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Abstract The accurate simulation of the rotor wake using first-principles based CFD is primarily a 
gridding problem. In order to capture the tip vortices the computational mesh must be refined in the 
vortex regions, which are not known beforehand and change position over time. In this paper, a high-
order Discontinuous Galerkin method is combined with a pre-adaptation scheme on four-dimensional 
space-time meshes. An iterative pre-adaptation scheme is proposed, where the mesh is first refined on 
blade tip trajectories, and subsequently on streak lines of particles released at the blade tip. The streak 
lines are computed based on the flow solution obtained on the previous mesh. The algorithm is applied 
to the isolated 7AD1 rotor in high-speed flight. Comparison with experiment is favourable. The 
effectiveness of the pre-adaptation strategy combined with high-order simulation is demonstrated.  

 

1 Introduction 
In level helicopter flight there are two regimes 
with high vibration levels, low speed transition 
flight and high speed forward flight. The two 
high vibration regimes translate directly into 
high operating and maintenance costs (Datta et 
al. [2]). There are three key aerodynamic 
phenomena which contribute to the vibratory 
loads: wake induced airloads, compressibility 
effects, and dynamic stall. The current paper is 
focused on the accurate resolution of wake-
induced airloads using Computational Fluid 
Dynamics (CFD) techniques. 
 
As summarised by Datta et al. [2], first 
principles CFD calculation of the wake is 
primarily a grid refinement problem. In order to 
capture the tip vortices the computational mesh 
must be refined in the vortex regions, which are 
not known beforehand. The dynamic nature of 
the wake in forward flight complicates the 
refinement problem since the vortices change 
position over time.  
 
In recent years, the Netherlands National 
Aerospace Laboratory NLR has developed the 
four-dimensional MTMG algorithm for 
accurate rotor simulation. The algorithm is 
especially designed for those flight conditions 
where the detailed resolution of the wake is of 
the utmost importance [15], [6], [14]. The main 
design principle is to attain efficiency in the 

number of degrees of freedom, while 
maintaining a scalable algorithm on parallel 
machines. The aerodynamic CFD module in the 
algorithm demonstrates good vortex capturing 
capabilities, using local mesh refinement in 
both space and time, for relatively short 
turnaround times. A drawback of the method is 
its high memory requirement. For the 
simulation of a BO105 in BVI conditions it 
turns out that the resolution required to track 
the tip vortex for one and a half rotor revolution 
was unattainable using NLR’s computing 
resources.  
 
High order methods in principle have the 
capability of resolving the vortex with less 
degrees of freedom than conventional schemes. 
Hariharan and Sankar [4] have demonstrated 
that a 7th order ENO scheme is capable of 
capturing the tip vortex over 1-2 revolutions 
using only five points across the vortex core. 
The drawback of an ENO scheme is its non-
local character, making it difficult to combine 
with a local mesh refinement algorithm. 
Discontinuous Galerkin (DG) methods [1] do 
not have that drawback: in principle, arbitrarily 
high-order schemes can be constructed on 
locally refined meshes with hanging nodes. 
 
In this paper the higher-order DG method is 
applied to the simulation of a trimmed isolated 
rotor with elastic blades in high-speed flight. 
The outline of the paper is as follows: in the 
next section the numerical method is briefly 



described. In Section 3 the high-speed test case 
is described. Section 4 describes the grid 
adaptation strategy for shocks and vortex wake, 
illustrated by the actual grid used in the 
simulation. Flow simulation results are 
presented in Section 5. Finally, in Section 6 
conclusions are drawn. 

2 Numerial method 
The numerical method is a high-order DG 
scheme combined with an efficient space-time 
solver MTMG for time-periodic problems. 

2.1 Multi-time multi-grid algorithm 
The basic idea of the multi-time multi-grid 
(MTMG) [15] algorithm is that a time-periodic 
problem can be considered a steady problem in 
the sense that after one time period the next 
period shows the same physical phenomena. 
This is formalised by solving the time-
dependent equations simultaneously in both 
space and time for the complete period of the 
problem. This is contrary to the usual time-
serial approach, where one proceeds time step 
after time step on spatial grids. Now the time-
dependent equations are solved on a four-
dimensional space-time grid which contains all 
time levels in a period. Apart from generating a 
periodic solution by construction, the most 
relevant advantage for rotor simulations is that 
the time-accurate coupling of different physics 
models is straightforward. Another important 
benefit is that local grid refinement can be 
applied in space and time, while maintaining a 
scalable algorithm on massively parallel 
machines. 
 
The current algorithm contains four modules, 
an aerodynamic module for the solution of the 
flow equations, a mesh refinement module to 
improve vortex resolution in the flow domain, 
an elastic module to account for the elastic 
blade deformations, and a trim module to trim 
the rotor system. 
 

2.2 Discontinuous Galerkin finite 
element method 

The compressible Euler equations of gas 
dynamics are solved using the discontinuous 
Galerkin (DG) finite element method in an 
arbitrary Lagrangian-Eulerian formulation to 
accommodate moving meshes. Details of the 
flow solver can be found in Van der Vegt et al. 

[10]. Of particular relevance for the simulation 
of vortex flow is the fact that the DG method 
not only solves for cell-averaged flow data, but 
also for the flow gradients. The flow gradients 
are used to determine the vorticity directly and 
as such vorticity transport is contained in the 
discrete equations. Moreover, the DG method is 
ideally suited for local grid refinement. 
 
The flow gradients are part of the numerical 
scheme by combining constant basis functions 
within each element with linear basis functions. 
An obvious extension to the scheme is to allow 
quadratic or cubic basis functions. This 
effectively increases the order of accuracy of 
the scheme to three or four. The drawback is 
that the number of degrees of freedom per 
element is also increased. In one dimension, the 
second order scheme has two degrees of 
freedom per element, the third order scheme 
has three, and the fourth order scheme has four. 
In higher dimensions, the increase in the 
number of degrees of freedom is more 
dramatic: the second order scheme in four 
dimensions has five degrees of freedom per 
element, third order 15, and fourth order 35. In 
this paper, the third order scheme will be 
applied, and compared with the second order 
scheme. 
 
As shown above, the third order scheme solves 
three times as many unknowns as the second 
order scheme. For the stepping-stone test case 
of 2D vortex convection it has been found that 
the third order method has the same resolution 
characteristics as the second order method on a 
mesh which is once refined in every direction. 
For four-dimensional simulations such a 
uniformly refined mesh contains 16 times more 
grid points, so it is expected that the third order 
scheme is 16/3 times more efficient than the 
second order scheme. 

3 Test case 
Data point 135 of the Helishape wind tunnel 
program is simulated [10]. This data point 
concerns a high-speed level flight case at an 
advance ratio of 0.356 for the isolated 7AD1 
rotor with parabolic and anhedral tip. The blade 
has a radius R of 2.1m and a chord c of 0.14m 
(aspect ratio R/c=15). 
 
The flow displays (weak) shocks at the 
advancing side and the vortex wake contributes 



to the vibratory loads at the rotor hub. Hence a 
CFD mesh must be generated capable of 
resolving shocks and vortices. 
 

4 Adaptation strategy 
For industrial applications the most common 
grid adaptation strategy is to use sensors based 
on flow features. Shock sensors based on 
gradients in the flow have in general been quite 
effective in resolving shocks. For tip vortices in 
the rotor wake the effectiveness of feature-
based sensors is not so clear. The 
straightforward vorticity magnitude sensor does 
not discriminate between tip vortices, vortex 
sheets or numerically induced boundary layers. 
More advanced sensors, such as the λ2 criterion 
(Jeong et al. [6]), require significant resolution 
of the vortex to detect it. Such a resolution is 
not present on the initial coarse meshes. 
Because of these findings, it was concluded to 
opt for pre-adaptation, where the mesh is 
refined before the actual flow computation, 
based on the expected location of the tip 
vortices. This will be explained in detail later. 
In effect, the pre-adaptation strategy resembles 
unstructured grid generation more than 
conventional mesh refinement. It is comparable 
to the Chimera approach of Dietz et al. [4], 
where Chimera grids are constructed around the 
expected tip vortex locations. The benefit of 
our approach is that it is still based on the 
single-grid concept.  

4.1 Relevant scales 
Since we solve the Euler equations there is no 
physical limit to the vortex strength. Under 
mesh refinement the tip vortices will grow 
stronger and stronger. In order to avoid 
excessive grid refinement, the cell diameters 
should be limited from below. The minimal cell 
diameter is in general set to R/200, which is one 
quart of the experimentally determined vortex 
core size, where R is the rotor radius 
(Caradonna, [2]). Roughly speaking, this 
resolution corresponds to 12 degrees of 
freedom in each direction in the vortex core for 
the third-order DG method. 
 
In order to avoid dispersion of the vortex in 
time, the physical time step in the vortex should 
correspond to a CFL number xtu ∆∆ / of the 
order of one. The reference velocity is the 
magnitude of the freestream velocity.  Note that 

we have taken the CFL number corresponding 
to the convective velocity and not the acoustic 
signals, since the main mechanism in the wake 
is convection of vorticity. Let T be the period of 
one revolution, then the time step restriction 
translates to the following relation: 
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where µ is the advance ratio. With Rx∆ = 
1/200, an advance ratio of 0.35 we need about 
four hundred time steps for one revolution, or 
one hundred for one period of a four-bladed 
rotor, corresponding to an increment of less 
than one degree azimuth. Note that this time 
step should be sufficient for the convection of 
the vortex, but not necessarily for blade-vortex 
interaction. 
 

4.2 Pre-adaptation on blade 
geometry 

For the four-dimensional algorithm it is of the 
utmost importance to be efficient in the number 
of grid points. Using the pre-adaptation strategy 
as a kind of grid generation, the starting grid 
should be as coarse as possible. At NLR, the 
starting grid is generated using a multi-block 
structured grid generator. In a block-structured 
grid, the resolution required at the geometry 
will extend into the flow domain. In order to 
reduce the number of elements, a coarse mesh 
is generated, which is subsequently locally 
refined near the blades. Care is taken that the 
blade geometry is well-represented under local 
refinement. An impression of the resolution of 
the resulting mesh is shown in Figure 1. The 
number of elements is 64 in the chord direction 
and 104 in the span direction. 
 
The space-time mesh obtained using this 
geometry refinement is referred to as Mesh G0. 
It contains 12.3 million elements, distributed 
over 64 time levels, which is close to the 100 
time levels required for vortex convection. The 
blade motion has been trimmed on this mesh, 
taking into account elastic blade deformations. 

4.3 Pre-adaptation on blade tip 
trajectories 

By their nature, the location of the tip vortices 
is predominantly determined by the trajectory 
of the tip. So, to a very good approximation, the 
vortex trajectories can be taken to be the blade 



tip trajectories. The blade tip trajectories Γ(t) at 
time t are cycloids, described by 
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where Ω is the rotor frequency, w=w(t) is the 
flapping motion of the tip, and ∞u

r
 is the free 

stream velocity.  
 
Based on this geometrical information, the 
mesh may be pre-adapted to increase the 
resolution near the tip trajectories. Whenever a 
cell is within a given distance of a tip trajectory 
and the mesh width or the time step is greater 
than a given threshold the cell is refined. 
Eventually a mesh is ‘generated’ with uniform 
space-time resolution in the expected vortex 
regions. The main benefit of this method is that 
there will be no refinement in other regions, for 
instance in the vortex sheets, hence the total 
number of grid cells is reduced compared to 
feature-based adaptation. 

4.4 Pre-adaptation on streak lines 
Of course, the assumption that the tip vortices 
follow the tip trajectories ignores the effects of 
downwash, contraction and interaction. This 
can be remedied by increasing the area around 
the trajectories which will be refined, but this 
will significantly increase the number of grid 
cells. Another option would be to replace the 
free stream velocity in the definition of the tip 
trajectories Γ(t) by the computed velocity field, 
that is, determine the streak lines of particles 
released at the blade tip.  
 
In this way, an iterative pre-adaptive procedure 
is constructed, where the accuracy of the 
predicted tip vortex locations is increased with 
each iteration. In Figure 3 and Figure 4, a 
comparison is made between the blade tip 
trajectories and the streak lines of particles 
released at the blade tips (using the flow results 
of the next section). The difference increases 
with the age of the vortex. The main difference 
between the two methods is that the second 
accounts for the downwash of the rotor. 
 
Three adaptations have been carried out, 
resulting in the following grids: 

G1. Adaptation on blade tip trajectories, 
with a target mesh width of 0.0075R 
within a distance of 0.05R of the 

trajectories. The mesh contains 14.3 
million elements. 

G2. Adaptation based on streak lines 
using the flow solution on Mesh G1, 
with a target mesh width of 
0.0075R=0.11c at a distance of 
0.0375R of the streak lines. The 
mesh contains 15.4 million elements. 

G3. As G2, but the target mesh width is 
0.005R=0.075c. The mesh contains 
19.3 million elements. 

 
The 19.3 million elements of Mesh G3 are 
equivalent to 290 million degrees of freedom 
per equation. Since the space-time mesh 
contains 64 time slabs, the average number of 
degrees of freedom per time slab is 4.5 million. 
This clearly is a modest number when trying to 
resolve the rotor wake. 
 
It should be remarked that the target mesh 
width is not necessarily attained. A cell is 
refined whenever the mesh width is more than 
two times the target mesh width. Hence, on the 
final mesh, mesh widths will be between once 
and twice the target mesh width. Moreover, out 
of practical considerations, the mesh adaptation 
is stopped before saturation of the refinement 
criterion, and the quality of the mesh is judged 
by inspection. 
 
Figure 5 and Figure 6 show Mesh G3 at two 
horizontal cross sections. The expected tip 
vortex locations are shown as curves, and 
blanked when the distance of the curve to the 
plane is greater than 0.0375R, which is the 
user-defined distance within which cells should 
be refined.  
 
Figure 7 up to Figure 9 illustrate the pre-
adaptation algorithm for the three meshes in a 
grid plane through the rotor axis and 
approximately perpendicular to the vortices. 
For Mesh G2 the attained resolution in the 
expected vortex regions is about 0.01R=0.15c. 
For Mesh G3 the attained resolution is about 
0.006R=0.09c. 
 
It is clear from these figures that the mesh has 
been refined in a uniform way near the 
predicted vortex locations, and nowhere else. 
Hence the pre-adaptation algorithm is very 
effective in limiting the number of refined 
elements. 
 



5 Flow results 
In the experiment the rotor is trimmed for 
thrust, drag and zero flapping. The latter is not 
possible in our MTMG framework, so the rotor 
is trimmed for thrust and zero pitching and 
rolling moment. Once trimmed, the flapping 
motion was seen to be small: at most one 
degree at the retreating side. Hence it is 
expected that at the advancing side the flow 
conditions in the simulation are comparable to 
those of the experiment. 
 
Once the rotor is trimmed, the resolution near 
the blades on the advancing side has been 
improved using the standard shock sensor. An 
illustration  of the resulting mesh is shown in 
Figure 2. Next, the pre-adaptation strategy is 
applied, and the Meshes G1 up to G3 have been 
generated. Please note that the locally refined 
meshes still contain the trimmed and elastic 
blade motion. 
 
Pressure distributions at selected stations and 
azimuth angles are compared with experimental 
data in Figure 10. Simulation results are 
obtained on Mesh G3. General agreement is 
good. As expected, the pressure distributions at 
the retreating side ((c) and (h)) show greater 
differences, probably due to the differences in 
blade motion because of different trimming 
procedures. Agreement at the advancing side at 
92% blade is very good, the agreement at 82% 
and 70% blade is satisfactory. It is expected 
that the relatively coarse resolution of the near 
blade mesh is the cause of this. The mesh at 
92% blade has been locally refined using the 
shock sensor (see Figure 2), whereas at the 
more inboard stations the resolution is that of 
the Mesh G0 (see Figure 1).  
 
Time histories of the pressure at selected blade 
stations are shown in Figure 11. Simulation 
results are obtained on Mesh G3. Overall 
agreement with experiment is evident. Of 
special interest are the stations near the leading 
edge at the lower side of the blade, which are 
the most sensitive to vortex interaction. The 
vortex interaction is visible at the lower side at 
all span stations for x/c=0.06. The amplitude is 
underpredicted for r/R=0.7, but in quite good 
agreement for the other two stations. At span 
station r/R=0.82 the simulation shows the same 
two peaks as the experiment, albeit at different 
amplitudes and a phase shift of -20 degrees 

azimuth. The same phase shift is visible at span 
station r/R=0.92, but the simulation reproduces 
much of the frequency content of the 
experiment. The reader is referred to Steijl et al. 
[10] for a detailed discussion on phase shifts in 
high-speed flight. Based on their findings, the 
phase shift in the current simulation is most 
probably caused by the different blade motion, 
since the trim of the simulation differs from the 
experimental trim. 
 
The effect of discretization scheme and 
resolution at the span station r/R=0.82 is shown 
in detail in Figure 12. The second-order 
simulation on the mesh without vortex 
refinement shows the correct trend, but misses 
the vortex interaction. The second-order 
simulation on the Mesh G2 does show the first 
interaction, bur misses the second, whereas the 
third-order simulation on Mesh G2 captures 
both interactions. 
 
Figure 13 compares the time histories at the 
span stations r/R=0.82 and r/R=0.92 for Mesh 
G2 and Mesh G3, in order to assess the 
importance of the mesh resolution for the 
resolution of the vortex interactions. The 
interaction at r/R=0.82 is already visible on 
Mesh G2. The interaction at r/R=0.92 is 
completely missed on Mesh G2. On Mesh G2 
the tip vortex of the preceding blade is too 
weak to interact with the blade pressures. 
 
Figure 14 shows the vortex systems at an 
azimuth angle of 56 degrees, for second and 
third order solutions on Mesh G2 and G3. 
Clearly, the second order simulations show 
little evidence of vortices at the shown vorticity 
levels: the vortices are present but weak. The 
third order solutions show much improvement 
over the second order solutions. The increased 
resolution on Mesh G3 results in stronger 
vortices which persist longer. 
 
Figure 15 displays the vortex system, viewed 
from below, at an azimuth angle of 56 degrees 
as computed on Mesh G3. Since the vortex 
wake is located below the rotor disk, this view 
presents a clear picture of the vortex system. 
Vortices 1 and 2 (numbering as in the figure) 
are clear and concentrated. Vortex 3 is less 
concentrated: it is slightly weaker than the 
previous vortices, and the iso-contour is no 
longer fully contained in the refined and 
uniform vortex region, causing a ragged 



representation of the iso-contour. Of interest is 
the interaction of Vortex 3 with the wake of the 
root vortex (near the ‘x’ in the figure). The 
interaction causes the vortex to break. Whether 
this is a physical phenomenon or is a 
consequence of the hub modelling is an open 
issue.  
 
In order to assess the accuracy of the streak 
lines pre-adaptation strategy the locations of the 
tip vortices in Mesh G3 are compared with the 
refinement locations in Figure 16 up to Figure 
23. The vortices shown and numbered in Figure 
18, from left to right, are 1) the tip vortex of the 
preceding blade (now at ψ=208o), 2) tip vortex 
of the blade before the preceding blade (now at 
ψ=298o), 3) the vortex sheet and root vortex of 
the preceding blade (now at ψ=208o), 4) the 
root vortex of the next blade (now at ψ=298o), 
5) some debris from the root vortices, 6) the tip 
vortex of the blade which is now at ψ=28o. 
Comparing the two vortex systems, the strength 
of vortex (2) has clearly improved, and the 
vortex is located at the exact position where the 
mesh has been refined. The next two 
refinement area’s, designated for the older tip 
vortices, fail to resolve any vorticity. This is 
most probably caused by the interaction with 
the root vortices, which have stronger 
interactional effects than the wake of a hub 
would have.  
 
In Figure 22 the vortex locations and pre-
adaptation regions are compared for a slice 
which does not intersect the rotor centre, so the 
effect of the hub modelling should be less 
devastating. Again, vortex (2) in downstream 
direction is much stronger on Mesh G3 than on 
Mesh G2. On Mesh G3 vortex (3) is gaining in 
strength, but hardly visible on Mesh G2. All 
three vortices are located within the refinement 
regions (see Figure 23), demonstrating the 
accuracy of the pre-adaptation algorithm. 
 
The pre-adaptation algorithm is an iterative 
algorithm in the sense that each flow solution 
on a given refined mesh will in principle 
produce different streak lines than the streak 
lines used for the refinement. Figure 24 and 
Figure 25 compare the streak lines obtained 
from the flow solutions on Mesh G2 and G3. 
Differences are small compared to the radius of 
0.0375R (the distance below which elements 
are refined). Hence it can be concluded that the 

iterative process of grid refinement on streak 
lines converges. 
 
Figure 26 compares the streak lines on Mesh 
G3 with the vortex locations on the same mesh. 
Within the tolerance of 0.0375R the streak lines 
coincide with the vortex centres. Hence, the 
streak lines of particles released from the blade 
tips provide a sufficiently accurate prediction of 
the tip vortex locations. 
 
This section is concluded with a discussion on 
the computational complexity of the algorithm. 
The trim is executed on the coarse mesh 
without vortex refinement, and is negligible 
compared to obtaining the third-order solution 
on the vortex-refined mesh. Pre-adaptation 
takes about one day, to obtain the flow solution 
takes four and a half days at four processors of 
the NEC SX-8R at 23 Gflop/s sustained. 
Memory requirement for the third-order 
simulation on the mesh with 19 million 
elements is 87GB. Note that at a peak speed of 
128 Gflop/s the NEC SX-8R/8 is a small 
compute server. Considering the scalability of 
the algorithm, the simulations described in this 
paper are expected to take less than a day on a 
teraflop machine. 

6 Conclusions 
A comprehensive approach to the simulation of 
the rotor wake using first-principles CFD has 
been presented. The effectiveness of the pre-
adaptation strategy for the vortex-convection 
for an isolated rotor in high-speed flight has 
been demonstrated. Agreement with experiment 
is relatively good. 
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Figure 1 Blade cross section of the mesh after geometry 
refinement 
 

 
Figure 2 Same cross section after feature 
refinement 
 

 
 

 
Figure 3 Difference between the blade tip trajectories 
and the predicted vortex locations using particle traces. 
Perpendicular view. 
 

 
Figure 4 Difference between the blade tip trajectories and 
the predicted vortex locations using particle traces. Main 
difference is the effect of the downwash of the rotor. 
 

 
 



 
Figure 5 Illustration of the pre-adaptation strategy. An arbitrary horizontal slice of  Mesh G3 is shown, together with 
the expected vortex locations as predicted by the particle traces. The vortex locations are coloured with their distance 
to plane, and not shown if the distance is greater than 0.0375R. Clearly visible is the refinement regions near the 
expected vortex locations. 
 
 
 
 



 
Figure 6 As the previous figure, but a different horizontal plane, below the previous one. 
 
 



 
 
 
 

 
Figure 7 Impression of the mesh obtained from pre-adaptation on blade tip trajectories. The circles have a diameter 
of 0.1R. 
 

 
Figure 8 Impression of the mesh obtained from pre-adaptation on streak lines (target mesh width 0.0075R, attained 
mesh width about 0.01R). The circles have a diameter of 0.075R. 
 
 

 
Figure 9 Impression of the mesh obtained from pre-adaptation on streak lines (target mesh width 0.005R, attained 
mesh width about 0.006R). The circles have a diameter of 0.075R. 
 



 

 
(a)  r/R=0.7, ψ=0o 
 

 
(b) r/R=0.7,  ψ=90o 
 

 
 (c)  r/R=0.7,  ψ=270o 
 

 
(d)  r/R=0.82, ψ=45o 
 

 
(e) r/R=0.82, ψ=90o 
 

 

 
(f)  r/R=0.92, ψ=60o 
 

 
(g)  r/R=0.92, ψ=120o 
 
 

 
 (h)  r/R=0.92, ψ=270o 
 
 

Figure 10 Pressure distributions at various span stations and azimuth angles. Dotted line with circles: experiment. 
Solid blue line: simulation. Shown is the pressure against chordwise position. Simulation on Mesh G3. 



 
 

 
(a) r=0.7R, x/c=0.06 at lower side 
 

 
(b) r=0.7R, x/c=0.35 at upper side 
 

  

 
 (c) r=0.82R, x/c=0.06 at lower side 
 

 
 (d) r=0.82R, x/c=0.21 at upper side  

 
(e) r=0.82R, x/c=0.02 at upper side 
 

 
 (f) r=0.92R, x/c=0.06 at lower side 

 
 (g) r=0.92R, x/c=0.225 at upper side 

 
 (h) r=0.92R, x/c=0.325 at upper side 

 
Figure 11  Pressure histories at selected stations on the blade. Solid black line: experiment. Solid blue line: simulation. 

Shown is the pressure against azimuth angle for one revolution.  Simulation on Mesh G3.



 
Figure 12 Comparison of time series of pressure at r/R=0.82 span station and x/c=0.06 chord station at the lower side. 

Red: Mesh G0, second order DG; Green: Mesh G2; second order DG; Blue: Mesh G2, third order DG. 
 

  
Figure 13 Comparison of pressure histories at selected stations. Solid black line: experiment. Solid green line: Mesh 

G2. Solid blue line: Mesh G3



 

 
(a) second order, Mesh G2 
 

 
(b) third order, Mesh G2 

 
(c) second order Mesh G3 
 

 
(d) third order, Mesh G3 
 

Figure 14 Vorticity contours at azimuth angle of 56 degrees. Comparison between order of accuracy and mesh 
resolution. Iso-contours are shown at vorticity magnitude level of 2a∞/R and a∞/R, where a∞ is the speed of sound. 
 



 
Figure 15 The vortex system at ψ=56o, as obtained on Mesh G3, viewed from below. Iso-contours are shown at 
vorticity magnitude level of 1.75a∞/R and 1.25a∞/R, where a∞ is the speed of sound. 
 
 
 
 



 
Figure 16 Definition of cross-section slice, shown in 

red, at ψ=28o, within Mesh G3. 
 

 
Figure 17 Vortex system at ψ=28o, as obtained on 

Mesh G3. 
 

 

 
Figure 18 Comparison of vortex resolution in the slice defined in Figure 16 on Mesh G2 (top) and G3 (bottom) 
 

 
Figure 19 Comparison of vortex location and mesh refinement regions in the slice defined in Figure 16 on Mesh G2 
(top) and G3 (bottom) 



 
Figure 20 Definition of cross-section slice, shown in 

red, at ψ=56o, within Mesh G3. 
 

 
Figure 21 Vortex system at ψ=56o, as obtained on 

Mesh G3. 
 

 

 
Figure 22 of vortex resolution in the slice defined in Figure 20 on Mesh G2 (top) and G3 (bottom). 

 

 
Figure 23 Comparison of vortex resolution in the slice defined in Figure 20 on Mesh G2 (top) and G3 (bottom). All 
cells are hexahedra, apparently triangular elements are a plotting anamoly. 



 
Figure 24 Comparison of streak lines. Solid: flow 

solution on Mesh G3, dashed: on Mesh G2 
 

 
Figure 25 Comparison of streak lines. Solid: flow solution on 

Mesh G3, dashed: on Mesh G2 
 

 

 
Figure 26 Comparison of tip vortex locations and streak lines of particles released at the blade tips.  The circles have 
centres at the streak lines and radius equal to 0.0375R. 


