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A finite difference code solving the Unsteady Full Potential equation for both 
2D and 3D flows has been improved by introducing a C-grid topology. The results are 
compared to previous calculations performed with an H-grid. An important effort to 
calculate the airfoils and blades in viscid drag has been undertaken. The different ways 
to estimate the unsteady inviscid drag (pressure drag, wave drag) are discussed, and 
the method is applied to airfoils and blades performance evaluation. 

I. INTRODUCTION 

The flow field around helicopter rotor blades presents many different features 
during the blade rotation, such as transonic effects on the advancing blade side, high 
angle of attack and low speed flows on the retreating side, strong interactions between 
the blade and the wake system. Since these complex phenomena are difficult for a 
single computational method to handle at a reasonable cost, specific algorithms 
adapted to compute efficiently a part of these phenomena were developed, the full rotor 
flow being obtained by coupling different methods together. 

At the Aerodynamics Department of ONERA, a part of the activity has been 
devoted to compute the transonic flow on the advancing blade side. For most of the 
practical cases shock wave strength remains moderate and therefore Potential 
methods were developed first. Their advantages compared to Euler methods are a good 
cost efficiency and robustness. On the other hand, the calculated pressure jump across 
shock waves is not correct and the irrotational flow implies the use of an external wake 
model. Nevertheless, Potential methods constitute a good compromise between 
computer cost and accuracy and therefore are suitable for practical design. 

Steady Potential methods are widely used for airfoil design using numerical 
optimisation techniques [1]. They have allowed to design a new generation of efficient 
helicopter airfoils at ONERA. A step forward could however be achieved by using 
unsteady methods which might allow the conception of new helicopter airfoils. As far 
as three-dimensional flows are concerned, an Unsteady Transonic Small Disturbance 
approximation to the Potential Equation has been successfully used to generate 
efficient blade tips which reduce the amount of supercritical flows [2]. Nevertheless, 
the Small Disturbance approximation cannot provide a correct description of the 
leading edge flow and therefore an accurate rotor performance prediction. 

A finite difference code solving the Unsteady Full Potential Equation was also 
developed to compute the transonic flow appearing around helicopter rotor blades. This 
method, called FP3D, is able to compute both 2D and 3D flows and a good correlation 
with experiment or with other computed results has been found [3, 4]. However, in 
order to use this method for practical design, important improvements have to be made 
both in accuracy and efficiency. An important step in this direction can be achieved by 
choosing a more well-adapted grid topology than the previous H-grid. A good 
compromise between accuracy and efficiency can be obtained ~sing a C-grid topology. 

In a first part of the paper, the FP3D method will be described. Then the 
improvements obtained with the new C-grid for 2D and 3D configurations will be 
shown. In a third part of the paper, the methods to evaluate the unsteady wave drag 
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will be discussed and, at last, applications of the method for unsteady performance 
prediction of airfoils and blades will be presented. Future improvements to obtain an 
efficient design tool will also be discussed. 

II. Computational method 

The FP3D code solves the Unsteady Full Potential Equation with a finite 
difference algorithm written in a generalized coordinates system. It was developed by 
ONERA and the US Army Aeroflightdynamics Directorate within the framework of a 
MOU. The system of equations solved is the mass conservation equation and the 
Bernoulli equation, which can be written in generalized coordinates: 

~ ( £.) + ~ ( pU) + ~ ( p V) + ~ ( p W) = 0 
&J a~J clr}J al,J 

p = [ 1 + y; 1 
[ - 2 q,, - (U + ~,l<t> 1 - (V + q

1
)<!> q - (W + ~,l<P, l ) 1/y-l 

p is the fluid density, U, V and W are the velocity components along the ~, IJ. and ~ 
directions, and J is the Jacobian of the transformation which maps the space into the ~, 
IJ. and ~ coordinates. For two-dimensional flows, only two space derivatives along the ~ 
and~ directions are retained. A density and fluxes linearization by a Taylor expansion 
versus the velocity potential gives a fully implicit equation in conservation form. The 
density and metric terms are exactly calculated at mid-cell for an accurate fluxes 
computation. Stability is maintained in supercritical regions by an upwind density 
biasing. Non reflecting boundary conditions are written at the grid boundaries to allow 
perturbations to get out of the computational domain. The equation is solved using an 
approximate factorization technique to obtain a set of simple tridiagonal systems to 
compute. 

H-grid (80 X 44) 
Fig. 7 -Grid topology comparisonNACA 0012- 3500 mesh points, 

100 points on airfoil surface. 
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The FP3D code was initially written for an H-grid topology. This topology is 
the simplest one to implement because the grid lines are close to a natural coordinates 
system. However, such a grid leads to a non-optimal points distribution since local grid 
refinements extend towards the grid boundaries. Furthermore, the leading edge regio.n 
is poorly represented and the grid is singular there, with an important distortion. 
These comments are illustrated in figure 1. Comparatively, a C-grid topology provides 
a better grid points distribution in space and a smooth and regular representation of 
the blade leading edge. Furthermore, the grid boundaries match the computational 
boundaries (airfoil surface and wake, outer boundaries), which provides a better 
computational efficiency. The 2D and 3D versions of the FP3D code were therefore 
rewritten for a C-grid topology. As shown on figure 1, the grid is at mid-cell inside the 
blade surface to implement the boundary conditions easily. The computation is implicit 
across the wake were the upper and lower grids overlap. A special problem arise 
beyond the blade tip for three-dimensional cases, because a singularity is present when 
gridding a zero thickness airfoil. Figure 2 shows how the problem was removed. Like in 
the wake, the upper and lower grids overlap there, and the computation is implicit 
across the cut. At the grid "leading edge", this implies a quadratic interpolation along 
the ~ grid lines. Thanks to the C-grid topology, the new coding was much simplified 
since boundary conditions are only applied at the grid boundaries and it results in a 
more efficient code. 

Fig. 2 - C-grid off the blade. 
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ill. H-grid and C-grid results comparison 

ill.1.2D Case 

The comparison is made on a lifting case already presented by F.X. Caradonna 
[5] and simulating the real flow conditions encountered on helicopter rotor blades. The 
rotor has a NACA 0012 airfoil, an aspect ratio of 13. 7, a forward speed of 220 kmlh, an 
advance ratio of0.25 and the 0.925 R station is computed. At this station, the upstream 
2D conditions are a sinusoidal variation of the angle of attack given by the law 
a = 2.75°- 3.25° sin'¥ and a local Mach number variation given by: 
M = 0.670 + 0.181 sin'¥· 

Calculations have been carried out on the two different grid topologies of 
section II with the same number of points in the mesh (3 500 points) and on the airfoil 
surface (100 points). 

Figure 3 shows the influence of the grid topology on the unsteady press1;1res. 
The C-grid solution gives an important improvement, especially at the leading edge: 
the stagnation pressure is much more accurate and for the retreating blade side the 
suction peak is more realistic. This leads to a higher lift coefficient for the retreating 
blade side (Figure 4) combined with an important decrease of the pressure drag 
coefficient, which is a real improvement although this term should be nearly zero for 
this part of the rotor disk. 
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Fig. 3 · Influence of grid topology 
on unsteady pressures (20 case) 

V0 = 220 km!h, Jl = 0.25, yiR = 0.92, NACA 0012. 
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V0 = 220 kmlh, ~t= 0.25, y/R = 0.92, NACA 0012. 

-

For the advancing"blade side, shock waves have slightly stepped back to the 
trailing edge with the C-grid solution (Figure 3) which causes a decrease of the moment· 
coefficient (Figure 4), but their strength is not really affected by the grid modification. 

The use of a C-grid has also provided a reduction in computing time of about 
20% (on CRA Y XMP-18) and a better calculation robustness. 
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ill.2.3D Case 

The new FP3D version has also been applied to three-dimensional 
configurations. The wake is modelled by a vortex wake code written by Aerospatiale 
and called METAR. As for the 2D case, the better code efficiency has allowed a 20 % 
computer time reduction. The calculated case is a model rotor which was tested in the 
ONERA S2Ch wind tunnel. The rotor has rigid blades with PFl tip shapes; its aspect 
ratio is 6.97. The test case is a relatively high speed case with a rotating tip Mach 
number of0.61 and an advance ratio of0.4; the thrust coefficient CTI<J is equal to 0.075. 
The model tested had a cyclic pitch control device and the cyclic law was 81s = f\IC and 
f\IS = 0. 

The comparison between the C-grid and H-grid versions has been made with 
approximately the same number of grid points: 

- 121 X 22 X 14 for the C grid, with 95 points on each blade section 
- 70 X 22 X 24 for the H grid, with 90 points on each blade section. 
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Figure 5 presents the computed results for a span wise section y/R = 0.85. The 
comments given for a 2D configuration are still true. The C-grid result provides a 
better description ofleading edge flows (stagnation pressure and velocity peak) and the 
differences observed are more important for the retreating blade side. Compared to the 
experiment (Figures 6 and 7), the C-grid gives a better correlation than the H-grid. For 
the advancing blade side, however, the computed velocity is underestimated on the 
blade upper surface; a finer grid would probably improve the results. Finally, a 
discrepancy clearly appears between computation and experiment at the azimuth 1¥ = 
360°. It can be seen for both C-grid and H-grid calculations and might be due to the 
influence of the rotor hub wake. This local discrepancy is also obvious on the CN 
evolution versus the azimuth (Figure 8). This figure shows the better correlation of the 
C-grid results with experiment. However, for azimuthes between 240° and 330°, the 
computed lift is too high, and the discrepancy increases for the inboard sections of the 
blade. This can probably be explained by the occurrence of important viscous effects 
due to high angle of attack flows. 
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These comparisons have shown the benefits given by the C-grid solution which 
provides better results for a lower cost. This is an important step to build a valuable 
code for helicopter performance prediction. 

IV. Evaluation of the unsteady wave drag (2D case) 

IV.l. Drag Evaluation by Pressure Integration 

Figure 9 presents the evolution of the unsteady pressure drag coefficient for 
the OA 209 airfoil for which the oscillating Mach number and angle of attack simulate 
the conditions of a high speed forward flight (y/R = 0.88, V0 = 350 km/h, 11 = 0.45). 
Two pressure distributions are also shown: one for the advancing blade side with the 
presence of shock waves on the upper and the lower surfaces, and one for the retreating 
blade side with a high suction peak near the leading edge. It can be seen that the drag 
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coefficient for the retreating blade side can be higher than the drag for the advancing 
blade side although it should be nearly equal to zero without any shock waves on the 
airfoil. 
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Fig. 9 - Unsteady pressure drag coefficient (20 case) 
V0 = 350 kmlh, p-= 0.45, y!R = 0.88, OA 209. 
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Fig. 10- Unsteady pressure drag coefficient (20 case) 
V0 = 220 kmlh, p = 0.25, y!R = 0.92, NACA 0012. 

Another example of the inaccuracy of pressure integration for drag estimation 
is given on figure 10 for the case al:ready shown in section III.!. Mach number 
distributions are shown for azimuthes 60° and 120° where the upstream Mach number 
and angle of attack are identical. The flow unsteadiness is clearly pointed out there 
with very different shock wave intensities and positions. However, the pressure drag 
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coefficients are very close with only 18 % variation. Making a quasi-steady 
assumption, one can estimate the wave drag using Lock formula [6]: 

2 3 4 
- (1+0.2M~) (M10 -1)(2-MH)_1_ 

Cdw- 0.243 2 M~ M
10

(1+0.2M
10

) KW 

where M 10 is the Mach number on the airfoil surface just ahead of the shock, K w is the 
local airfoil curvature and~ is the upstream Mach number. This formula gives Cdw 
= 0.0255 for 1¥ = 60° and Cdw = 0.0422 for 1¥ = 120° (65% variation), which seems 
more reasonable. 

The main reason for the inaccuracy in pressure drag prediction is the low 
number of mesh points used in the calculations (3 500 points). Increasing the mesh 
density would of course improve the solution but several authors [7, 8, 9] show that 
more than 20 000 mesh points are needed to obtain a good evaluation of the pressure 
drag, which is very prohibitive in computer time. 

So another method to compute the drag has been studied. 

IV.2. Unsteady Wave Drag Evaluation 

Considering a control surface S bounded by a curve C surrounding shock 
waves and supported by the airfoil surface. Then, using the momentum theorem 
projected in the upstream direction (x-axis), the drag D is given by: 

D= J J apU dxdz+J (pUV +pn )ds 
S at C n X 

(1) 

where V n is the normal component of the velocity on the boundary of the control 
surface. 

In order to reduce numerical errors due to the use of artificial viscosity in the 
supersonic regions of the flow, it is interesting to substract the continuity equation 
multiplied by U~: 

and using: 

J J U ap dxdz + J p U V ds = 0 swat coon 

J pnds=O 
C ~ X 

The drag is given by: 

D = J J ( ap U _ U ap ) dxdz + J [ p (U- U l V + ( p - p ) n J ds 
sat CDat c CDn CDX 

(2) 

(3) 

_ The drag co_efficient Cdw can be expressed with the non-dimensional values 
U = U/aa,, p = p/p~, t = t.adL, and using p/pY = cste: 

Cd = w 2 J J ( apU aP) - -,...- - M ...,., dxdz 
M 2 s at ~ at 
~ 

Cdw, 

2 J (~ ~ _ ;;v- 1 J +- p(U-M )V + --n ds 
M2 c lXI 11 y X 

~ 
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The first term Cdw1 in the formula is a pure unsteady term which can be 
either positive or negative according to the sign of the momentum variations. 

The second part Cdw2 is always positive and represents the flow 
characteristics at a given time. With some assumption, this term gives the 
approximate formula seen in section IV.l. 

From a theoretical point of view, the choice of the control surface 8 needed to 
calculate ·the equation (4) does not matter, except that the boundary must surround 
shock waves, but in practice, due to numerical errors introduced by the artificial 
viscosity the results are affected by "this choice. 

Figure 11 shows three unsteady wave drag calculations with the same 
conditions (test case) but with three different control surfaces: the first one has a 
constant size and stretches from the leading edge to the trailing edge of the airfoil, the 
second one fits all the supersonic zone while the third one fits shock waves very closely. 
For practical considerations, all the boundaries lean on mesh lines. 

Both terms of the expression (4) are presented on figure 11 for the airfoil upper 
side. A constant size control surface 81 does not seem to be a reasonable choice because 
it gives irrealistic values for the unsteady drag term. On the other hand, the results 
concerning the control surfaces 82 and 83 are quite satisfactory; this is illustrated by 
the fact that the calculation gives a zero wave drag coefficient for a supersonic zone 
without any shock wave (retreating blade). Furthermore, according to the discussion in 
section IV.l, the second part of the wave drag formula (4) must give a higher value for 
'l' = 120° than for 'l' = p0° because of stronger shock waves for the second azimuth 
angle. It is the case for the control surface 83 (see figure 11) but not for surfaces 81 and 
82. Afterwards, wave drag calculations will be carried out with the control surface 83 
which extends on the airfoil surface from the point where the local Mach number is 
maximum up to the last supersonic point. This surface has the same height than the 
supersonic zone. 
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Figures 12 and 13 show the different terms of the expression (4) and a 
comparison with the pressure drag coefficient for the two cases of section ill.l. The 
pure unsteady term Cdw1 (Figure 12) is very large and high negative values can be 
obtained in the second quadrant (90° s qr s 180°) when the upstream Mach number is 
decreasing. This explains why the large dissymmetry observed on the local Mach 
number distributions for qr = 120° (see section IV.1) does not lead to a large deviation 
for the unsteady wave drag. Figure 13 shows that the evolutions of the wave drag and 
pressure drag coefficients are quite close for the advancing blade side although the 
corresponding drag levels are quite different. 

Consequently, drag evaluation by pressure integration is not an accurate tool 
for airfoil performances prediction. However, it can give qualitative results and 
therefore can constitute a first approach to evaluate rotor blade performances. This is 
particularly important for 3D flows for which wave drag evaluation is complex and 
difficult to implement. 
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V. Unsteady performances prediction 

V.l. Airfoils 

V.l.l. Steady flow 

In 2D steady flows, rotor blade airfoils are generally classified through two 
main parameters: the maximum lift coefficient at a given Mach number (usually 0.4) 
and the drag divergence Mach number (Mdd) at zero lift. 
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A code solving the Potential flow equation is not able to give the maximum lift 
coefficient which is a pure viscous phenomenon, but it can provide a drag divergence 
Mach number which is accurate enough to make a ranking of different airfoils. Figure 
14 shows a comparison between calculation and experiment (made at ONERA) for 
three 12% thickness to chord ratio rotor blade airfoils. The experimental values ofMdd 
are always higher than the calculated ones, due to viscous effects, but the relative 
differences between the various airfoils are nearly the same for the experiment and the 
calculation. This example shows that the program can accurately rank airfoils with 
different steady drag characteristics but cannot yet give an exact estimation of their 
real performances. 

Mdd(CI=O.) Airfoil No.1 Airfoil No.2 Airfoil No.3 

Calculation 0.746 0.763 0.768 

Experiment 
0.780 0.790 0.796 (ONERAJ 

Fig. 14 • Drag divergence Mach number at zero lift. 

V.1.2. Unsteady prediction 

For 2D unsteady flows, airfoil performances can be evaluated considering 
average forces per period. This can be written in a general form: 

1 J 2n 
F =- Fd1.V 

2n o 
where 

1 
F =- p LCV2 

2 

Then the corresponding mean aerodynamic coefficients are: 

F - 1 J2n C = which gives C = ---=;! C M 2 d'!'. 
~ pL V2 2nM o 
2 

For a given flight configuration, the variation of the upstream Mach number is known 
and gives the term M"-. Different airfoils can be compared then in term of the mean 

wave drag (Cdw) for a same mean lift (Cf). Figure 15 shows a comparison between the 
same three airfoils for the evolution of the lift coefficient (Cf = 0.4) seen in section ill. 
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The mean wave drag coefficients are also given and for this configuration the 
second airfoil has the best unsteady performances, which was not the case for a steady 
evaluation. 

This example shows that a rotor blade airfoil design using unsteady criteria 
would certainly give very different results than those obtained with classical steady 
methods. The present method associated with a boundary layer code will be used at 
ONERA in a numerical optimization process to define new improved airfoils. 

V.2. Rotor blades 

The FP3D code has been used to compare the performances of several blade tip 
shapes. The performance criterion chosen is the blade torque based on pressure 
integration. As mentioned in section IV, this integration does not give an accurate drag 
prediction but it can allow to compare several blades together. 

The computed case is a very high speed case with a rotating tip Mach number 
of0.64 and an advance ratio of0.5. Since our goal-is to compare several blade tip shapes 
to reduce transonic effects on the advancing blade side, the configuration is nonlifting. 
The computed blades are a rectangular blade, a 30° aft swept blade (F30), a forward 
swept blade (F- 30) and a blade with a parabolic swept tip (PF2). Figure 16 shows the 
computed iso-Mach lines for the azimuthes 60°, go• and 120• and it shows the well
known following result: the F30 blade reduces transonic effects in the first quadrant, 
while the same effect can be seen in the second quadrant for the F -30 blade. This is also 
the case all along the advancing side of the rotor disk for the PF2 blade. When looking 
at the computed torque (Figure 17), this effect is obvious. The torque maximum value 
for the F30 tip is slightly reduced and shifted forward when compared to the 
rectangular blade, while it is shifted backward for the F- 30 tip blade. The maximum 
torque values are nearly the same for the F30 and F- 30 blades. This figure also shows 
the important improvements brought by the PF2 tip shape. When integrating the 
torque versus the azimuth, one finds that the torque reduction is equal to 8 %for the F-
30 blade, 15 % for the F30 blade and 36 %for the PF2 blade. 

Fig. 16 • /so-Mach lines. Nonlifting case. 
J1- = 0.5, MaR = 0.64, NACA 0011. 
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Fig. 17- Torque evaluation by pressure integration (0.61 R _. R). 
Nonlifting case. f.' = 0.5, MaR = 0.64. 

This example shows how the method can be applied for blade design. However, 
further efforts must be undertaken to be able to compute the rotor performances 
accurately. The method described in section N to compute the wave drag in 2D flows 
will be applied to three-dimensional configurations, and the FP3D code will be coupled 
with an unsteady three dimensional boundary layer code (weak coupling) to compute 
the viscous drag. 

VI. Conclusion 

In this paper were presented the last improvements concerning an unsteady 
transonic potential flow code used for rotor blades and airfoils calculation. The change 
from a H-grid topology to a Cone allowed a great improvement of the computed results 
in the leading edge area (stagnation pressure and velocity peak), in the code robustness 
and in the computer time for both 2D and 3D applications. 

A 2D unsteady wave drag evaluation has been carried out by integrating the 
momentum equation over a control surface which surrounds shock waves. This 
evaluation showed that the pure unsteady effect is important. This drag evaluation 
and the classical pressure drag are close for the advancing blade side. 

Calculations made on different airfoils or different blade tips allowed to 
classify them by their relative unsteady performances. The criteria used then were the 
mean wave drag value per period for the 2D case and for the 3D case the torque 
calculated by integration of the 2D pressure drags along the blade. The results 
obtained showed that the present method can be used for rotor blades and airfoils· 
design. 

In order to predict more accurately the real aerodynamic performances, a 
boundary layer code will be added to the present potential method (weak coupling) and 
the wave drag evaluation will be extended to the 3D case. 

Moreover, the 2D method will be used in a numerical optimization process to 
define new airfoils with unsteady specifications. 

16-016 
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