO linear
development of the so-called Subspace Model Identificationsystems had been completely understood, and yet from a prac-
(SMI) methods (see for example the books [31, 36]), which tical point of view black-box identification of MIMO systems
have proven extremely successful in dealing with the esti- remained an issue until the late 80s. The cause for this veas th
mation of state space models for Multiple-Inputs Multiple- estimation of the structural indices that characterizepre
Outputs (MIMO) systems. Surprisingly enough, in spite of rameterizations of MIMO systems, which is tricky and often
the ease with which SMI can be exploited in dealing with leads to ill-conditioned numerical problems (see e.g.])[10
MIMO modelling problems, until recently these methods Therefore, there was a strongly felt need for simple, possi-
have received limited attention from the rotorcraft commu- bly suboptimal, procedures bypassing the need for estigati
nity, with the partial exception of some contributions sash  structural indices. SMI methods offered exactly the poten-
[35, 5, 19]). SMI methods are particularly well suited for tial to overcome this difficulty. In the last twenty years ot s
rotorcraft problems, for a number of reasons. First of b}, t  SMI algorithms have been developed, which have proven ex-
subspace approach can deal in a very natural way with MIMO tremely successful in dealing with the estimation of disere
problems; in addition, all the operations performed by sub- time state space models for MIMO systems. Classical SMI
space algorithms can be implemented with numerically stabl methods, developed in the early 90s for the estimation of
and efficient tools from numerical linear algebra. Finailhy, discrete-time models, are the MIMO Output-Error State sPac
formation from separate data sets (such as generated duringMOESP, see [32] and the references therein) class of algo-
different experiments on the system) can be merged in a veryrithms, based on the idea of estimating a basis of the observ-
simple way into a single state space model. Recently, seeability subspace directly from data, and the N4SID algonith
[17], the interest in SMI for helicopter model identificatio  (see [29]), which relies on the estimation of the state seceie
has been somewhat revived and the performance of subspader the system as an intermediate step for the estimation of
methods has been demonstrated on flight test data. Howevethe state space model. A tutorial, detailed account of such
so far only methods and tools which go back 10 to 15 yearsmethods can be found in the textbooks [31, 36]. Besides the
in the SMI literature (such as the MOESP algorithm of [32] possibility of dealing with MIMO problems in a simple and
and the bootstrap-based method for uncertainty analysis ofhatural way, one of the keys to the success of SMI methods in
[6]) have been considered. Therefore, the further potentia applications is that all the operations performed by subspa
benefits offered by the latest developments in the field havealgorithms can be implemented with numerically stable and
not been fully exploited. Among other things, present-day efficient tools from numerical linear algebra, based on the n
approaches can provide: merically robust QR factorisation and on the singular value
decomposition (see, e.g., [26]).
e unbiased model estimates from data generated during Not surprisingly, the problem of extending SMI methods to
closed-loop operation, as is frequently the case in ex-the identification of continuous-time systems has been- stud
periments for rotorcraft identification (see, e.g., [7,)12] ied in a number of contributions. In [30] a frequency-domain
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approach to subspace identification of continuous-time-mod (possibly associated with a non equidistant sequence of sam
els was proposed, while a time-domain SMI algorithm able to pling instants) obtained from system (1) is available. Then
identify a continuous-time model from sampled input-otitpu the problem is to provide estimates of the state space reatric
data was first proposed in [11], building on the framework A, B, C'andD (up to a similarity transformation) on the ba-
introduced in [14]. More precisely, in the cited thesis the sis of the available data. Note that unlike most identifarati
class of SMI algorithms was extended to the identification techniques, in this setting incorrelation betweeandw,v is

of continuous-time models through the use of Laguerre fil- not required, so that this approach is viable also for system
ters: this allowed the development of a method that deals wit operating under feedback.

noise in a similar way as its discrete-time counterpartsteMo In the following Sections a number of definitions will be
recently, in [22] the version of the MOESP algorithm pre- used, which are summarised hereafter for the sake of clarity
sented in [33, 34] was adopted and a discrete-time algebraiqsee, e.g., [37, 14, 23] for further details).

equation was derived starting from sampled input-outpttda  Let £,(0,00) denote the space of square integrable and
by describing derivatives of stochastic processes in thieidi  Lebesgue measurable functions of tiie< ¢t < co. Con-
bution sense, while in [1, 20] the combination of the MOESP sider the first order all-pass (inner) transfer function
algorithm with filtering methods to avoid the need to compute

numerical derivatives of input-output signals was propose w(s) s—a )

In [25] a novel approach to the problem of continuous-time s+a’
SMI has been presented, based on the adoption of orthonor-
mal basis functions to arrive, again, at a MOESP-like data ¢
equation for a continuous-time system.

> 0, together with the associated realisation

Cuwb;
All the above mentioned contributions, however, assume w(s) = - f: + du, 3)
that the system under study is operating in open-loop. This v
assumption is frequently restrictive in practice and isityp \\herea.. — —a b — —V2a, cw = V2a, dp = 1. w(s)
w T ’ w T ’ w T ’ w T .

cally violated in aerospace applications, in which pattiap
closures must be retained during identification experisient
primarily for safety issues (see, e.g., [13, 16, 28]). Thabpr ] (s — a)’
lem of closed-loop SMI has been studied extensively in re- Li(s) = w'(s)Lo(s) = \/ﬁm- 4)
cent years due to its high relevance for practical applica-

tions (see, e.g., [18, 8, 7, 12] and the references therein) penote with¢;(¢) the impulse response of theth Laguerre
The present state-of-the-art is represented by the seecall fijter. Then, it can be shown that the set

Predictor-Based Subspace IDentification (PBSID) algorith

(see, again, [7]) which, under suitable assumptions, can pr {lo,01,...,4;,...} (5)
vide consistent estimates of the state space matrices for a

discrete-time, linear time-invariant system operatinglem  is an orthonormal basis of(0,00), i.e., all signals in
feedback. The problem of closed-loop subspace identifica-£,(0, o) can be represented by means of the set of their pro-
tion in continuous-time has been first considered in thedite  jections on the Laguerre basis.

ture in [21], where the application of the errors-in-vatésh

approach of [8] is proposed to deal with correlation in a

continuous-time setting. More recently, see [2, 3, 4], hove FROM CONTINUOGUSTIME TO DISCRETE-TIME
continuous-time SMI schemes, based on the derivation of USING LAGUERRE PROJECTIONS

PBSID-like algorithms within the all-pass domains propbse
in [11] and [25] and relying, respectively, on Laguerre filte
ing and Laguerre projections of the sampled input-outptat da
have been proposed.

generates the family of Laguerre filters, defined as

The continuous-time algorithms discussed in this paper are
based on the results first presented in [25, 23], and further
expanded in [15, 24], which allow to obtain a discrete-time
equivalent model starting from the continuous-time system
(1), along the following lines.

First note that under the assumptions stated in the previous
section, (1) can be written in innovation form as

PROBLEM STATEMENT AND PRELIMINARIES

Consider the linear, time-invariant continuous-time syst
&(t) = Azx(t) + Bu(t) + Ke(t)

i) = Ax Bu w(t), © = 2o
(t) = Ax(t) + Bu(t) + w(t), z(0) y(t) = Cx(t) + Du(t) + e(t) ©6)

y(t) = Cx(t) + Du(t) + v(t) 1)
and it is possible to apply the results of [25] to derive a
discrete-time equivalent model, as follows. Consider tfs fi

order inner functionu(s) defined in (2) and apply to the input
u, the outputy and the innovation of (6) the transformations

wherex € R", u € R™ andy € RP are, respectively, the
state, input and output vectors amde R™ andv € RP are
the process and the measurement noise, respectively, avith ¢
variance given by

E{quFm”f}=[Q ﬁ5®—m» M“Am&@wmu

’U(tQ) ST 0
i) = [ e ™
The system matriced, B, C and D are such that4, C) is o
observable and4, [B, Q*/?]) is controllable. Assume that a &(k) = Ce(t)e(t)dt,
datase{u(t;), y(t:)}, ¢ € [1, N] of sampled input/output data 0



whered(k) € R™, é(k) € RP andg(k) € RP. Then (see in the indexk the first of equations (12), whegeis the so-
[25] for details) the transformed system has the state spacecalled past window length) one gets
representation

&k +2) = A26(k) + |4,B, B, [;i(k) }

E(k+1) = AL(k) + Bo(k) + K,é(k), £(0) =0 (k+1)
ik) = C, Dy .
§(k) = Cot (k) + Doui(k) + (k) ®) _ 13
where the state space matrices are given by &(k+p) = APE (k) + IC”Z?”’_I
A, = (A—a[)il(A—i-aI) where
— — o)L o -
B, = V2a(4 ~al)"'B K= 4By ... B, (14)
K, =V2a(A—al)'K (9)
C — 7@0(14 —al)™! is the extended controllability matrix of the system in the

transformed domain and
D,=D—C(A—al)™'B.
Zi(k)
CONTINUOUS-TIME PREDICTOR-BASED ZPrt = :
SUBSPACE MODEL IDENTIFICATION Zi(k+p—1)

In this Section a summary of the batch continuous-time PB- Under the considered assumptioﬁs,hgs all the eigenvalues
SID algorithm proposed in [2, 4] is provided, and its imple- inside the open unit circle, so the tetdf¢; (k) is negligible

mention is discussed. for sufficiently large values gf and we have that
Starting from system (6), in this Section a sketch of the o
derivation of a PBSID-like approach to the estimation of the ik +p) =~ KPZ".

state space matrices,, B,, C,, D,, K, is presented Con-
sidering the sequence of sampling instanis = 1,.
the inputu, the outputy and the innovatior of (6) are sub

As a consequence, the input-output behaviour of the system
is approximately given by

jected to the transformations Gilk + p) = CokPZ2P ™ 1 Doty (k + p) + &(k + p)
(k) = / L (T)u(t; + 7)dr (15)
0
0 - P 10) Gilk +p+ f) = CokPZIPH 1 4 Dok +p + )+
ﬂik:/ O (T)y(t; + 7)dT 10 .
o +éei(k+p+f),
éi(k) = Oe(T)e(t; + T)dT so that introducing the vector notation
0
YvPd = gk i (k 1) ... Gk
(or to the equivalent ones derived from (7)), whérék) ! ; (G:(k+p) Gilk+p+1) trt )]
R™, & (k) € RP andj; (k) € RP. Then (see [25] for details) U = [@i(k+p) ai(k+p+1) ... Uz(k +p+ f)]
the transformed system has the state space representation  pr.f _ [ei(k+p) ek+p+1) ... é(k+p+/f)]
ik +1) = A&i(k) + Botii (k) + Koéi(k), &(0) = x(t;) B =[Gk +p) Gk+p+1) ... &(k +p+f)]
Ji(k) = Co&i(k) + Doti (k) + &(k) (11) 0t =700tz zhetio (16)
where the state space matrices are given by (9). equations (13) and (15) can be rewritten as
Letting now _
=)~ xrzpt
~ ~ ~ T
zi(k) = [af (k) 5] (k)] vyl ~ ckrzpd + DU+ EPT. @)
and Considering now the entire dataset fot 1, ..., N, the data

_ matrices become

BO:BO_KODO Yp7f:[gl(kj—’—p)"'g]v(kj—’—p)"'
B,=[B, K|, pk+p+f)...gnk+p+f)l.  (18)
system (11) can be written in predictor form as and similarly foru?/, EP-¥, =7/ and Z"/. The data equa-

B ~ tions (17), in turn, are given by

§i(k+1) = Ay&i(k) + Bozi(k), §i(0) = z(t:) _

- _ =p:f ~ g z0f

Gi(k) = Cofi(k) + Doti(k) + &(k), (12) ]
y»l ~ o,k zvd + DU + EPY. (19)
to which the PBSID),; algorithm, summarised hereafter, can
be applied to compute estimates of the state space matriceBrom this point on, the algorithm can be developed along the
A,, B,, C,, D,, K,. To this purpose note that iteratipg- 1 lines of the discrete-time PBSlp. method, i.e., by carrying

times the projection operation (i.e., propagatingl forward out the following steps. Considering = f, estimates for



the matrice<”, P and D, are first computed by solving the

least-squares problem

min |Y?P — C,KPZPP — D,UPP| p,

C,KP,D, (20)

where by|| - || we denote the Frobenius norm of a matrix.

Defining now the extended observability matfix as
Co
CoA,
I? = : (21)
CoAp1

and noting that the product &® and? can be written as

C,Ar=1B, C,B,
0 ... C,AB,

[PKP ~ _ . (22)
0 ... C,AP"1B,

such product can be computed using the estim/a@ of
C,KP obtained by solving the least squares problem (20).
Recalling now that

EPP ~ KPZPP (23)
it also holds that
[PEPP ~ TPKCP ZPP (24)
Therefore, computing the singular value decomposition
IrrKrPze? = Usv? (25)
an estimate of the state sequence can be obtained as
grr = w12y T — w12y TTeKe Zee, (26)

from which, in turn, an estimate @, can be computed by
solving the least squares problem

min | VPP — D,UPP — C,EPP|| . (27)

The final steps consist of the estimation of the innovatida da

matrix EP-P

EPP — yPp @O@w _ ﬁOUpJ) (28)

a flight condition which corresponds to unstable dynamics,
with the aim of demonstrating the identification of a six-DOF
state-space model with test data extracted from a simulator
based on the nine-DOF model from [27]. As described in the
cited reference, the model includes the classical six DQF an
some additional states to account for some additionaltsffec
namely:

e The BO-105 exhibits highly coupled body-roll and rotor-
flapping responses; their interaction is represented in the
model with a dynamic equation that describes the flap-
ping dynamics using the cyclic controls.

e A second order dipole is appended to the model of roll
rate response to lateral stick in order to account for the
effect of lead-lag rotor dynamics.

Therefore, the simulator includes a nine-DOF model includ-
ing the six-DOF quasi steady dynamics, the flapping equa-
tions and the lead-lag dynamics modelled with a complex
dipole. Delays at the input of the model are also taken into
account in the simulation, though they are not estimated. Th
helicopter is considered in forward flight & knots. The
state vector and the trim values are

m:[u v w p q r ¢ 0 as bis 11 552}
and, respectively,

ug=40mls v9=3mls wog=-5mls 6 =0.

(30)
The state vector includes the longitudinal flapping, the
lateral flappingh;s and two state variables; andx,, com-
ing from the lead-lag dynamics complex dipole. Finally, the
output vector is

y:[uvaqrqbtﬂ, (31)

i.e., the state variables related to quasi steady dynamics a
measured. Note that in this example it has been chosen to
identify only the six-DOF quasi steady dynamics of the heli-
copter. The identification experiment is performed in ctbse
loop because of the instability of the model. The input vari-
ables §14t,010n,0ped.dcor) have been excited in the same ex-
periment with pseudorandom binary signals with a duration
of 60 s. The perturbation of the control inputs haZaampli-
tude and the sampling time (8008s. The parameters of the
algorithm presented in the previous Section have been ohose
asp = 40 anda = 45. The obtained results are illustrated

and of the entire set of the state space matrices for themsyste i, Figyres 1-12, which provide a comparison between the fre-
in the transformed domain, which can be obtained by solving quency response of the nine-DOF model (solid lines in the

the least squares problem

|EPTLP — A, EPP— — B UPPTL — K EPPY 5.

(29)

min
As,Bo, K,

The state space matrices of the original continuous-tirse sy

tem can then be retrieved by inverting the (bilinear) transf
mations (9).

SIMULATION STUDY: MODEL
FOR THE BO-105HELICOPTER

IDENTIFICATION

We consider the BO-105, possibly the most studied helicopte

in the rotorcraft system identification literature. The BO5
is a light, twin-engine, multi-purpose utility helicoptetn
this example it is considered in forward flight 8@ knots,

figures) and the frequency response of the identified model
(dashed lines in the figures). As can be seen from the fig-
ures, the agreement is quite satisfactory. In particutames
discrepancies between the nine-DOF model and the reduced
order identified one appear only at frequencies where either
the neglected modes start playing a significant role in the dy
namics of the system and/or the excitation level provided by
the perturbation inputs starts to prove insufficient.

Finally, a time-domain validation of the identified model
has been also carried out, by measuring the accuracy of the
model in response to a doublet input signal on each input
channel. The input sequence used in the validation experi-
ment is illustrated in Figure 13, while the time history fawot
of the outputs ¢ andw) is presented in Figure 14. Again,
even though the open-loop system is unstable, the simulated
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outputs obtained from the identified model (dashed lines) REFERENCES

match very well the ones computed from the nine-DOF model
(solid lines). In quantitative terms, considering the tieta
error norm, defined a42l2, its value is belows% on all the
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considered output variables.
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CONCLUDING REMARKS

The problem of continuous-time subspace model identifica-
tion has been considered and a batch algorithm based on Laf11]
guerre projections of the input-output variables follovsd

a PBSID identification step has been proposed. Simulation
results show that the proposed schemes are viable for rotor-
craft applications and can deal successfully with datagene [12]
ated during closed-loop experiments.
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