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Abstract 

An investigation into the concept of helicopter stability under flight-path constraint in 
descending flight is reported in this paper. The research uses the theory of weakly 
coupled systems to partition the helicopter dynamic system into three interacting 
subsystems approximating the longitudinal dynamics – the forward speed ‘surge’ mode, 
the pitch phugoid mode and the vertical speed ‘heave’ mode. Under certain conditions, 
strong control of flight path or vertical speed is shown to drive the aircraft unstable and 
a conflict exists in feedback gain values to guarantee stability of both the surge and the 
phugoid modes. Furthermore, this conflict constitutes a potential source of rotorcraft-
pilot coupling problems. The problems are exacerbated in autorotation or other cases 
when the use of collective control is severely restricted. The results from piloted 
simulations using a FLIGHTLAB Bell412 simulation model have validated the 
approximate theoretical analysis and are presented in the paper. 

 

List of Symbols 

A, Ai,j System matrix and its sub partitioning  
kw0 Gain value in feedback from vertical 

velocity to longitudinal cyclic (deg/m/s) 
kmax The maximum gain value for loci plot 
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γ Maximum element of A11 
γd, γe, Desired and deviated flight path angle 
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θ0, θls Main rotor collective and longitudinal 

cyclic input (deg) 
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1. Introduction 

Interactions between an aircraft and its pilot, 
commonly described as pilot-induced oscillations or 
aircraft-pilot couplings (PIOs, APCs), have been 
investigated extensively since the Wright Brothers 
experienced such phenomena in their first powered 
flights [1-4]. Such dynamic couplings often occur 
when a pilot increases the gain in a closed loop task, 
working hard to achieve precision. Unfavourable, or 
adverse, APCs are often sudden or unexpected. It is 
often difficult to pinpoint the cause of such events 
and they may lead to extreme outcomes such as loss 
of aircraft control [5]. The term PIO is limited and 
arguably, misleading, since the coupling pattern 
between the aircraft and pilot can, in practice, be 
either oscillatory or aperiodic. The latter refers to 
situations where the excursions of aircraft motion 
diverge monotonically over time rather than 
oscillate. Therefore, the combined dynamics 
between the aircraft and pilot are better described as 
aircraft-pilot coupling (APC) and the consequences 
are APC events [1, 5]. If rotorcraft are considered, 
the couplings are described as rotorcraft-pilot 
coupling (RPCs, [6-10]), and are the subject of this 
paper. 

It is well understood that APC events may be 
triggered under a variety of circumstances, even 
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though the nature of the APC might itself be 
obscure. In Ref. 1, McRuer describes APCs in three 
categories; 

• Cat. I governed by linear behaviour of the 
pilot and system. The couplings are 
normally associated with high gain and 
increased time or phase delay effects. 

• Cat. II typically involve limit cycle 
oscillations of the pilot-vehicle system due 
to nonlinear control elements in the 
feedback system, e.g. rate and position 
saturation.  

• Cat. III covers severe pilot-vehicle 
oscillations, which are inherently non-
linear and characterised by a transition 
from one transient response to another. 

The search for robust design solutions that mitigate 
the adverse effects remains a current research topic. 
The present paper addresses Cat. I RPCs, where the 
physical origins and design solutions are linked 
through an understanding of control strategy. 
Digital fly-by-wire flight control systems can, if not 
carefully designed, increase the potential for 
adverse interactions due to transport delays; 
nonlinearities in rate and position limiter elements, 
flight-path constraints, or response type transition 
effects are other sources of adverse couplings. Pilot 
errors of judgement resulting from mildly adverse 
APCs can contribute to the development of more 
severe APC events. 

Under high gain situations such as air refuelling, 
target tracking, operations in confined areas in poor 
visibility, or in the presence of disturbed 
atmospheric conditions, the aircraft needs to operate 
under attitude and flight-path constraint [9]. Modern 
aircraft can be designed to deal with these kinds of 
situations through the stability and control 
augmentation system (SCAS). However, the 
coupled system - aircraft, SCAS and pilot - may 
show unexpected stability characteristics such that 
strong control of one part of the system may drive 
another part unstable; hence the need to address this 
topic of ‘stability under constraint’ analytically. 

The pioneers Neumark [12] and Pinsker [13] 
investigated the problem of longitudinal stability of 
fixed wing aircraft under constraint. In [14] Milne 
and Padfield extended Neumark’s seminal work 
establishing a sound theoretical basis for such 
analysis, forming the foundation for the present 
work. In [15] a study, confined to linear dynamic 
models, was undertaken to determine whether 
longitudinal low order equivalent system 
parameters could be used to predict PIOs. Hess and 
Kalteis [16] employed the optimal control model to 

investigate the susceptibility of an aircraft to 
longitudinal PIOs in pitch attitude tracking tasks.  

The focus of the present study is an investigation of 
rotorcraft stability under flight-path constraint, 
particularly in situations where the use of collective 
pitch is restricted. The investigation aims to provide 
a theoretical framework for predicting Cat. I RPC 
problems; the method is applied to the longitudinal 
stability of the FLIGHTLAB Bell 412, a model that 
has received extensive validation work at Liverpool 
[17]. The stability of the closed-loop system is 
analysed by dividing the whole system into three 
sub-modes: the surge (forward speed) mode, the 
pitch phugoid mode, and the heave (vertical speed) 
mode, using the theory of the weakly coupled 
system (WCS) [14, 18]. While the work does not 
address specific problems encountered by actual 
rotorcraft, it does explore the potential for RPCs 
generically.  

The paper is structured as follows; after the brief 
introduction to the theory and problem in Sections 2 
and 3, different partitioning levels using WCS 
theory are explored in Section 4. A stability analysis 
of the surge mode and pitch phugoid mode is 
presented in Section 5, and finally, the results from 
piloted simulation are discussed in Section 6. 

 

2. The theory of weakly coupled 
dynamic systems 

A linear homogeneous dynamic system may be 
described by equations of the form: 

= Ax x                                                   (1) 

where the vector x∈ mR is the state variable vector 
and A∈ m m×R  is a square, real, and constant matrix. 
The system in Eq. (1) is partitioned into the form as 
follows: 

1 11 12 1

2 21 22 2

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

A A
A A

x x
x x

                     (2) 

where the vectors x1∈ pR and x2∈ qR are the sub 
state variable vectors, and the matrices Ai,j have the 
corresponding dimensions. Particularly, let r and R 
stand for the maximum and minimum moduli of 
eigenvalues of the matrices A11 and A22, 
respectively. Then, the eigenvalues of A11 lie on or 
within the circle of radius r and those of A22 lie 
without the circle of radius R.  

A system can be termed as a weakly coupled system 
if the following two conditions are satisfied: 
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a.) 1r R                                             (3) 

b.) 2 1p Rγδ                                     (4) 

where γ and δ in Eq. (4) are the maximum elements 
of A11 and A22 respectively. If these two conditions 
are held, the eigenvalues of the system in Eq. (1) 
can be approximated by calculating the eigenvalues 
of the following two matrices [9, 14, and 18]. 

1
11 11 12 22 21
∗ −= −A A A A A                             (5) 

22 22
∗ =A A                                                 (6) 

In addition, a similar process can be constructed for 
the three-level partitioning, 

11 12 13

21 22 23

31 3

1 1

2 2

3 2 33 3

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

A A A
A A A
A A A

x x
x x
x x

               (7) 

so that the eigenvalues of the complete system can 
be approximated by calculating the eigenvalues of 
the following matrices. 

1
22 23 21

11 11 12 13
32 33 31

[ ]
−

∗ ⎡ ⎤ ⎡ ⎤
= − ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

A A A
A A A A

A A A
        (8) 

1
22 22 23 33 32
∗ −= −A A A A A                      (9) 

33 33
∗ =A A                                         (10) 

These approximations will form the basis of the 
search for solutions to RPC Cat. I problems. 

 

3. Flight path constraint in the vertical 
plane 

The homogeneous form of the linearised equations 
of helicopter motion from rectilinear flight can be 
written in the form shown in Eq. (11), [9]. In 
addition, the vertical velocity w0 reference to the 
Earth axis is given by the expression in Eq. (12) 

Transforming Eq. (11) to include the vertical 
velocity state variable gives Eq. (13). This 
transformation allows an investigation of flight path 
and vertical velocity control to be more easily 
undertaken. 

Proportional pilot feedback control between vertical 
velocity and longitudinal cyclic can be written as 
the control law shown in Eq. (14). After rearranging 
the longitudinal mode into the form described in Eq. 
(15) and ignoring some small terms, this can be 
further simplified into the form in Eq. (16). The 
selected partitioning will be explained later in the 
paper. 

 

cos
sin
0

0 0 1 0 0

ls

ls

ls

u w q e e

u w q e e
ls

u w q

Xu X X X W g u
Zw Z Z Z U g wd

q M M M qdt M

θ

θ

θ

θ

θ θ

⎡ ⎤− − Θ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ − Θ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                                         (11) 

0 ew w U θ= −                                                                                                                    (12) 

0 0
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0
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u e e w e e q e
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M M Mq q

Θ − Θ −⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥Θ − Θ⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥Θ − Θ +⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

                              (13) 

0 0ls wk wθ =                                                                                                                        (14) 
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θ
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                (15) 
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⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
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4. The loci of eigenvalues with 
different partitioning levels 

4.1 The loci for the ‘exact’ system 

The basis of comparisons will be the 
eigenvalues of the ‘exact’ system matrix, given 
in Eq. (1), and illustrated in Figs. 1 and 2. The 
cases investigated are for trimmed forward 
speeds Vx = 20 to 50 kts with descending 
speeds Vz = 0, 5, 10 and 15 kts. In addition, the 
gain value (kw0, deg/(m/s)) varies from zero to 
infinity. Because of the similarities of the 
results, only two typical cases with Vx = 30 kts 
and Vx = 50 kts are shown. 

 

Fig. 1 Eigenvalue loci of the descending Bell 412 
helicopter (exact matrix calculation); x – open 
loop pole; o – closed loop zero 

 
Fig. 2 Eigenvalue loci of the descending Bell 412 
helicopter (exact matrix calculation) ); x – open 
loop pole; o – closed loop zero 

Figs. 1 and 2 show the eigenvalue loci for the 
three modes – the pitch phugoid, the surge 
mode, and the heave mode. Firstly, for the 
same forward speed, the loci of the phugoid 
mode are shifted further left as the descending 

speed increases. The mode tends to be 
controlled more effectively when the 
descending speed is higher. For example, the 
phugoid mode in Fig. 2c is completely moved 
to the stable plane. In the case of the same 
descending speed, the phugoid mode is located 
further right as the forward speed increases. 
For instance, the loci in Fig. 2b are closer to 
the imaginary axis compared with Fig. 1b. 
Secondly, the stability of the surge mode 
decreases as pilot gain is increased. The locus 
of this mode moves further right as the 
descending speed increases for the same 
forward speed. Moreover, the cases of the 
same descending speed show more stable 
results in that the loci move further left as the 
forward speed increases. Finally, all cases 
show that the vertical heave speed mode 
remains stable, demonstrating the effectiveness 
of the feedback control. However, the control 
has driven the ‘uncontrolled’ states into various 
degrees of instability, revealing a classical 
RPC. 

The curves in Figs. 1a and 2a show a curious 
phenomenon - the phugoid mode moves first to 
the left-half plane, and then back to the right-
half plane again as the gain is increased further. 
When the gain value is large enough, the mode 
is driven stable again. The physical source of 
these changes in stability is explored in this 
paper. In the current application, cyclic pitch is 
used to achieve both flight path control and 
speed/attitude control. In practice, it is more 
normal, at low speed, for the pilot to adopt a 
strategy that uses collective for flight path 
control and cyclic for attitude/speed control. 
The analysis that follows is therefore 
applicable to practical cases of partial power 
descents with collective malfunction or 
autorotation flight.  

As shown in Figs. 1 and 2, when the feedback 
gain is large enough, the surge mode is driven 
increasingly unstable. However, to achieve the 
stability of the phugoid mode the gain value 
needs to be reasonably high. There exists a 
conflict between the control of the speed and 
pitch attitude and, consequently, the gain value 
needs to be balanced. This represents a 
situation that can trigger an RPC. In Refs [12-
14] the speed stability problem for fixed-wing 
aircraft was attributed to strong control of 
vertical speed when flying below minimum 
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drag speed. The root cause here being the non-
minimum phase characteristic of flight path 
control with elevator, combined with the fact 
that drag decreases as speed increases (and 
vice-versa). A weakly coupled systems 
analysis, with three-level partitioning of the 
system dynamics, will be used to explain the 
curious behaviour of rotary-wing aircraft. 

4.2 Eigenvalue loci from a three-level WCS 
analysis 

A three-level analysis, introduced in Section 2, 
is used to partition Eq. (16). The cases being 
studied are as same as in Section 4.1 with two 
representative cases, Vx = 30 kts and Vx = 50 
kts, plotted in Figs. 3 and 4. 

 
Fig. 3 Eigenvalue loci of the descending Bell 412 
helicopter (3-level approximation); x – open loop 
pole; o – closed loop zero 

 

Fig. 4 Eigenvalue loci of the descending Bell 412 
helicopter (three-level approximation) ; x – open 
loop pole; o – closed loop zero 

The results shown in these two figures are 
clearly quite different from those in Figs. 1 and 
2. The first difference is the overlapping of the 

heave and surge mode loci that are shown as 
the solid line between two poles (the crosses) 
in the x-axes. The second is that the phugoid 
mode is represented by the closed loop zero 
from the exact case. This phenomenon can be 
understood by approximating this mode by the 
high order sub-system from Eq. (16), given by 
the following equation [cf. Eq. (10)], 

2
2 2 0

lsqM M θλ λ− + =                              (17) 

with the additional assumptions: 

ls e wM U Mθ                                     (18) 

ls e wZ U Zθ ≈                                       (19) 

The loss of speed stability is predicted by this 
approximation as shown in Fig. 3 and an 
expression for the critical gain will be 
developed in Section 5. 

4.3 Eigenvalue loci from the 2-level WCS 
analysis  

As discussed in Section 4.2, the three-level 
analysis failed to predict the low gain 
behaviour of the phugoid mode. An alternative 
partitioning of Eq. (16) is given by the two-
level system presented in Eqns. (2) and (16). 
This form of partitioning draws on the low 
frequency approximations extending from the 
open loop case [9]. Again, only two cases Vx = 
30 kts and Vx = 50 kts are shown in Figs. 5 and 
6. The frequency scale in these figures has 
been reduced to highlight the low frequency 
behaviour.   

 

Fig. 5 Eigenvalue loci for the descending Bell 412 
helicopter (two-level partitioning); x – open loop 
pole; o – closed loop zero 
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Fig. 6 Eigenvalue loci of the descending Bell412 
helicopter (two-level partitioning) ; x – open loop 
pole; o – closed loop zero 

The approximate loci are represented by Eqns. 
(5) and (6). As shown, the phugoid disappears 
as the gain value is increased. The open loop 
values are actually very close to those in Figs. 
1 and 2. One interesting point is that, after the 

break, one root tends to instability (surge mode, 
solid line), while the second becomes more 
stable. Figs. 5 and 6 also show the constant 
eigenvalues from the high modulus sub-system

22
∗A . As with the case of phugoid mode, the 

starting values are again similar to the 
corresponding ‘exact’ modes in Figs. 1 and 2. 

The two-level partitioning therefore fails to 
capture the higher frequency behaviour and the 
root cause stems from the WCS conditions in 
Eqns. (3) and (4). As the gain increases, on the 
one hand the modes move closer together and 
on the other, the coupling terms in the matrix 

 increase in magnitude. 

 

5. Analysis of stability 

5.1 Stability of the speed/surge mode 
The high-gain, three-level partitioning predicts 
the low modulus speed mode given by the 
expression 

0

0

1

[ ( )] ( )
( ) ( )

ls ls ls ls

ls ls ls ls

u w u w w w e u u u
u

w w e w w w e

g M Z Z M M k X U M Z Z M gM Z
X

M Z M Z U k M Z M Z U
θ θ θ θ

θ θ θ θ

λ
− + − + +

= + +
− −

          (20) 

 

Further simplification can be made by 
examining the relative magnitudes of the 
stability and control derivatives. For example, 
the direct derivative terms

ls
Mθ and Zw are more 

significant than 
ls

Zθ  and Mw. The following 

inequality is generally satisfied, 

ls lsw wM Z M Zθ θ                                 (21) 

For the case of Vx = 45 kts and 5 ktszV = , the 

value of 
ls wM Zθ  is two orders of magnitude 

larger than 
lswM Zθ . In addition, the following 

two inequalities are also generally true, 

( )
ls ls lsw w u uM Z X M Z Z Mθ θ θ−         (22) 

ls lsw e uM Z U gM Zθ θ                         (23) 

Applying these further approximations, Eq. (20) 
can be reduced to the expression [9], 

0

0

1

[ ( )]
ls

ls

u w u w w
u

w e w

g M Z Z M M k
X

M Z U k
θ

θ

λ
− +

= −     (24) 

For the surge mode to be stable, the condition

1 0λ < has to be satisfied. The force derivative 

uZ is usually negative at low speed (thrust 
increases with speed perturbation). Therefore, 

1 0λ <  can be given by the following 
inequality, 

0 0
[ ( )] 0

ls lsu e w w u w u w wX U Z k M g M Z Z M M kθ θ− − + >

                        (25) 

Applying the further simplifications to 
establish the core effect, 

u w u wM Z Z M                                  (26) 

u u w
e

g Z X Z
U

                                 (27) 

Eq. (25) can finally be rewritten as 
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0

ls

u w
w

u

M Z
k

Z Mθ

<                                        (28) 

In Ref. [14], the corresponding expression for 
the fixed-wing counterpart to Eq. (24) is given 
by the approximation, 

η

λ
MZ
MZgX

w

wu
usurge +≈   (29) 

The Mu effect is very strong at low speed for 
rotorcraft but is negligible for subsonic fixed 
wing aircraft. The manner in which the 

stability problem develops is similar but the 
underlying effect quite different. The closed 
loop zero for the approximate surge mode for 
fixed and rotary wing aircraft is the same 
however, and given by Eq. (29) (Mη  replaced 
by 

ls
Mθ ). 

The validity of the approximation given in Eq. 
(28) can be established by comparison with the 
critical gain values calculated from the exact 
system (Eq. (16)). The results are shown in Fig. 
7. 

 
Fig. 7 Comparison of the critical gain values from different approximations 

(kmax= 0.8 deg/(m/s)) 

In Fig. 7 the term kmax is the maximum gain 
value used to plot the figure. This figure shows 
that the simple approximation with Eq. (28) 
predicts the stability boundary very well for 
forward speeds below 45 kts, demonstrating 
the effectiveness of the 3-level partitioning. 
However, at the higher speeds, the approximate 

predictions diverge from the exact values. 
Nevertheless, Eq. (24) still remains a good 
approximation and consequently will be used 
in analysis that is more general. 

 

 
 

Table 1 Critical gains for surge mode (three-level partitioning) kw0 (deg/m/s) 

Vz \Vx 20 kts 25 kts 30 kts 35 kts 40 kts 45 kts 50 kts 

0 kts 0.3941 0.4269 0.5254 0.6895 1.1161 2.4287 -- 

5 kts 0.2200 0.2629 0.2629 0.3613 0.6895 1.7396 -- 

10 kts 0.2200 0.1972 0.1644 0.2629 0.4598 -- -- 

15 kts 0.2200 0.1644 0.1316 0.1316 0.4598 -- -- 
Note: -- mode remains s stable as the gain increases.  
 

The critical gain values of the surge mode from 
the three-level partitioning are shown in Table 
1 (kmax = 131.23). They all lie within 5% of the 
‘exact’ values. As Vx increases, the gain value 
required to destabilise the surge mode also 
increases. For the case of Vx = 50 kts, the surge 
mode remains practically stable. 

 

The speed instability is ultimately caused by 
the same effect as with fixed wing aircraft 
although the rotor downwash rather than wing 
downwash is the concern. In the speed range 
between hover and 50 kts the rotor inflow 
reduces at its sharpest rate. A positive 
perturbation in forward speed therefore results 
in a reduction in inflow and an increase in rotor 
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thrust. If a pilot pushes forward on the stick to 
increase descent rate, the speed increases and 
the increased thrust will eventually cause the 
aircraft to climb. The Mu effect complicates the 
situation since a positive speed perturbation 
causes the rotor disc to flap back and the 
helicopter to pitch up (this does not happen 
with fixed-wing aircraft), which tends to 
reduce the speed. This apparent speed stability 
is actually the cause of the open loop phugoid 
instability and it is therefore no surprise that 
the stability of the surge and phugoid modes 
are linked under closed loop control. 

5.2 Stability of the phugoid mode 

The loci of the phugoid mode in Figs. 1a and 
2a present a curious phenomenon in that they 
move back and forth in the complex plane. The 
approximations derived from the 3-level 

partitioning predict the closed loop zero 
correctly and those from the 2-level 
partitioning predict the modal behaviour at 
very low gain. The multiple stability crossings, 
linked as discussed with the changing stability 
of the surge mode, are not predicted by either 
of these partitioning. Some insight into the 
problem can be gained from an examination of 
the combined medium and high modulus sub-
systems in the 3-level partitioning. The 
problem can then be approached qualitatively 
by focusing on three degrees of freedom (u, w, 
q) [see Eq. (16), the solid line]. 

After using Eq. (5) and then rearrangement, the 
matrix for the combined phugoid and surge 
modes is given by Eq. (30). 

0 0
1 ( ) / / 1 ( ) /

0 0
1 1

ls ls

ls ls ls ls

u w e u w e w e w q e

e

u u w w q

X k Z g U Z X g U k Z g U Z X W

U
M Z M Z M Z M Z M

θ θ

θ θ θ θ

− ⋅ − − ⋅ −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− ⋅ − ⋅⎣ ⎦

                 (30) 

The associated characteristic equation can be 
written in the form, 

3 2
3 2 1 0 0a a a aλ λ λ+ + + =                (31) 

where a0, a1, a2, and a3 are functions of the 
stability and control derivatives. By applying 
Routh-Hurwitz stability criteria [20] as follows, 

3
3 1

2
2 0

1

0
0

s a a
s a a
s B
s a

                           (32) 

The number of sign changes in the second 
column of Eq. (32) will be the number of non-
negative poles of the system in Eq. (30). The 
expressions for a0, a1, a2, a3 and B can be 
written in the following, 

3 1a =                                                        (33) 

02 ( )
lsu q u w ea X M gZ k Z Uθ= − − +            (34) 

01 ( )
ls ls lse w u q w ea U M Z Z gZ M k U Zθ θ θ≈ −  (35) 

00 ( )
ls ls lsu u w wa gM Z Z M gZ k Zθ θ θ≈ − +     (36) 

and, 

0 0

2
1 2 3w wB b k b k b= + +                          (37) 

Eqns. (35) and (36) have been simplified. In Eq. 
(37), where the denominator a2 has been 
ignored, the terms b1, b2, and b3 are also 
functions of the stability and control 
derivatives. Their simplified expressions are 
shown as follows: 

3
1 (( )

ls lsu q w eb X M M Z Z Uθ θ≈ − − ⋅        (38) 

2
2 ls u w eb M gZ Z Uθ≈                       (39) 

2 2
3 u qb g Z M= −                           (40) 

The analysis has shown that the expressions in 
Eqns. (34) and (35) are always positive. 
Moreover, the condition to guarantee a positive 
a0 is shown as follows, 

0

ls

u w
w

u

M Z
k

Z Mθ

<                       (41) 

This expression is exactly the same as that 
directly derived for the stability of the surge 
mode in Eq. (28). Therefore, the sign of a0 is 
related to the stability of the surge mode. 
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The matrix in Eq. (30) consists of the surge and 
phugoid modes. Therefore, as far as the Routh-
Hurwitz stability criteria are concerned, the 
stability variations or the crossing of the 
imaginary axes of the phugoid mode are 
hidden in the sign changes of Eq. (37). The 
sign variation can be analysed by the roots of 
Eq. (37) or 2

2 1 34 .b b bΔ = − After simplification, 

the Δ equation, or generalised damping, can be 
expressed as follows 

2' 4
ls lsw e qM Z U Z Mθ θΔ ≈ − +             (42) 

In addition, the Δ' values of the all cases being 
investigated are plotted in Fig. 8. 

 
Fig. 8 Illustration of the generalised damping values (Δ') to show stability of the phugoid mode 

(the superscript numbers are the vertical speeds, kts) 
 

In Fig. 8, the points above the data 
corresponding to Δ' > 0 imply that the phugoid 
mode has two stability crossing points. The 
points corresponding to Δ' < 0 imply that the 
phugoid mode has no crossing point. The 
locations of the points in Fig. 8 for all cases are 
consistent with the results presented in Figs. 1 
and 2. For instance, the case of Vx =50 kts has 
two points corresponding to Δ' > 0 which 
represent Vz = 0 kts and 5 kts, respectively -
Figs. 2a and 2b show that there are, indeed, 
two crossing points. Overall, all these results 
have validated the derivation of Eq. (42). 

Assuming that Eq. (37) [Eq. (42) positive] has 
two different roots K1 and K2 (K1 < K2) for 
stability changes, the following observations 
can then be made. 

0 10 wk K< < , phugoid mode stable       (43) 

01 2wK k K< < , phugoid mode unstable (44) 

0 2wk K> , phugoid mode stable          (45) 

The consistency between Eq. (41)/Fig. 8 and 
the original results shows the effectiveness of 
the applied WCS method. However, the 
primary drawback is that the method can only 
predict two stability crossings. Effectively, the 
initial point of the phugoid mode is assumed to 
be located in the stable plane. As a result, the 
first stability change is ignored, although the 
corresponding gains are very small and thus it 
is still illuminating to apply this approach in 
practice. This statement can be validated by 
calculating the critical values for the phugoid 
mode from the ‘exact’ matrix, as shown in 
Tables 2 and 3. 

 

Table 2 Critical gains for the phugoid mode (exact matrix, deg/(m/s)) 

Vz = 0 kts\Vx 20 kts 25 kts 30 kts 35 kts 40 kts 45 kts 50 kts 

K1 0.0984 0.0984 0.0656   0.0656   0.0328   0.0328   0.0000 

K2 1.5751   1.2798   1.1814   1.0174   0.8861   0.8205   0.6891 

K3 55.722 45.910   36.361   30.453   25.892   22.315   20.149 

Note: 0.0000 means the initial point for the phugoid model is located on the left-hand plane or neutrally stable 
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Table 3 Critical gains for the pitch attitude mode (exact matrix; deg/(m/s)) 

Vz \Vx 20 kts 25 kts 30 kts 35 kts 40 kts 45 kts 50 kts 

5 kts 0.0984 0.0328 0.0328 0.0328 0.0000 0.0000 × 

10 kts 0.0328 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

15 kts 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Note: × -  this case also has three critical gain values: 1.) 0 (neutral stable); 2.) 1.5752; and 3.) 2.7566 
 

Table 2 shows the critical gains for level flight 
cases that generally have three intersecting 
point with the imaginary axis (the phugoid is 
unstable initially). In addition, as shown in this 
table, the gain values of the first intersecting 
point are all less than 0.1 deg/(m/s). Table 3 
contains results for the descending flight cases. 
Compared with the level flight, the situation is 
more straightforward, since all curves are 
wholly located on the left-half plane or only 
have one intersecting point with the imaginary 
axis; an exception is the case of Vx = 50 kts and 
Vz = 5 kts. Moreover, even the gain values of 
the only intersecting point are also all less than 
0.1 deg/(m/s).  

With strong control of vertical velocity or 
flight path, the modes dominated by the 
uncontrolled speed and pitch attitude motions 
are intimately linked. Referring to Eq. (28), the 
larger the ratio Mu/Zu, the higher the gain that 
can be used before the surge mode destabilises, 
but the earlier the phugoid mode transitions 
back into the unstable plane. For the case of the 
level flight with Vx = 30 kts, the gain value 
needed to guarantee surge mode stability is less 
than 0.5254 deg/(m/s) as shown in Table 1. In 
order to achieve the stability of the phugoid 
mode, the gain should be located within the 
range (0.0656, 1.1814) or larger than 36.361. 
Therefore, the gain selected from the interval 
(0.0656, 0.5254) will result in the combined 
system in Eq. (16) being stable. 

The consequences of this complex interaction 
have been explored in an exploratory piloted 
simulation trial, reported in the following 
section. 

 

6. Piloted simulation tests 

6.1 Simulation objectives and mission task 
element 

To investigate the potential RPCs and stability 
problems arising from the conflict between 
attitude control and flight-path control, a series 
of experiments have been initiated on the 
moving base HELIFLIGHT simulator at The 
University of Liverpool [19]. The simulation 
model used was the nonlinear FLIGHTLAB 
Bell 412. As previously discussed, the normal 
piloting strategy at low speed is to use 
collective for flight path control and cyclic for 
speed and attitude control. However, in this 
experiment, in order to tighten up the flight-
path control, only the longitudinal cyclic was 
used. The situation is more similar to 
autorotation or where collective pitch is 
inhibited in some way. During the tests, the 
pilot(s) performed a series of approach-to-
helipad profiles, with disturbance initiated at 
some points of the manoeuvres. This allowed 
for an investigation of the effects of different 
levels of task severity on pilot workload within 
defined performance standards. The test course 
is shown in Fig. 9. 

Fig. 9 Trajectory for investigation of flight-path 
constraint 
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To fly the course in Fig. 9, the pilot has to 
maintain the navigation error within the 
boundaries shown.  

6.2 Analysis of results 

Typical results from the piloted simulation 
trials are shown in Figs. 10 – 12.  
 

 
Fig. 10 Results of the piloted simulation 
 (Vx = 50 kts and Vz = 5 kts) 

 

 
Fig. 11 Results of the piloted simulation  
(Vx = 50 kts and Vz = 10 kts) 

 
Fig. 12 Results of the piloted simulation 
(Autorotation, Vx = 50 kts) 

 
In all three cases, results for three different 
situations are shown – a pitch down 
perturbation (-ve θ1s) with pilot controlling 
vertical rate, a pitch up perturbation (+ve θ1s) 
with pilot controlling vertical rate, and a pitch 
up perturbation with the pilot using a combined 
vertical rate and forward velocity control 
strategy. Fig. 10 corresponds to the 50kts 
partial power case with an initial glide slope of 
approximately 6 deg. Fig. 11 shows the aircraft 
at 50 kts with an initial glide slope of 
approximately 12 deg descent and Fig. 12 
shows the autorotation case with a descent rate 
of about 2500 ft/min. The pattern is similar in 
all three-flight cases. With the pitch down 
perturbation, the pilot struggles to maintain 
rate of descent as the horizontal velocity 
component increases to more than 80kts. 
Following the pitch up perturbation, the 
horizontal velocity falls sharply and the pilot is 
soon unable to control the flight path as the 
rate of descent builds to over 3000 ft/min. Both 
of these cases are a consequence of the surge 
mode instability highlighted in Fig. 2. The 
linear approximation used to predict the 
behaviour in Fig. 2 breaks down of course 
when the velocity increases/decreases by more 
than a ‘small’ perturbation for the 50 kts trim 
condition. The oscillatory cyclic control pattern 
at about 2 rad/sec, clear in Fig. 11 but less so in 
Figs. 10 and 12, echoes the poorly damped 
closed loop phugoid mode in Fig. 2. Using a 
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mixed control strategy, combining control of 
horizontal and vertical speed, the pilot 
successfully maintains the flight condition in 
all three cases. The pilot referred to using 
much lower gain in this case and, closing the 
loop on airspeed, found that control of vertical 
rate was sometimes ‘counter-intuitive’ – 
pushing forward to climb and vice-versa. The 
non-minimum nature of vertical rate response 
to cyclic at low speed contributes to this effect, 
as discussed earlier in the paper. 
 

7. Conclusions  

This paper has documented results from an 
investigation into the RPC susceptibility for 
rotorcraft under flight path constraint. The 
main conclusions are summarised as follows: 

Firstly, building on the foundation work of Ref 
[9], this is believed to be the first reported 
investigation of RPCs for descending flight 
situations with flight path constraint. 
Furthermore, a mathematical technique has 
been developed to predict this kind of RPC by 
taking into account the conflict between the 
controls of the speed and pitch attitude when 
the vertical speed feedback gain increases. The 
consequent results from the piloted simulation 
trials have validated this theoretical prediction. 
The flight simulation results also show that the 
pilot was able to learn a new technique to 
maintain the descent profile at low speed, even 
in autorotative flight.  

Secondly, the theory of weakly coupled 
systems has been successfully adopted to 
facilitate understanding of the physical 
mechanisms of Cat. I RPCs, by partitioning the 
whole system into various levels of interacting 
subsystems. The drawbacks and limitations of 
different partitioning approaches have been 
compared and analysed. The three-level 
partitioning predicts the high gain limit of the 
phugoid mode and the two-level partitioning 
predicts the behaviour at low gain. A stability 
analysis, based on Routh-Hurwitz metrics has 
revealed the complex development of the 
phugoid stability under flight path constraint.   

Thirdly, the critical values from the 
approximate surge mode, derived from the 
three-level partitioning, have been validated 

through comparison with the ‘exact’ closed-
loop system.  

Fourthly, the results from the piloted 
simulation trials in level flight, in powered 
descent and in autorotation all show, to varying 
degrees, the propensity for RPCs as the pilot 
controls flight path with cyclic. There is a close 
analogy with the earlier predictions on speed 
stability for fixed-wing aircraft flying below 
minimum drag speed. For a helicopter, the 
added complication is the presence of the 
phugoid mode driven by the large value of the 
aerodynamic derivative Mu, and the attendant 
risk of a combination of oscillatory and 
aperiodic divergent RPCs. 
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