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This paper deals with the design of a robust heli
copter control law. A two-loop structured feedback is 
proposed. The first loop is static and computed using 
eigenstructure assignment Its objective is to provide 
some decoupling between the different axes. The sec
ond loop is designed using Hoo synthesis, and tends to 
zero as frequencies tend to infinity. The objective of 
the outer loop is to improve performance in terms of 
minimizing the error between the reference and output 
signals and some robustness against additive perturba
tions due to plant uncertainties. This procedure allows 
the compensator order to be reduced with respect to 
more classically derived H00 solutions. 

1 Problem presentation 

We are concerned with the design of a robust con
trol law for improving the handling qualities of a he
licopter using a combination of eigenstructure assign
ment and H00 synthesis. The proposed controller has 
to achieve some performance specification in terms of 
input I output response properties and some robustness 
requirements because the aircraft eight state linearized 
model we consider is highly uncertain. High frequency 
dynamic effects arising, for example, from the rotor dy
namics and flutter modes have been neglected in the 
nominal linear plant as they are difficult to modelize. 
The nominal rigid body linear model description takes 
the following state space form : 

{ 
:i; =Ax+ Bu 
y = Cx 

(I) 

The state variables, inputs and outputs are described in 
tables I and 2 
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Table I State description 

State Description 

u Forward velocity 

vz Vertical velocity 
q Pitch rate 

9 Pitch angle 

v Lateral velocity 
p Roll mte 

r Yaw rate 
$ Roll angle 

Table 2 Input output description 

Output Input Description 

q 92 LonJYt~f!inal 
C tC 

9 el Late~al 
cychc 

p e, T3),1 rotor 
collective 

r 

$ 

The purpose of the H00 synthesis design is to find a 
dynamic controller which internally stabilizes the system 
and minimizes the H00 norm of a weighted transfer 
function matrix denoted by Fi(P(8), I<(8)) (8 is the 
Laplace transform). The optimi7.ation problem can be 
written as : 

min IIF1 (P (8), I< (8))11oo 
K 3 tabilizing 

(2) 

F1 ( P( 8), K ( 8)) characterizes the desired performance 
and/or robustness specifications. Its inputs are the (con
sidered) errors and its outputs are the signals to be min
imized. ?(8) is the plant and I\(8) the dynamic con
troller to be designed. Unfortunately, despite all the 
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studies done on the subject of Hoo synthesis, the achiev
able compensator order is generally two or three times 
the plant order. This is a major drawback of the H00 

approach, especially for physical implementation. In or
der to cope with such a disadvantage, we introduce an 
inner constant gain loop to produce some decoupling 
between the three elementary axes which correspond to 
forward, lateral and yaw motions. Considered then as 
sub-systems, these motions are further simplified by tak
ing into account only the dominant state variables (see 
figure I) 

Figure 1 Roo decoupled single 
input single output control schemes 

Note that the state vz is not considered here in 
order to simplify the design procedure and can be as
sumed to be controlled by the collective pitch input 00 • 

An 1!00 controller is synthesized for each sub-system 
by considering all the desired specifications with the 
additional constraint that the Hoo controller direct trans
mission equals zero to not disturb the inner static loop. 
Consequently, the outer loop compensator has the fol
lowing diagonal structure: 

( 

K, (s) 
K(s)= ~ 

0 0 ) K2 (s) 0 
0 I<s(s) 

(3) 

Therefore, the proposed compensated system has the 
structure shown in figure 2 : 

Reference 
Decoupled system Signals 

~f..-!'u+-lo<sl 11-YT-+-._!-
+i_~+ + 

Figure 2 

Error 
Signals 

The twoMfeedback loop controller structure 
G ( 8) : Helicopter linear model 

H0 , R0 : Static controllers computed 
with eigenstructure technique 

K( 8) : H 00 compensalor 

The paper is organized as follows. In section 2, 
we present the eigenstructure assignment method used 
to obtain some decoupling. To assess the decoupled 
structure in terms of diagonal dominance, the Gersh
garin bands are introduced. Section 3 deals with the 
H00 synthesis applied to each sub-system. In section 4 
we present the significant results of the overall closed
loop system design. Gershgorin bands are ploued and 
singular values of each sub-system are drawn in order 
to justify the simplifications made. The comparison of 
singular values plots by considering first, the inner loop 
with additive perturbation on the helicopter model and 
secondly the ovemll system with the same type of per
turbation but considered on the inner loop, highlights 
the effect of introducing the H00 loop. To assess ro
bustness against plant parameter variations, simulations 
in the time domain with the twelve states model are 
illustrated. All the results obtained show that the sim
plifications made are valid for an application. This per
mits the compensator order to be "only" eleven. Note 
that the idea of the two loop structured compensator is 
essentially based on physical insight. 

2 Elgenstructure assignment 

This section is concerned with the application of 
eigenstructure assignment in order to achieve diagonal 
dominance between the different inputs and ouputs. The 
objective is to design a static output feedback control 
law ( see figure 2 ) of the form : 

u = Hoc+ Jl;,y (4) 

which achieves partial internal stabili7.ation and decou
pling between c and y. The helicopter's outputs are 
then given by : 

y = C(sla- (A+ BR;,C))- 1 Bl!0 c (5) 

Now consider the right eigenvector matrix V associated 
with the corresponding spectral matrix A of A+ BR0C. 
We have (A+ BR0C) v; = >.;v; which can be written 
as 

{ 
(A - >.;I a) v; + Bw; = 0 
w; = R;,Cv; 

(6) 

It follows from these equations that, in order to assign 
a pair(>.;, v;). the vector [vf wrr must satisfy 

[A - >.;I a B] [ :; ] = 0 (7) 

Under controllability and observability assumptions, 
only max(dim(y)dim( c)) eigenvalues and eigenvectors 
can be assigned because an output feedback is consid
ered [I] . 

If dim(y) ~ dim( c), the algorithm to design the 
feedback is the following [2] 

1. Choose dim(y) eigenvalues {>. 1, >. 2 ... >.p} 
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2. Choose dim(y) eigenvectors { v1 , v2 ... vp} and 
{ w 1 , w2 , ... wp} satisfying equation (7). 

3. Find R0 given by 

The static output feedback Ro must be designed in 
such a way as to achieve some decoupling of the three 
elementary axes (see table 3). This can be done by a 
suitable choice of right eigenvectors [3], [4] 

Relation (5) can be expanded in modal form as : 

(9) 

where n is the number of states. The residue matrix Pk 
is given by 

(10) 

Hence, one can eliminate the mode -'• from a transfer 
function (j'h input, ;th output) by setting ( Pk ); . = 0, 

•i 
or similarly 

(UBHo)k. =0 ,, (II) 

This relation permits the computation of the static matrix 
Ho. 

The three elementary axes to be decoupled are 
given by the following distribution of states 

Table 3 

Forward axis u q e 

Lateral axis v p 4> 

Yaw axis r p 4> 

In order to obtain low feedback gains and robust 
dominance properties with respect to the flight condi
tion, the five closed-loop modes have been selected to 
stabilize and improve the handling qualities (eg damp
ing) of the open-loop system [5]. 

To synthetize the three H00 controllers, only the 
dominant variables have been considered (see figure 1). 
The velocities u and v have been left out because they 
have a very low frequency effect which can be neglected 
with regard to the second order sub-systems described 
by ( q, B) for forward flight and (p, </>) for lateral flight, 
respectively. Moreover, p and </> have been left out 
from the yaw axis because their effects are negligible 
(see figure 10). Since 0, </> and r are considered as the 
outputs of each sub-system corresponding respectively 
to forward, lateral and yaw motions, the number of 
inputs is the same as the number of outputs. We can 
also examine the diagonal dominance properties of the 
system using the approach described by Rosen brock [6]. 

The rational m x m transfer function matrix Z ( s) 
is said to be diagonally row domi!Ulnt on the contour D 
if z;; has no pole on D, fori= 1, 2, ... m and 

m 

'Vs ED, lz;; (s)l- I: lz;; (s)l > 0 
i=1/j¢i 

fori= 1,2, ... ,m 

(12) 

With the same assumptions, Z( s) is said to be 
column diagoMIIy domi!Ulnt on the contour D if z;; ( s) 
has no pole on D and 

m 

Vs ED, lz;; (s)l- I: lz;; (s)l > 0 
i=1/j¢i 

(13) 

Z ( s) is diagonally domiMnt if it is row and column 
diagonally dominant. 

A graphical method can be used to determine 
whether or not diagonal dominance is achieved. Con
sider a transfer function matrix which is row dominant 
for instance, and plot the Nyquist array of a dominant 
transfer function. For a specified frequency, a circle can 
be centered on this Nyquist array with a radius equal to 
the sum of the moduli of the corresponding row off di
agonal terms. If a large set of frequencies is considered, 
then many corresponding circles are obtained. They de
fine the Gershgorin band. Row diagonal dominance is 
then achieved if and only if none of the circles include 
the origin ( see figure 3 ) 

To verify diagonal dominance, Gershgorin bands 
corresponding to off diagonal terms in row and in col
umn have to be drawn separately. For instance, for a 
three input three output system, nine curves are required. 

Imag(GGro )) 

Real(GG ro )) 

Figure 3 The Gershgorin band 
G( s) : dominant transfer function 
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3 The Hoo design 

During the last few years, Hoc synthesis techniques 
have received vast attention. Studies were initiated by 
the work of Zames [7). Then, several approaches fol
lowed. The early methods [8) require intricate computa
tions because they involve operator theory. Despite the 
use of Hankel singular values model reduction method, 
the compensator order is prohibitive for physical imple
mentation. The later approaches involve the resolution 
of two Riccati equations. These new theories have been 
derived from two approaches. One is directly connected 
with the first technique which solves the general dis
tance problem [9) and the other decomposes the problem 
into an Hoc full state feedback problem and its estima
tion dual [10) [11). The compensator order obtained 
with these new techniques is the same order as the or
der of the plant P( s) which characterizes all the desired 
specifications (see figure 4). 

Figure 4 Standard configuration in Hoo synthesis 
v all external inputs , dim(v) = m, 

e error signals which are to be regulated, dim( e) = Pt 
u control inputs, dim( tt) = m2 
y measurements, dim(y) = pz 

The Hoc technique tested here is the one which 
makes use of the dual Riccati equation approach. The 
compensator obtained is sub-optimal in the sense that, 
if PI > m 2 and/or P2 < m1 an iterative algorithm 
is needed in order to reach the minimal Hoc norm of 
F1(P(s),K(s)) with respect to internal stability: 

IIF,(P(s),K(s))iloc <1 (14) 

The "1 iteration" is continued until one of the conditions 
derived from the Riccati equations becomes invalid. 

If P1 = m2 and p2 = m 1 the general distance 
problem can be reduced to a best approximation prob
lem. The optimal value equals the norm of the Hankel 
operator associated with an unstable transfer function. 

Choice of P 

The choice of the criterion optimized with the Hoc 
technique is here justified. Applications on helicopters 
of Hoc synthesis already exist, [12), [13). The same 
criterion is used but on the unsimplified multi input 
multi output linear model. 
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First objective Consider a transfer function matrix 
G(s) such as 

e~ 

---~-~ 
Figure 5 

The H00 norm of G( s) is then defined as the output 
maximum energy, as the input energy is less than equal 
to unity. Since our first objective is to minimize dis
turbances that could produce output signal deviations, 
the Hoc norm of the transfer function between the ref
erences and the error signals has to be minimized as 
illustrated in figure 6. 

err 
1 ---...j~ K(s) l~+----' 

Figure 6 Sensitivity objective 
err = (Id + Gd(s)K(s))-1ref 

G d( s) : decouplcd system 
I d : Identity matrix 

ref : reference signals 
err : error signals 

A weighting function W1 ( s) is introduced to nor
malize and select a frequency range. Hence, the first 
optimization problem is the following 

min llwl (s) (I a+ Ga (s) K (s))- 1 L 
J( ( s) stabilizing 

(15) 

(Ia+Ga( s )K( s))- 1 is the sensitivity transfer func
tion. 

Second objective The Hoc norm is the maximum sin
gular value of G(jw) over all frequencies ( see figure 7 
for the single input single output case ) 

(I) 

Figure 7 Hoo norm for the single input single output case 



Consider now the feedback configuration figure 8, 
where Ll,( s) is an additive perturbation which character
izes the nominal plant uncertainties. Suppose that Ll,( s) 
is stable with 

I ILl, (s) W, (s)lloo::; I (16) 

where w, ( s) is a weighting transfer function. The small 
gain theorem then states that the closed loop stability is 
ensured if the nominal feedback system is stable and if 

II W,- 1 (s)K(s)(Id-1-Gd(s)K(s))- 1
11 <I 

00 - (17) 

Hence, our second objective is to improve robustness in 
the sense of the above weighted transfer function. 

Figure 8 Additive perturbation 

The criterion 

Consider now 

(
X(s)) 

Z(s) = Y(s) (18) 

where X ( s) and Y ( s) are transfer function matrices. 
It is well known that liZ (s)lloo satisfies the following 
properties [ 14] : 

liZ (s)lloo ;:o: max {I IX (s)lloo, IIY (s)lloo} 
(19) 

Moreover, by considering this result, our two objectives 
can be expressed as 

·ll(w1 (s)(I+G(s)K(sW
1 )II 

rmn W2 (s)K(s)(I+G(s)K(s))- 1 

00 
(20) 

K (s) stabilizing 

This leads to the following matrix P( s) 

(

W,(s) -WI(s)G(s)) 
P (s) = 0 W2 s 

Id -G(s) 
(21) 
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The design procedure 

For each single input single output sub-system, 
the optimization problem described by equation (20) is 
solved using the ll00 technique. 

An important step towards the solution is the se
lection of the weighting functions. They not only define 
the frequency range, where performance and robustness 
specifications must be verified, but they also produce a 
normalization of the optimization problem. 

In order to avoid to increase the controller order, we 
choose a first order weight for each sub-system. Such 
weighting filters are generally sufficient to reflect the 
control requirements [12]. 

Weight W1 ( s) is a high-gain low-pass filter ensur
ing integral action and thus small tracking error. More
over, control activity is not necessary at the frequencies 
which are not included in the sensor bandwidth. This 
permits the gain at low frequencies to be constant. 

W2 ( s) is a high-pass filter cancelling the controller 
activity at the very high frequencies whilst also han
dling uncertainties due to the neglected high frequency 
dynamics of the rotor. 

This yields the following weighting functions 

Table 4 

Forward Lateral 

w, 80 0.04s+O.I2 
3s+0.04 

~O 0.015s+0.045 
3s+0.045 

Wz 0 2 0.04s+0.04 
. s+O.O<l 0 2 

s+0.015 
· 0.03s+0.015 

Table 5 

Yaw 

w, 80 0.03s+0.09 
3s+CUJ3 

Wz 
O 2 U.4S+U.UI:t 

. 0.03s+O.O 12 

4 The significant results 

The two methods are applied consecutively. This 
yields an eleven order compensator. 

The decoupled structure obtained with eigenvector 
assignment is shown in figure 9. The Gershgorin bands 
are plotted in order to highlight the diagonal dominance 
in row and in column. From these results, we decide to 
take into account only the dominant transfer functions 
and to consider the off diagonal functions as uncertain
ties. The next results validate the idea. 

Figure 10 illustrates the simplifications correspond
ing to each sub-system. The cancellation of the low vari
ables (as forward or lateral velocities) leads to a static 
error at the low frequency range. 



In order to assess the second loop contribution for 
improving robustness and perfonnance, singular values 
of S(s) and K(s)S(s) transfer functions are ploued 
by considering first, only the static loop designed with 
eigenvector assignment, and additionally by considering 
the whole compensated plant (see figures II and 12). 
From these figures, it can be shown that our goals are 
achieved. 

The compensator has been generated with the lin
earized eight states model. However the twelve states 
model has been used as the helicopter in the simula
tion. It is considered the nearest available model to the 
non linear case. For a reference pitch angle input we 
want this variable to follow it with the effects of the 
other axes negligible. The same objectives have to be 
verified for the reference yaw rate and roll angle. The 
simulations in the time domain (see figure 13) show that 
the objectives are achieved. Note that when the yaw rate 
reference input is applied, there is a non negligible ef
fect from the roll angle. This is a natural consequence 
of the helicopter behaviour. 

5 Conclusion 

In this paper a two-feedback-loop strategy has been 
introduced for the design of a robust helicopter control 
law. The design procedure, based mainly on physical 
insight is proved to be valid when applied to a simulated 
linear helicopter model. The compensator direct trans
mission is designed with eigenvector assignment and its 
dynamic using the Hoo synthesis technique. This ap
proach pennits the controller order to be eleven without 
the need of any model reduction. This order is relatively 
low compared to the classical H00 (direct) approach. 
Moreover, all perfonnance and robustness specifications 
are achieved. 
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::1·-·---~-·-·-··-·-·l :j~j-····-·-~·-·-·-····-1 
-H .& I ~.!.! .... a ~ 

_: 1·-·-·-·-·f,-·-·-·l _: 1-·-·-·-·-·~-·-·-·-1 
-LI •I I • .:! . -LI •f I I II 

Figure 9 Gershgorin bands 
O.oi rad/s :S w :S 8 rad/s 

First column : in row 
Second column : in column 
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Figure 11 Robustness test 
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Figure 12 Performance test 
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Figure 13 Simulation in the time domain 
Comparison between the eight and twelve linear models 
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