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Abstract: On-board flight performance models have been installed onto several Army rotorcraft supporting 
flight performance/mission planning.  A flight performance model answers such questions as: what is the 
available power,  what is the power required to hover or cruise, what is the maximum flight/hover weight, 
what is the maximum flight speed, how much fuel is required or what is the best rate-of-climb that can be 
achieved.   These models are composed of data and equations that are used to calculate the many 
performance parameters.  Also included in these models are the boundaries and limits for each of these 
parameters. These models must be efficient in both size and speed while maintaining accuracy for on-board 
systems, particularly when the flight performance model is used for pilot guidance such as terrain 
following.  A number of numerical approaches have be used to maintain the accuracy of the flight 
performance model while being efficient for both size and speed.   These approaches include the use of 
non-dimensional data, higher order interpolation and pre-processing of derivatives and derived results. 
 
Nomenclature 
Abbreviations 
FPM Flight Performance Model 
PFPS Portable Flight Planning Software 
PPC Performance Planning Card 
 
Symbols 
Area Rotor Disc Area 
Cp  Power Coefficient, = Power/(ρ (Vtip

3) Area) 
Ct Thrust Coefficient, = Weight / (ρ (Vtip

2) Area) 
FAT Free Air Temperature 
Nr-ref. Referred Rotor Speed, = RPM / θ0.5 
RPM  rotor rpm, % of rpm 
PA Pressure Altitude 
Vbe Best Endurance Airspeed 
Vbr Best Range Airspeed 
Vtas True Airspeed 
Vtip Tip Speed 
μ  Advanced Ratio, = f(Vtas, RPM) 
ρ Air density 
θ Air Temperature Ratio, =f(FAT) 
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1 INTRODUCTION 
 
Flight systems now allow aviators to complete performance/mission planning on-board the aircraft during 
flight.  Previously, the aviator  planned their performance and mission as a pre-mission exercise using 
either paper charts and pencil or using specialized software on a personal computer.  Core to any 
performance or mission planning exercise is the flight performance model (FPM). Given the ambient 
conditions and aircraft configuration, a FPM answers such questions as: what is the available power,  what 
is the power required to hover or cruise, what is the maximum flight/hover weight, what is the maximum 
flight speed and how much fuel is used. 
 
With the introduction of on-board flight performance/mission planning capabilities, comes the requirement 
to supply the aviator with consistent answers, i.e., the same flight performance results from all applications.  
These applications include the on-board performance/mission planning, the Army mission planning system 
- Portable Flight Planning System (PFPS), the performance planning card (PPC) and the performance 
charts in the operator’s manual.  Presented in Ref 1 is an architecture that allows for consistent answers to 
be achieved across all applications.  An additional constraint is that the on-board FPM must be efficient for 
both speed and size.  Typically, on-board processors are both limited in processor speed and memory size.  
Presented here are the methods that were used to achieve the required speed and data set sizes for on-board 
FPM’s. 
 
2 BACKGROUND 
  
 
2.1 Flight Performance Model Definition  
 
FPM’s are software models that provide a digital representation of a specific rotorcraft’s performance 
capabilities and limitations.  The development of an FPM is achieved by combining flight test and 
engineering data with standard mathematical models.  FPM’s are built for each rotorcraft family and for 
variations within a rotorcraft family. Each FPM is comprised of  two basic components,  core capabilities  
and derived capabilities.   
 
The core capabilities listed in Table 1, are created from installed engine decks, flight test data, and basic 
rotorcraft physics.  Included in the core capabilities are specific limits of the aircraft, such as transmission 
limits, gross weight limits and engine high temperature limits.  Also shown in Table 1 are the typical inputs 
that are required for each of the core capabilities and the resulting output value.  The non-shaded inputs are 
common for all rotorcraft, while the shaded inputs are rotorcraft specific. 
 
Typical derived capabilities are provided by the functions listed in Table 2. Each derived capability is 
computed using one or more functions that have implemented the core capabilities.  For example the best 
endurance airspeed capability is computed by finding airspeed at the minimum torque for a given pressure 
altitude, free air temperature, gross weight and drag.  Additional derived capabilities are created as 
required. 
 
The FPM is constructed by creating specific modes for the flight performance/mission planning 
applications (see the next section for a description of these applications).  The specific application modes 
(shown in Table 3) are composed of numerous core and derived modes, along with error and warning 
messages. 
 
 
2.2 Applications Using the FPM 
 
FPM’s are used in three main applications.  The first two applications are the mission planning software 
(PFPS) and the performance planning card (PPC) software directly used by pilots.  The third application is 
the  development of performance charts published in the operator’s manuals. 
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PFPS is mission planning software that allows the user to plan their complete aircraft mission through 
either tabular entry or a graphical map (see Fig. 1).  The user specifies each way point of the mission along 
with the atmospheric conditions, aircraft configuration and aircraft speed at that point. PFPS provides this 
information to the FPM’s to calculate the mission fuel burn and informs the user if the mission is possible, 
i.e., are any limits exceeded. 
 
The PPC software (see Fig. 2) is used to calculate specific performance parameters at departure, cruise and 
arrival.  Typical performance parameters that are presented by the PPC are torque available, torque 
required, maximum gross weight for hover, service ceiling, maximum airspeed, velocity never exceed, best 
endurance airspeed and best range airspeed.  The specific values calculated by the PPC software are spelled 
out in each aircrafts aircrew training manual.  These performance parameters are calculated for the specific 
aircraft configuration and atmospheric conditions, and must be carried with the pilot during the mission.  
The FPM is used to supply all performance values that are displayed and printed by the PPC. 
 
Army aircraft operator’s manuals contain numerous charts (see Fig. 3) that supply the aviator with 
graphical representations of the specific aircraft’s performance and limitations.  Typical performance charts 
that are presented include torque available, hover torque required, cruise torque required, fuel flow, hover 
ceiling, hover maximum gross weight, and airspeed conversion.  FPM’s are now being used with graphical 
generation software to create these charts for the operator’s manuals. 
 
 
2.3 On-Board Flight Performance Models 
 
On-board FPM’s are currently used on many Army rotorcraft.  The on-board FPM supports performance 
planning and/or mission planning.  The atmospheric conditions are either user entered or are provided by 
on-board aircraft sensors.  On-board FPM must be: 

• Fast – minimal computational requirements (e.g. multi-leg missions must be computed in 
seconds), 

• Small – minimal code/data space (on-board hardware typically has very limited space), 
• Accurate/consistent – must reflect the same results as desktop or paper charts. 

 
 
3 METHODS FOR ACHIEVING: REQUIRED ACCURACY, SPEED AND SIZE 
 
A variety of numerical methods were used in concert to achieve the required accuracy, speed and size for 
an on-board FPM.  These methods include the storage and organization of the data, using a fast Akima 
interpolation method and pre-processing derived results. 
 
3.1 Data  
 
The storage and organization of the data used for interpolation can be an effective way to reduce the time 
required for interpolation and reduce the data set size.  Use of non-dimensional or referred data and 
rectangular data sets are a number of the ways data can be prepared for numerical efficiency. 
   
Non-dimensional data 
Certain rotorcraft data is typically collected in a manner that produces a non-dimensional data.  Take for 
example the power required data set which in dimensional form has the independent values of PA, FAT, 
gross weight and airspeed and the dependent value of power required.   The non-dimensional form (see 
Table 4 for the relationship of dimensional to non-dimensional values) of power required has Ct, Nr-ref, 
and μ as the independent variables and  Cp as the dependent variable. Using the non-dimensional data set, 
the number of independent variable has decreased by 1, thus decreasing the data set size and reducing the 
amount of searching required for the interpolation routines.  The penalty for using non-dimensional data is 
the required pre and post calculations of going from dimensional values to non-dimensional values and 
back to dimensional values.  This time penalty is nearly equivalent to time savings for the reduction in the 
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number of interpolation dimensions.  Therefore, a reduction in data set size is realized in using this 
approach. 
 
Referred Data 
Another major reduction in data is also achieved by using referred data versus dimensional.  An example of 
this reduction is the fuel flow data set.  Dimensional fuel flow has independent values of PA, FAT and 
torque and dependent value of fuel flow.  The referred fuel flow has a single independent value of Referred 
Horsepower and dependent value of Referred Fuel Flow.  The fuel flow data set is greatly decreased from a 
3-dimensional data set to a 1-dimensional data set,  a significant reduction in data set size.  Similar to 
power required, the computational time savings for 1-dimensional versus 3-dimensional interpolation is 
offset by the pre and post calculations for referring and un-referring the data. 
 
Organization of Data 
Data set organization also plays a significant role in reducing the computational time.   All multi-
dimensional data sets were required to be rectangular, that is, the dependent values were given at the same 
x, y, and/or z independent values.  Abiding by this requirement, reduced the amount of searching that must 
be performed for multi-dimensional interpolation while performing intermediate calculations. 
 
3.2 Interpolation Methods 
 
Interpolation of data is a typical method used to compute many of the core functions in a FPM.  The 
preferred method of interpolation is linear interpolation due to it speed and ease of implementation.  Using 
linear interpolation is a reasonable approach as long as the data is fairly linear or the data set is large 
enough to maintain the required accuracy.  For example, in Fig. 4, power required is shown for linear 
interpolation and for Akima interpolation method, respectively.  For both plots, the same number of points 
are used.  Obviously,  the Akima interpolation represents the nature of the function more accurately.  In 
order to maintain this level of accuracy the data set required for linear interpolation would have to be an 
order of magnitude or more greater then the data set required for Akima interpolation.   Therefore, in order 
to maintain a reasonable data set size, the Akima interpolation method is preferred.  Although Akima 
interpolation represents a significant savings in data set size, the computational resources for Akima can be 
an order of magnitude greater then linear interpolation.  In order to reduce the computational requirements 
for Akima interpolation, an approach that pre-calculates the required derivatives for Akima interpolation is 
used.  This approach greatly reduces the number of calculations for interpolation, while increasing the data 
set size with only a small increase in the resulting data set. 
 
Akima interpolation for point 0 (see Fig. 5) can be computed as follows: 
 

y0 = p0 + p1 ( x0 – x3 ) + p2 ( x0 – x3 )2 + p3 ( x0 – x3 )3                                     (1) 
 
where 
p0 = y3 
p1 = t3 
p2 = (3 (y4 – y3 ) / ( x4 – x3 ) – 2 t3 – t4 ) / ( x4 – x3 ) 
p3 = (t3 + t4 – 2 ( y4 – y3 ) / ( x4 – x3 ) ) / ( x4 – x3 )2 
 
t3 = dy3 / dx3 
t3 can be computed as follows: 
t3 = ( | m45 – m34 | m23 + | m23 – m12 | m34 ) / ( | m45 – m34 | + | m23 – m12 | ) (2) 
 
t4 = dy4 / dx4 
  
t4 can be computed as follows: 
t4 = ( | m56 – m45 | m34 + | m34 – m23 | m45 ) / ( | m56 – m45 | + | m34 – m23 | ) (3) 
 
where 
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m12 = slope of line segment 12 
m23 = slope of line segment 23 
m34 = slope of line segment 34 
m45 = slope of line segment 45 
m56 = slope of line segment 56                                (Ref. 2) 

   
For one-dimensional Akima interpolation, 6 known points are required (3 points on either side of the point 
to be interpolated) to construct the derivatives (t3 and t4) at the bracketing points (points 3 and 4 in Fig. 5).  
Whenever the interpolated point is near a boundary (i.e., between points 1 and 3 or points 4 and 6 in Fig. 
5), and additional point or points must be constructed in order to compute the derivates at one or both of the 
bracketing known points.  A quadratic extrapolation is used to construct the additional point or points. 
 
For two-dimensional Akima interpolation (see Fig. 6), the required number of points increases to 36.  Two-
dimensional Akima interpolation proceeds by first interpolating values at points A, B, C, D, E and F.  Once 
these points are interpolated, the value at point 0 can be interpolated.  If a completed set of points are 
available, the interpolation procedure requires the computation of derivates at 14 individual points and 7 
one-dimensional Akima interpolations performed.  Of course, if the point requiring interpolation is near a 
boundary (i.e., where data points are not available), extrapolation of the points must occur. 
 
For a 3-dimensional Akima interpolation the complexity increases with a required 216 points, 86 derivative 
calculations and 43 one-dimensional Akima interpolations.  Additionally,  when computing the derivatives 
at each point, logic must be present to check for points that are near the boundary and require extrapolated 
points to compute the derivatives.  As the number of dimensions are increased the amount of work required 
to perform an Akima interpolation greatly increases.  From a speed stand point, this become prohibitive for 
on-board systems.   
 
To overcome the increases in computational time for multi-dimensional Akima interpolation, the following 
numerical approach was used.  First, derivatives at each point (equations 2 and 3) are pre-calculated and 
saved as data.  For a one-dimensional Akima interpolation, only equation (1) must be calculated.  When a 
two-dimensional Akima interpolation is computed (see Fig. 6), the derivatives at points C and D are 
obtained by interpolating the derivatives from the nearby points.  For point C, derivatives at points 3 and 4 
are used.  This procedure is repeated for each additional dimension.  The reduction in the number of 
computations that is achieved for 1 thru 4 dimensions is shown in Table 5.  Computational times for Akima 
are now on the same order as linear interpolation, while using data sets that are 1 to 2 orders of magnitude 
less then data set required for linear interpolation for equivalent accuracy. 
 
 
3.3 Data Pre-processing 
 
Another approach to reducing the computation time of a flight performance model is to pre-process results 
that are iterative in nature.  The two calculations that are considered here are best endurance airspeed (Vbe) 
and best range airspeed (Vbr).  Vbe requires iterations on the torque required data, while Vbr requires 
iterations on the torque required data and fuel flow data.   Each require 10 to 15 iterations to obtain the 
required accuracy.  
 
Best Endurance Airspeed (Vbe) 
 
Best endurance airspeed (Vbe) is defined as the airspeed at which the torque required is a minimum for 
given gross weight, PA and FAT.  In non-dimensional terms the definition becomes the μ at which the Cp is 
at a minimum for a given Ct and Nr-ref.  For a constant Ct and Nr-ref, Vbe is graphically shown in Fig. 7. 
 
The Vbe data set is created by calculating Vbe for a range of Ct and Nr-ref values. Using this data set, the 
computations of Vbe is reduced from 10 to 15 iterations on a three-dimensional data set (Cp = f(Ct, Nr-ref, μ)) 
of power required, to a single calculation on a two-dimensional data set ( μ = f(Ct, Nr-ref) ). 
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Best Range Airspeed (Vbr) 
 
The Vbr data set has inputs of Nr-ref, Ct, flat plate drag change and wind  with an output of Vbr in terms of μ.   
 
The Vbr was calculated using the following procedure: 
 

1. The core functions, torque required and fuel flow were used to find the true airspeed (Vtas) that 
gives the maximum Specific Range for a given PA, FAT, gross weight, flat plate drag change and 
wind input combination.  Specific Range is defined as follows: 

 
Specific Range = (Vtas – wind) / Fuel Flow                                                               (4) 

 
2. Torque required is computed for the given PA, FAT, gross weight, flat plate drag change and Vtas. 

Using PA, FAT and the Torque Required, the Fuel Flow is computed. Specific Range is computed 
using the Fuel Flow, Vtas and Wind (Equation 4).  Shown in Fig. 8 is Specific Range as a function 
of Vtas.  This computation is repeated until a maximum value of Specific Range is found within 0.1 
knots.  The intersection of the “Specific Range” line and the “Maximum Specific Range” line 
represent the maximum value of Specific Range. 

 
3. The maximum Specific Range found in step 1 was multiplied by 0.99 (See Fig. 8 for 99% of 

Maximum Specific Range).  An iterative procedure is used to compute Vbr. 
 

4. At 99% Specific Range there are two corresponding values of Vtas (at a computational interval of 
0.01 knots).  The higher value of Vtas is used as Vbr (see Fig. 8 for Vbr).  An iterative procedure is 
used to compute Vbr. 

 
It was observed during the creation of this data set that the Vbr varied for a given value of Nr-ref  and Ct 
computed from different combinations of PA, FAT and gross weight.  Therefore, to reduce the error, at 
each non-dimensional data point, all values except for gross weight and PA were kept constant.  Gross 
Weight was varied from its minimum to its maximum value, with appropriate values of PA used to keep Ct 
a constant.  This resulted in multiple values of Vbr for the same constant inputs of Nr-ref, Ct, flat plate drag 
change and wind.  The final Vbr value was the average of the minimum and maximum (Vbr-avg) of the values 
computed for multiple computed values for Vbr.  Additionally, the computed difference for each data point 
was computed and is presented in Figure 9.  The difference is defined as: Vdiff = max |(Vbr-i – Vbr-avg)|, 
where  Vbr-i  is each computed value of Vbr for a given set of constant inputs.  The maximum difference of 
0.45 knots, while majority of the differences were less than 0.25 knots.  For the single engine, the 
maximum difference of 0.36 knots, while a majority of the differences were less than 0.2 knots. 
 
The standard method for calculating Vbr requires two iterative procedures, each requiring up to 15 iteration.  
This modified approach to computing Vbr requires a single interpolation of a four-dimensional data set. 

 
4 CONCLUSIONS 
 
On-board flight performance models are an integral part of on-board performance/mission planning. For 
some on-board systems, the on-board FPM supply the pilot flight guidance, such as the terrain 
following/terrain avoidance systems.  Therefore, it is imperative that the flight performance model maintain 
a sufficient level of accuracy, while meeting the overall system speed and size requirements.   Using a 
variety of numerical approaches, each of these requirements is met or exceeded.  Although each method 
presented helped to achieve the requirements, it was the combination of all of these methods that were 
needed to meet the on-board FPM requirements for accuracy, speed and size. 
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Table 1. Core Functions 

 
Core Function /Output Inputs 
Torque Available [%Q] Pressure Altitude [ft] 

Free Air Temperature [C] 
Air Speed [ktas] 
Anti-Ice [off/on] 
Heater [off/on] 
Engine Torque Factors 
Inlet Barrier Filter[off/on] 
IR Suppressor [off/on] 

Cruise Torque Required [%Q] Pressure Altitude [ft] 
Free Air Temperature [C] 
Air Speed [ktas] 
Gross Weight [lb] 
Delta Drag [sq-ft] 
Rate-of-Climb [ft/min] 
Configuration (Clean/High Drag) 

Hover Torque Required [%Q] Pressure Altitude [ft] 
Free Air Temperature [C] 
Height [ft]] 
Gross Weight [lb] 
Download [T/W] 
Rate-of-Climb [ft/min] 
Configuration (Clean/High Drag) 

Fuel Flow [lb/hr] Pressure Altitude [ft] 
Free Air Temperature [C] 
Torque [%Q] 
Anti-Ice [off/on] 
Heater [off/on] 
Inlet Barrier Filter[off/on] 
IR Suppressor [off/on] 

Air Speed [kcas] (Conversion) Air Speed [kias] 
Rate-of-Climb [ft/min] 

Never Exceed Velocity [kts] Pressure Altitude [ft] 
Free Air Temperature [C] 
Gross Weight [lb] 
Configuration (Clean/High Drag) 
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Table 2. Derived Functions 

 
Derived Function Function Of: 
Best Endurance 
Airspeed 

Cruise Torque Required 

Best Range Airspeed Cruise Torque Required 
Fuel Flow 
Torque Available 
Never Exceed Velocity 

Minimum Airspeed Cruise Torque Required 
Torque Available 

Maximum Airspeed Cruise Torque Required 
Torque Available 

Maximum Gross 
Weight 
for Cruise 

Cruise Torque Required 
Torque Available 

Maximum Gross 
Weight 
For Hover 

Hover Torque Required 
Torque Available 

Service Ceiling Cruise Torque Required 
Torque Available 

 
 
 

Table 3. Application Modes 
 

PFPS Modes PPC Modes 
Cruise Standard 
Cruise Best Endurance 
Cruise Best Range 
Climb Standard 
Climb Best Performance 
Descent Standard 
Hover 

Dual Engine Departure 
Single Engine Departure 
Dual Engine Cruise 
Single Engine Cruise 
Dual Engine Arrival 
Single Engine Arrival 

 
 
 
                                                   Table 4. Dimensional to Non-Dimensional 
 

  Dimensional Non-Dimensional 

Pressure PA (ft) δ 

Temperature OAT (°C) θ 

Weight W (lbs) Ct=W / (ρ0 s Vtip
2 A) 

Airspeed V (ktas) μ=V/Vtip 

RPM N (RPM) NREF=(N/N0)/ 

Power P (SHP) Cp = P / ( ρ0 s Vtip
3 A) 
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Table 5.  Computations Required for Standard Akima Interpolation and Akima Interpolation Using Pre-
Calculated Derivatives. 

 
Dimensions Standard Akima Interpolation Akima Interpolation Using Pre-Calculated 

Derivatives 
 # Points # Derivate 

Calculations 
# 1-D 

Interpolations 
# Derivative 

Interpolations 
# 1-D 

Interpolations 
1 6 2 1 0 1 
2 36 14 7 2 3 
3 216 86 43 6 7 
4 1296 518 259 12 15 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: Portable Flight Planning System. 
 
 
 

 
 

Figure 2: Performance Planning Card. 
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Figure 3. Performance Charts. 
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Figure 4. Comparison of  Interpolation Methods. 
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Figure 5. One-Dimensional Akima Interpolation. 
 
 
 

 
 

Figure 6. 2-Dimensional Akima Interpolation. 
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Figure 7. Best Endurance Airspeed 
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Figure 8. Best Range Airspeed 
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Figure 9. Differences between Computed Vbr and Vbr-avg. 


