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ABSTRACT

The paper presents a method for formulating finite state unsteady aero-
dynamic models in the time domain from frequency domain unsteady aerodynamics.
The method is based on recognizing that the 1lift deficiency function repre-
sents an aercdynamic transfer function and utilizes the Bode plot technique,
used in control systems engineering, to construct approximation to the lift
deficiency function. TIndicial response functions for both fixed wing and
rotary wing applications are obtained, using these finite state unsteady
aeraodynamic models. Tt is shown that the rotary wing indicial response
function is oscillatory and thus it is fundamentally different when compared
to the fixed wing indicial response function which is nonoscillatory. Cer-
tain aspects of the finite state aerodynamic model are demonstrated by apply-
ing it to the flapping dynamics of an articulated helicopter rotor blade.

The influence of unsteady aerodynamics on the damping characteristics of the
rotor is examined. The same problem is also treated by using a different
unsteady aerodynamic model, namely dynamic inflow. Based on a comparison

of the results obtained with these two unsteady aerodynamic models, useful
conclusions are drawn regarding some fundamental features of these theories.

Nomenclature

a = Lift curve slape
ai,bi = Coefficients in approximate aerodynamic transfer function
b = Blade semichord
c(k) = Thecdorsen's lift deficiency function
c(s) = Generalized Theodorsen's lift déficiency function
c' = Loewy's 1ift deficiency function
C'eq = Equivalent lift deficiency function

'DI = Lift deficiency function obtained using dynamic inflow model
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Low frequency approximate transfer function for Loewy's lift
deficiency function

Thrust coefficient

= Pitch and roll moment coefficients, respectively

Real and imaginary parts of Theodorsen's 1ift deficiency
funetion C = F + iG

Real and imaginary parts of Loewy's 1lift deficiency function
C'=TF' + iG'
Unsteady aerodynamic force at the blade root

Transfer function

Hankel functions of second kind of order n; Hi = Jn - iy

_ 21U 0
Equivalent wake spacing; he = aﬁgﬂ—

Moment of inertia of the blade about the flap hinge

el

Bessel functions of first kind of order n

wh __ wb

Reduced frquency, k = o °f o

Lift per unit span of the blade
Circulatory lift om the airfoil
Equivalent frequency ratio; ﬁe = ?25
Aerodynamic flap moment

Steady part of the aerodynamic flap moment

Time varying part of the aerodynamic £lap moment

Collective flap moment coordinate

Nondimensional apparent mass associated with inflow variable ll
Eigenvalue; p=0 % i @

Number of blades in a rotor or 3/4-chord-downwash velocity
Representative radial station on the blade for unsteady effects
Radial station for the typical blade section, Ee = Q

Rotor radius
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Laplace variable

. . . -_ b s , ~
Nondimensional Laplace variables; s = D0.75R ¢ S

Free stream velocity

Induced velocity normal to the rotor disk

Steady flap angle
th
Flap coordinate of the k  blade
Time varying part of the flap angle, for kth blade

Collective flap coordinate of the rotor

4
Leck number;y = 2pabR
I
b U o
Steady inflow; KO = ﬁ%‘

= Inflow wariables

Perturbational inflow

Total Inflow; X = AO + &

Frequency

Complex part of the eigenvalue p

Rotor angular speed

Azimuthal angle or nondimensiconal time, § = {it
Density of air

Real part of the eigenvalue p

Solidity ratio

Nondimensional time; T =-QL%EE Qi

= Fixed wing indicial response function

= Rotary wing indicial response function

Derivative with respect to time t

Derivative with respect to nondimensional time {it
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1. Introduction

It is well known that unsteady aerodynamics plays an important role
in the aeroelastic stability and response calculation of both fixed wing
and rotary-wing vehicles. However most rotary wing aeroelastic analyses
use either quasi-steady aerodynamic thecries or two dimensional theories
which are based on the assumption that the airfoil is undergoing simple
harmonic motions (such a theory is denoted frequency domain theory in this
paper). These restrictive aerodynamic assumptions were due primarily to
the lack of suitable unsteady aerodynamic models in the time domain. Re-
presentative theories which are based on the assumption of simple harmonic
airfoil motions are: (a) Theodorsen's! incompressible two-dimensional
unsteady aerodynamic theory and Greenberg'52 extension of Theodorsen's
theory which accounts for pulsating oncoming flow velcocity and constant
angle of attack; these theories have been developed for fixed wings, how-
ever, they have algo been used frequently in reotary-wing applications and,
(b) Loewy's theory3 and Shipman and Wood's theory®, which are applicable
to a helicopter rotor in hover and forward flight, respectively. Theodorsen's
theory for fixed wings assumes a planar wake behind the airfoil extending to
infinity, whereas Loewy's theory for rotary wings assumes an unsteady wake
behind and beneath the reference airfoil extending, to infinity in both
directions, as shown in Figure 1.

These theories have a significant limitation when applying them to aero-
elastic stability calculations, since the assumption of simple harmonic
motion, upon which they are based, implies that they are strictly valid only
at the stability boundary, and thus they provide no information on system
damping before or after the flutter condition is reached. Thus standard
stability analyses, such as the root locus method, cannot be used in con-
junction with these theories. Another important limitation of these theories
is evident when one tries to apply them to the rotary-wing aeroelastic
problem in forward flight, which is governed by equations with periodic
coefficients. 1In this case the complex lift deficiency function associated
with frequency domain unsteady aerodynamics is not consistent with the
numerical methods employed in the treatment of periodic systems. TFurther-—
more these unsteady aerodynamic theories are not suitable for the analysis
of aercelastic systems with active controls, such as higher harmonic control
devices and the transient response analysis of aeroelastic systems, such as
rotor blade response in forward flight. Thus there is a need for unsteady
aerodynamic theories which are capable of modeling the unsteady aerodynamic
loads, in time domain for finite time arbitrary motion of an airfoil, re-
presenting the cross-section of an oscillating helicopter rotor blade. It
should be noted that in this paper the term arbitrary motion is used to
denote growing or decaying oscillations with a certain frequency.

Such an unsteady aerodynamic theory for finite time arbitrary motion of
an airfoil has been developed recently for fixed wing applications”. However
the success in developing similar theories which are suitable for rotary
wing applications has been somewhat limited.

4 clear description of the historical development of the application of
Laplace transform techniques to the problem of unsteady aerodynamics for
finite time arbitrary airfoil motions can be found in References 5 and 6.
Recently Edwards® showed that the Laplace transform of the cireculatory load
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on an airfoil, executing arbitrary motion in incompressible flow, is re-
lated to the product of the Laplace transform of the generalized Theodorsen
function C(s) and the Laplace transform of the 3/4-chord downwash velocity
of the airfoil. The generalized Theocdorsen lift deficiency function C(E),
in the Laplace domain, is equivalent to replacing, ik, in Thecdorsen's
lift deficiency function C(k) by the nondimensional Laplace transform
variable s.

Since the value of Theodorsen's 1lift deficiency functien is known
exactly in the frequency domain, Vepa’ represented C(k) by a ratio of two
polynomials C(k) = N(ik)/D{ik), where N(ik) and D(ik) were equal degree
polynomials, Vepa evaluated the coefficients in these polynominals by a
least squares technique and obtained very good approximations to C(k).

An alternative procedure for obtaining approximate expressions for C(k)

was proposed by Dowell®. Dowell's technique is based on a parameter
identification technique in which the time history of the aercdynamic load
on the airfoil was assumed to consist of sums of exponentials. Applying
the fundamental correspondence between the frequency domain and time domain
aerodynamic loads, Dowell evaluated the time constants and the coefficients
which provide the best fit to the frequency domain representation of the
aerodynamic forces. It should be noted that Dowells' procedure is based

on the assumption that the functional form of the indicial response function
is known apriori. The approximate representations of Theodorsen's Lift
deficiency function C(k), obtained by Vepa or Dowell, can be used to model
the unsteady aerodynamic loads produced by completely arbitrary, small,
time dependent motion of an airfeil. Since these approximate transfer
functions for C{k) are finite degree polynomials, they are also referred

to as finite state models for the unsteady aerodynamics.

More recently, in Ref. 6 and 9, Greemberg's theory and Loewy's theory,
which are representative of unsteady aercdynamic theories frequently used
in rotary-wing aeroelasticity, have been also generalized for arbitrary
motions. The generalization of Greenberg's theory is straightforw&rd9 and
could be done along the lines indicated in Ref. 5. In Ref. 9, Dinyavari
and Friedmann, generalized the Loewy's 1ift deficiency function C' by
replacing ik in the lift deficiency function by the non-dimensional Laplace
variable 5. Following Dowell 's® procedure, a finite state Pade approximation
to Loewy's 1ift deficiency function was obtained. However this approximation
failed to capture the oscillatory behavior of Loewy's 1ift deficiency function,
which 1sa special feature of theunsteady aerodynamic loads acting on a rotor blade.

This paper has a number of cbjectives: (a) Formulation of a new technique
for approximating rotary-wing 1lift deficiency functions, such as Loewy's,
which are oscillatory in nature, so as to be able to extend such theories to
arbitrary motions in the time domain; (b) Present the methodology needed for
applying finite~time arbitrary motion unsteady aerodynamic theory to a heli-
copter rotor dynamic problem and (c) Treat the same rotor dynamic problem
using dynamic inflow and compare some of the fundamental features of these
theories.

First a new technique for identifying and formulating the mathematical
form of the finite unsteady aerodynamic transfer function by utilizing Bode
Plot mEthodlo, is presented. Then using the finite state unsteady aerodynamic
models, the indicial response functions for boththe rotary wing and fixed wing case
are obtained. It is shown that the rotary wing indicial response functiomn
iz qualitatively different in nature when compared to the fixed wing indicial
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response function. For fixed wings, the indicial response function exhibits
a steady exponential decaying form whereas for rotary wings the indicial
response function has an oscillatoery form with exponential decay. Therefore,
the rotary wing indicial response overshoots the steady value at certain
specific times. This feature of the rotary wing indicial response function
has been also observed experimentallyll. In Ref. 11, it was found experi-
mentally that the thrust response of a rotor to a sudden change in the
collective setting of the blades overshoots the steady state value prior

to reaching it.

Subsequently the finite state unsteady aerodynamic model is applied to
a rotor dynamic problem, in which the effects of unsteady aerodynamics on
the flap damping and frequency of the rotor are evaluated. The same aero-
elastic problem is also studied using a different unsteady aerodynamic model,
namely the dynamic inflow model, The results obtained with these two un-
steady aerodynamic models are compared. From this comparison certain con-
clusions on the fundamental nature of finite state unsteady aerodynamic
models and their relation to dynamic inflow models are drawn.

2. Brief Description of the Bode Plot and Its Role in Unsteady Aerodynamics
Modeling

One of the methods frequently used in the analysis and design of control
systems is the frequency response method. When using this method, the fre-
quency of the input is varied over a wide range and the resulting output re-
sponse is studied. Using this method, the transfer functions of complicated
systems can be determined. This particular aspect of determining the transfer
function from the frequency response curve can also be used to formulate app-
roximate transfer funetions for the unsteady aerodynamics of a two-dimensional
airfoil oscillating in incompressible flow. Furthermore, the method is equally
applicable to both fixed wing type or rotary wing type of unsteady aerodynamic
theories where the lift deficiency function plays the role of a transfer func-
tion, which relates the 3/4-chord downwash velocity to the aerodynamic load
acting on the airfoil. Since lift deficiency functions, such as Theodorsen's
for the fixed wing case and Loewy's for the rotary wing case are known exactly
for simple harmonic motion of the airfoil, the approximate transfer functions
can be formulated by applying frequency-response techniques used in control
system engineering.

One of the methods used for representing the frequency-response of a trans-
fer function is the Bode diagramlo. The Bode diagram consists of two graphs.
One is a plot of the logarithm of the magnitude of the sinusoidal transfer
function and the other is a plot of the phase angle. Both are plotted as a
function of frequency on a logarithmic scale. For the present application only
a plot of the magnitude versus frequency is needed and therefore we shall
restrict our attention to this particular aspect of the Bode plot. This portion
of the Bode plot consists of logarithmic magnitude of the transfer function
G(iw), i.e., 20 log|G(iw)| versus the frequency w.

Since our aim is to formulate an approximation to the transfer function
represented by the unsteady lift deficiency function we seek the information
about the qualitative nature of the poles and zeros, i.e., whether they are
real or complex and where they are located. This information can be obtained
by analyzing the Bode plot of the 1ift deficiency function. A detailed des~
cription of the features of the bode plots and its asymptotic properties,
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which are useful in this regard can be found in Refs. 10 and 14, and for the
sake of conciseness are not repeated here. The most important properties
of the Bode plots, which are needed for our application are summarized below.

(a) A +20 db/decade change in slope in the asymptotes is indicative of the
presence of a real zero and a -20 db/decade change in slope indicates the
presence of a real pole in the transfer function;

(b) peaks in the Bode plot indicate the presence of complex poles and
complex zeros in the transfer function; .

(¢) a -40 db/decade change in slope in the asympototes indicates the
presence of either complex poles or two equal real poles and a +40 db/
decade change in slope indicates the presence of either complex zeros
or two equal real zeros;

(d) whenever the slopes of the asymptotes of the transfer function are
equal, at low or at high frequencies, then the transfer function has an
equal mumber of poles and zeros.

These properties are very useful when one attempts to construct
approximation to the lift deficiency function, which has the role of an

aerodynamic transfer function in unsteady aerodynamics.

3. Finite State Modelling of Theodorsen's Lift Deficiency Function

Theodorsen's lift deficiency funection, for a two dimensional airfoil
executing simple harmonic motion in incompressible flow, is given in
exact form bhyl?

H %0
C(k) = (1)

2 iy 2
Hl(k) + 1H0 (k)

The real and imaginary parts of C(k) are shown in Fig. 2., A Bode plot of
Theodorsen's 1lift deficiency function is presented in Fig. 3. It can be

seen from Fig. 3 that the low frequency and the high frequency asymptotes
have equal slopes with a value of 0 db/decade. Furthermore the Bode plot
does not show any peaks and the slope of the exact curve at any point is

less than -20 db/decade. Therefore, using the general properties of the Bode
plots summarized before, the approximate transfer function for C(k) must

have an equal number of poles and zeros, which are real. Based on these
considerations, a third degree polynomial approximation for C(k), in the

form of

0.5(ik + al)(ik + az)(ik + az)

c(k) = (2)

(ik + bl)(ik + bz)(ik + b3)
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can be assumed. The transfer function satisfies the condition that C(k)
approaches 0.5 as k approaches infinity. Imposing the constraint that

C(k) = 1 for k = 0, the coefficients a,, ap, a3, by, by, by are determined
by a least square technique, whereby tﬁe real and imaginary parts of the
transfer function are set equal to the-'real and imaginary parts of the exact
function C(k). The approximate function obtained in this manner is given by

(0.5(ik 4+ 0.088) (ik + 0.37) (ik + 0.922)
(ik + 0.072) (ik + 0.261)(ik + 0.80)

c(k) = (3)

The real and imaginary parts of the exact C(k) function together with the ap-
proximate transfer function, given by Eq. (13), are shown in Fig. 2. It

can be seen that the [3.3] polynomial approximation gives an excellent *
agreement with the exact values of the Thecdorsen 1ift deficiency functiom
C(k). The location of the poles (pj,ps,pP3) and zeros (z1,z2,z3) and the
asymptotic behavior of the approximate transfer function, given by Eq. (3),
are shown in Fig. 3. It is evident from Fig. 3 that the poles and zeros

of the approximate transfer function lie in a range of reduced frequencies

k where the Bode plot of the exact transfer function has a higher slope then
at other values of k, i.e., 0.06 £ k¥ £ 1.0. This particular feature associated
with the location of the poles and zeros is very useful for estimating their
initdial values required for constructing the approximate transfer function
by the nonlinear least squares technique.

Using the approximate transfer function cbtained for Theodorsen's 1lift
deficiency function C(k), the indicjal response function can be obtained bg
taking the inverse Fourier transform of the approximate transfer functionl -
The indicial response function obtained for the [3.3] polynomial approximation
given by Eq. (3) is

(1) 2 1.0 - 0.203 e "0 _ 5,236 & 02817 _ g g6 7087 (4

¢F.W.

4., Finite State Modelling of Loewy's Lift Deficiency Function

Loewy's rotary wing unsteady airfoil theory represents an approximation to
the unsteady aerodynamic loads acting on a rotor blade cross section in hover.
The effects of the spiral returning wake beneath the rotor, shown in Fig. 1,
are considered in an approximate manner. These wake lavers represent wakes
shed by other blades, as well as the reference blade in previous revolutions.
The wake layers extend to infinity before and behind the reference airfoil.
Loewy's theory is intended for lightly loaded rotors (i.e. low inflow con-
ditions) and like Theodorsen's theory it is also based on the assumption of
simple harmonic motion of the reference airfeoil.

Loewy's lift deficiency function, in the frequency domain, for the
collective mode of the rotor, where all the blades move in phase, is given

C ! (k,fﬁe,ﬁe) = Pl 3 _ —
chk) + i Ho(k) + 2[J1(k) + iJO(k)} W(khe,me)

) - -
Y () + 27, (k) W(kR_,m )

(5)

%
Since the two curves coincide in Fig. 2.
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where the wake weighting function W is given by

1
L Kb, i2mm -1
W(khe, me) = {6)

k>0

The quantities h , ﬁe for a typical blade section at a radial distance r
from the axis of rotation, for a rotor with Q blades, are defined as

_5;2_:92.1?_:1{;
e Q Qi Qb e

5 o= I

Te T 0B

. 2wUP0 } 2TUp,, R ano
e Qb QR Qb Q(b/R)

In the definition of the equivalent frequency ratio m , it should be noted
that for a given blade section at a radial station r from the axis of rotationm,
m, is dependent on the reduced frequency k.

We shall show that the technique based on the Bode plot, developed in
this paper, is successful in formulating the approximate transfer function
for the Loewy's lift deficiency function. To illustrate the method, the
following example was selected. The trust coefficient is Ctp = 0.005 and
the blade section is taken at 0.75R. The rotor was assumed to have four
blades and the blade semichord is b = 0.024R. The corresponding inflow
ratio is calculated from Ag =_¥ Cr/Z = 0.05 and the values of b, and ;e
are given by he = 3.2725 and r, = 7.8125, respectively. This example is
representative of a typical helicopter application. The typical blade
section was taken to be at 75% of the span due to the following consideratioms.
First it is common practice to consider the blade section at 0.75R to be
representative of rotor aerodynamic behavior under steady conditioms.
Secondly, to justify this assumption under unsteady conditions the unsteady
aerodynamic loads, at twenty spanwise stations, were evaluated for a blade
undergoing simple harmonic flapping motion. These loads were computed using
Loewy's exact 1ift deficiency function. The loads were integrated along the
blade span to obtain the unsteady aerodynamic thrust and the moment at the
blade rocot. These calculations were performed at various flap frequencies,
in the range of l/rev ~ 2/rev. The details of this calculation can be found
in Ref. 14, PFor gll cases considered the integral value of the unsteady
aerodynamic loads at the root indicated that the unsteady aerodynamic load
at 75% span is Indeed a suitable representative value, without any loss of
accuracy. Once a finite state model for the unsteady aerodynamic transfer
function is formulated for this particular blade section, the same model is
also applicable to other blade sections along the span.

Figure 4 illustrates the real (F') and imaginary (G') parts of Loewy's

exact 1ift deficiency function for this case. From Fig. 4 it is evident
that the real and imaginary parts of the Loewy's 1ift deficiency function are
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highly oscillatory. The Bode plot of Loewy's lift deficiency function is
presented in Fig. 5. The Bode plot has many peaks and valleys. Hence the
corresponding approximate lift deficiency or transfer function which we
seek, must have as many complex poles and complex zeros as there are peaks
and valleys in the Bode plot. In Fig. 5 the odd numbers, corresponding to
the valleys, indicate complex zeros and the even numbers,corresponding to the
peaks, indicate complex poles. For practical situations high reduced fre-
quencies above k > 1 are not feasible. Therefore the approximate transfer
function is constructed so as to capture the first eight complex poles and
complex zeros. This approximate transfer function can be written in the
following form

]
]

0.5(ik+a1)
(ik + bl)

cn 2 .
{(ik) +a2j 1k+a2j 41

C'(k,h_,m) =F' +¢'= > (7
[ (ik) +bZj 1k+b2j +1

.
ot ool o 0o
—

(S
[

The task of evaluating the 34 coefficients aj ... aj7 and by ... byjy by a
nonlinear least squares technique leads to a problem which converges slowly.
To facilitate the numerical calculations the problem was modified so that
the coefficients could be evaluated by solving a linear least squares problem.
For this case the approximate lift deficiency function is given by

v 17 16
(ik) + al(lk) + ...+ a4 ) N (1K)

D{(ik)

C'=TF' + 46" = 0.5 (8)

a1 7 .4 16
(ik) + bl(lk) + .0t bl7

The ceoefficients a; ... aj7, by ... bj7 are evaluated by minimizing the
N

error 1L [C! D(ikM) - N(ikM)]z. The coefficients obtained from this pro-

M=1
cedureléaregivenin Table I. Table II gives all the poles and zeros of the
approximate transfer function represented by Eq. (8). It can be seen that,
for this case, there are eight complex poles and eight complex zercs, in
addition to one real pole and a real zero.

In Fig. 4, the real and imaginary parts of the approximate 1ift deficiency
or transfer function, given by Eq. (8), are compared with Loewy's exact lift
deficiency function. It is evident that the agreement between the two sets
of curves is very good.

Recall that from linear, incompressible, two dimensional unsteady aero-
dynamic theory Wagner's indicial response function and Theodorsen's lift
deficiency function are related by a Fourier transform! 2. Loewy's theory
is the rotary-wing counterpart of Theodorsen's theory. Therefore by analogy
the rotary-wing indicial response function and Loewy's lift deficiency function
can be also related by the Fourier transform given below

1 7o'k ik
. (D = 5 J ik e dk (9

-C0
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The approximate transfer function, given in Eq. (8), can be substituted in
Eq. (9) for C'. Applying partial fractions and using a table of inverse
Laplace transforms, the approximate rotary-wing indicial response function
dr. . (1) was calculatedl4 and is depicted in Fig. 6. It can be seen from
Fig. 6 that the indicial response is oscillatory and at certain values of

T the response overshoots the steady wvalue 1.0, This result implies that
for a step change in angle of attack of the rotor blade the thrust developed
by the rotor will overshoot the steady wvalue before reaching it. This
phenomenon has been experimentally observed in Ref. 11. The authors of

Ref. 11 noted that for a rapid change in collective pitch setting of a model
rotor, the measured thrust overshoots its steady state value. This is
precisely the qualitative nature of the indicial response function ¢g i, (T)
shown in Fig. 6.

In general, the rotary wing indicial response function can be written

asld

N
) = 1.0 - z A, .T + B. i . 10
(1) = e [ 5 €08 ;T ; sin mJT] (10)

The values of A., Bs and bj's depend on the rotor geometry and the rotor
operating condi%ions and can be evaluated from the approximate transfer
function corresponding to Loewy's lift deficiency function, defined for
that specific rotor. It should be also noted that this is the first time
that the mathematical form of a rotary wing indicial response function is
presented in the literature. )

Recall from the previcus discussion of the fixed wing case that the
indicial response function can be written as

=

—bjT
¢F.W.(T) =1.0 - 'Z Aje {(11)
j=1
Comparing the rotary wing indicial respomse functions ¢ y,, Eq. (10), with
the fixed wing indicial response function ¢p,y., Eq. (11), it can be concluded
that the rotary~wing indicial response function is gqualitatively different
from the fixed wing indicial response function. The rotary wing indicial
response function exhibits an oscillatory nature whereas the fixed wing
indicial response is nonoscillatory.

5. Influence of Unsteady Aerodynamics on the Flapping Dynamics of a Heli-
copter Rotor

In this section finite state unsteady aerodynamics are applied to a simple
rotor dynamic problem. In particular we wish to clarify three important
items: (a) illustrate the methodology of applying finite state unsteady
aerodynamics to a rotor dynamic problem; (b) evaluate the effects of unsteady
aerodynamics on the damping and frequency of rotor flapping dynamics; and
(¢) compare the results obtained using the unsteady aerodynamic model
developed in this study, with results obtained using dynamic inflow, for
the same rotor dynamic problem.
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5.1 Application cf a Generalized Loewy Theory to Rotor Flapping Dynamics

From the review of the pertinent literature it is evident that the
only case when finite state unsteady aerodynamics was applied to a rotor
dynamic problem was presented in Refs. 6 and 15, where a generalized
Greenberg theory was used. Here we apply a generalized Loewy theory for
the first time to a rotor dynamic problem, and therefore we use a relatively
simple example which is adequate for 1llustrative purposes. The example
rotor consists of four uniform blades which are articulated and centrally
hinged. Each blade is assumed to have only a flap degree of freedom. The
rotor is in hover, with Cp = 0.005 and the blade semichord is b/R = 0.024.
Furthermore we restrict our attention to the collective flap degree of
freedom for which approximate lift deficiency function was evaluated in
the previous section and we shall determine the influence of unsteady
aerodynamics on the damping and frequency of the perturbational flapping
motion of the rotor.

The first step in solving this rotor dynamic problem is to gemneralize
the approximate transfer function for Loewy's 1lift deficiency function,
given in Eq. (8), to arbitrary motion of the airfoil. This is accomplished

by replacing (ik) in Eq. (8) by the nondimensional Laplace variable s. The
generalized 1ift deficiency function is given by

317 + a1§16 + ——— + a19
C' 20.5 45 T (12)
s° + bls + + b17
The values of the coefficients a] --- ajy, by ——- by are given in Table I.

The fundamental natural frequency of a centrally hinged articulated
blade is 1/rev. Therefore the corresponding reduced frequency k, for the
typical blade section at 0.75 R, with a semichord of b/R = 0.024 is

Wb o ow b
k= o q T7sr - 0-032

This value of the reduced frequency is very small. Therefore by restricting
the validity of the approximation to low values of k, i.e. 0 < k < 0.05, a
further approximation of Eq. (12) is possible., An approximation which is
valid for such low frequencies can be written as

a §+a
¢t =o0.50 | 0 17 (13)

b165 + bl?

Having obtained such a first order approximation, to the generalized 1lift
deficiency function, it can be incorporated in the dynamic problem of a
flapping rotor. This simplified model enables one to determine the in-
fluence of unsteady aerodynamics, at low reduced frequencies, on the flap-
ping response of a rotor.
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Neglecting apparent mass terms the l1ift on a typical section of the
rotor blade, located at a radial station r from the axis of rotatiom, is
given by

L(t) =pa bRr€ ' [c'(5)Q(s)] dr (14)

where C'(s) is given by Eq. (13) and Q(s) is the Laplace transform of the
3/4-chord downwash velocity. Define a new function T(t) given by
-1 -
T(e) =L [¢'()a(s)] (15)
The function T(t) can be considered to be representative of the circulation
around the airfoil. Substituting Eq. (13) in Eq. (l4), the 1lift on the

blade section becomes

L{t) = pa bfir T(t) dr (16)

The equation of motion of the kth blade in the flap degree of freedom 1513

R
- 2 _
1, B +1, 28 = ‘g L(t) r dr (17)
R
where I, =‘jn r'mdr. Combining Eqgs. (16) and (17) yields

0
. 2 S 2

I, B +1, 0 sk=‘£ pa bQrS T(t) dr = M(t) (18)

where M(t) is the aerodynamic moment about the root hinge.

Multiplying both sides of Eq. (16) by ;3a52br2dr, integrating over the
blade, and taking the Laplace transform of the final expression yields

R 2 R 2
f pa bQT(s) ridr = f pa bRr® ¢'(s)Q(s)dr (19)
0 0

In Eq. (19) the integration is over r, thus the 1ift deficiency function
C'(s) can be taken outside the integral. Substituting for C'(s) from Eq. (13)
and recognizing that the left hand side of Eq. (19) is the Laplace transform
of the aercdynamic moment M, one can manipulate Eq. (19) to yieldl4

R

(b, (8 + by) M(s) =pa bQ‘{; 0.5 (a5 + a;,) Q(s)r’ar (20)

Replacing the nondimensional Laplace variable s by the dimensional
Laplace variable s, where 5 = bs/(0.75 QR) and taking the inverse Laplace
transform of Eq. (20) yields
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R

bgmsosg M+ b, M= pab Q_[(; 0.5 (amﬁ Q +a;, Q rodr (21
The downwash velocity at the 3/4 chord can be written as9
Q(t) = r [B, + 46(e)] - 18, - A QR + b0; - )b
Assuming that the blade pitch angle is constant, i.e., A0 = A6 = 0, the

downwash velocity Q becomes

Q(t) = Qr 8, - er - X R (22)

Substutiting Eq. (22) in Eq. (21) and integrating over the blade span
yields

. ) . 4 -
b1 Qo.758r Mt by M=0.5 pabl {a16 50.758 |\~ & Bx

4 4 4
R R : R
t ey (T Wo =% B -7 Ao)} 23

Equations (18) and (23) are two equations which have to be solved simultaneously
to determine the influence of unsteady aerodynamics on the flap motion of

the blade. The right hand side of Eq. (23) consists of a constant part, which
is underlined, and a time varying part. Therefore the solutions for M and
hence Bk can be written as

M=HM+ AM(t)

Bk 80 + ABk(t) (24)

where M and BO represent the steady parts and M, AB, represent the time
varying parts.

Substituting Eq. (24) in Eqs. (23) and (18) and using the relation,

ayy = 2byy as given in Table I, one can separate the steady and time varying
parts of the moment and flapping angle. The steady part of the moment M is

given by
= 2. 4 /80 RO
M= pab@R (T - 3 (25)

and the steady part of the flap angle BO is

8 A
0n 3 (- %)
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where v = 2pabd R4/Ib. These expressions for M and BO agree with con-
ventional results given in Ref. 13. The equations for the time varying
parts AM and AB; in nondimensional form are given by

*% AM —

LQ
b
b x —— Y b &k -
big gasg M + by M= - g% [a, g MB ta; 48] (28)

The flap equation and the aerodynamic moment equation, Egs. (27) and (28},
are the same for all the blades in the rotor. After applying the multiblade
coordinate transformationl3 to the flap degree of freedom and assuming that
the same transformation is also valid for the unsteady aerodynamic moment
AM, the collective flap and collective moment equations become,

B+ a8 = W (29)
m m m
b _*_ —_ Y b *% K
big 75 My * by My = -1 [ gosg 26 8By t 217 OB (30)

The influence of unsteady aerodynamics on the collective flap mode of the
rotor can be determined from an eigenanalysis of the system represented by
Eqs. (29) and (30).

Consider first a zeroth order approximation to the generalized Loewy
1ift deficiency function, i.e. assume ajg = byjg = 0.0 in Eq. (30). For
this case the collective flap equation, Eq. (30), reduces to

x

*% 3
A+ OB, = -F B8 (31)

oof-<

whieh represents flap mode dynamics in presence of. quasi-steady aerodynamics.
The eigenvalues corresponding to the collective flap mode, for v = 8.0, are
p=0*iw=-0.52%1i0,866. The quantity o = - 0.5 represents the flap
damping and © = 0.866 refers to the nondimensional flap frequency.

The influence of unsteady aerodynamics on flap damping is considered
next. Substituting the values of ayg, ajy, byg, byy from Table I, in
Eq. (30) it becomes

* .
~7 M o= - X ¥ Y
0.04288 AMm + 0.16 AMm 8 [0.02672 ABm + 0.16 ABm] (32)

Solving Egs. (29) and (32) for ¥y = 8.0, yields the following eigenvalues

p; = — 3.252 and py 4 = — 0.551 * i 0.919. The eigenvalue p; = -3.252
corresponds to the ﬁnsteady aerodynamic moment. The eigenvalues correspond-
ing to the collective flap mode are P2,3 = - 0.551 = i 0,919. Comparing
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these values with the results obtained with quasi-steady aerodynamics, it is
evident that unsteady aerodynamics increases flap damping by 10% and the flap
frequency by 6%. When unsteady aerodynamics are included the aerodynamic
1ift on the airfoil lags behind the airfoil motion, which causes an increase
in flap damping. The lag of the aerodynamic 1ift is due to the negative sign
of the imaginary part G' in Loewy's 1lift deficiency function, as shown in
Fig. 4.

The influence of unsteady aerodynamics in rotor dynamic problems is
equivalent to a medification of the Lock number. Taking the Laplace trans-
form of Egs. (29) and (32) and substituting for AMR(%) in terms of ABm(E)
in Eq. (29), one obtains

22 4 + X [0.02672 S + 0.16 ] s s @ =0 (33)
0.04288 5 + 0.16 "

where s is the nondimensional Laplace variable s =-% and the relation between
~ - . . - b 5 _ b
s and s is given by s = 95K O - D.75R

represents a modified Lock number, which can be written as

* 0.02672 & + 0,16 v
oy [ s ]= ¥e, (3 (34)

$. The underlined term in Eq. (33)

~

0.04288 s + 0.16

1
where CL(E) is a low frequency approximation to Loewy's 1lift deficiency
function. Substituting the Ealues of ay1¢, 217, b16 and by7, from Table I,
into Eq. (13) and modifying s to S, the low frequency approximation to
Loewy's deficiency function, given by Eq. (34) can be obtained.

5.2 Application of the Dynamic Inflow Model to Rotoxr Flapping Dymnamics

The rotor dynamic problem treated in the previous section can be alse
re-examined using a different low frequency approximation of unsteady aero-
dynamics known as the dynamic inflow model.

A detailed description of the dynamic inflow model frequently employed
in rotor dynamic and aeroelastic calculations, can be found in Refs. 13, 16
and in a more condensed manner also in Ref. 17. Dynamic inflow is a simple
model which represents approximately the unsteady effects of the rotor wake.
The unsteady wake-induced flow through the rotor disk is defined by a set
of inflow variables which provide a correction to the inflow assumed in a
quasi-steady aerodynamic theory. The total induced velocity on the rotor
disk due to the wake is assumed to consist of two parts: (1) a steady inflow
Ag (for trim loading) and (2) a perturbation inflow &A( for tramsient
loading). Therefore, the total induced flow normal to the rotor disk can be
expressed as

A= Ag+ 8 (35
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and the perturbation inflow is given by
dA = Al + klc (r/R) cos ¥ + Als {x/R) sin ¢ {36)

The inflow variables A;, Aj., Ajg which are functions of time are related
to the perturbational thrust, roll and pitch moment coefficients, through
the following relatiom

X )\ ¢

s 1 1 T ?

* -1
A + [L] A - -

(2] le lc MY

(37)

*
A A

ls is MX P.A.

Where P.A. stands for perturbational aerodynamics. The elements of [L]
can be determined either theoretically or experimentally.

For the present problem, where only the collective flap mode of the
rotor is considered, the inflow variables Aj, and Ay are not required.
Therefore, the inflow equation for the collective mode can be written as

" P.A.

o
1AL LA = Cp (38)

Where M. represents the nondimensiomnal agparent mass associated with the
inflow variable A;. The value of M; is! M; = 0.8488, and the value of
L; obtained from momentum theory16 is L) = 44,

Equation (38) is complete only after identifying its right hand side.
The expression for the perturbational thrust coefficient, can be obtained
from blade element theory, and is given by

qQ R

anz(muz(c) = F .r pa bilr Grﬂg - A, QR)dr
Tr.A. T 0 Y k-

After integrating and applying the multiblade coordinate transformation, one
has *
B A
= Ga | m» _ 1
CPp.a. = 2 [ 3 2] (39)

Combining Egs. (38) and (39) an equation for the inflow variable Al is ob-

tained. The equation for the collective flap mode is obtained by equating

the inertia and the aerodynamic moments at the root. The equations for the
collective flap mode and the inflow variable Ay are
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*
B A
2 —1} =0 (40)

*
B A
.%a |_ m _ 1
+ 4 A A, = [ 3 5 ] (41)

The various numerical quantities needed for evaluating Egs. (40) and (41)
are M) = 0.8488; Ag = 0.05; 0 = 222 = 0,061, with Q = 4, b/R = 0.024;

a= 2mr.and v = 8.0, Substituting these values in Eqs. (40) and (41) omne
obtains

B A
iy Y | m 1.
Bm+8m+2 [4 + 3]—0 (42)
% *
0.8488 Al + 0.2958 Al + 0.064 Bm = (43)

Computing the eigenvalues of the system represented by Egs. (42) and (43)
yields the following results. The eigenvalue pj = -0.4015 corresponds to
the inflow mode associated with Aj. The eigenvalue pair P2.3 =

~0,434 = 1 0.87] corresponds to the collective flap mode.

The results of these eigenvalue calculations are summarized for con-
venience in Table III. These results indicate that when using the finite
state approximation to Loewy's lift deficiency function a 10% increase in
flap damping is obtained, when compared to the results based on quasi-steady
aerodynamics. The results based on the dynamic inflow model indicate a
13%7 reduction in flap damping when compared with quasi-steady aerodynamics.

The influence of dynamic inflow in rotor dynamic problems is freguently
shown to be equivalent to a modification of the Lock number. Taking the
Laplace transform of Eqs. (42) and (43) and substituting for A in terms of

Bm yields

~2 Y
s + 1+ 8

[ 0.8488 % + 0.2105

s B (5) =0 (44)
0.8488 § + 0.2958

The underlined term in Eq. (44) alsc corresponds to a lift deficiency
function. This term is similar to the low frequency approximation of Loewy's
1ift deficiency function, given by Eq. (34). Using Eq. (44) and denoting

by CﬂI the 1lift deficiency function based on the dynamic inflow model, omne
obtains

! _0.8488 5 + 0.2105

C..(8) =
DI 0.8488 & + 0.2958

(45)
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Substituting s = iw/{ into Ci(E) as defined by Eq. (34) and into
Eq. (45) enables one to obtain a relation between the lift deficiency
factor (or functlon) and the nondimensional frequency. The 1ift deficiency
functions CL, CDI together with the exact values of Loewy's lift deficiency
function are shown in Fig. 7. 1t can be that the low frequency approximation
to Loewy's 1ift deficiency function CL compares well with its exact wvalues.
On the other hand, the 1ift deficiency function based on the dynamic inflow
model, Eq. (45) indicates different trends in both magnitude and phase.
The magnitude of the exact value of Loewy's 1lift deficiency function starts
from 1.0 and decreases as the frequency W/ inecreases, whereas magnitude
of the 1lift deficiency function Cpy, corresponding to dynamic inflow,
starts from 0.7 and dincreases to 1.0 as w/{} increases. 4lso, the phase
angle of the Loewy's 1ift deficdiency function is always negative, however
the phase angle obtained from CﬁI is always positive. A positive phase
angle implies that the unsteady aerodynamic lift is leading the blade motiocn,
and this results in the reduction of flap damping predicted by the dynamic
inflow. This trend differs from the trend predicted by Loewy's unsteady
aerodynamic theory in which the unsteady aerodynamic 1ift lags behind
blade motion.

6. Conclusions

The most important conclusions obtained in this study are summarized
below.

(1) 1In incompressible unsteady aerodynamic theories, the lift deficienty
function plays the role of an aerodynamic transfer function relating the
3/4~chord downwash velocity to the lift on the airfoil. Therefore, the Bade
plot of the 1lift deficiency function can be used to obtain important infor-
mation on the qualitative nature of the poles and zeros as well as their
locations. Using this information, approximate finite state lift deficiency
functions can be formulated for both the fixed wing case {i.e. Theodorsen's
1ift deficiency function) and the rotary wing case (i.e. Loewy's lift
deficiency functiomn).

(2) 1Indicial response functions were obtained using approximate aero-
dynamic transfer functions. It was found that the rotary wing indicial
response functionhas an oscillatory nature, which causes the indicial response
to overshoot its steady state value before reaching it. On the other hand,
the fixed wing indicial response is nonoscillatory.

{3) The approximate, finite state, unsteady aerodynamic model obtained
for Loewy's 1lift deficiency function, was applied to a simple rotor dynamic
problem and used to determine the influence of unsteady aerodynamics on the
flap damping of the rotor, It was found that unsteady aerodynamics increases
the collective flap mode damping by 10% and increases the flap frequency by
6%, when compared to the results obtained with quasi-steady aerodynamics,

The same rotor dynamic problem was also treated using dynamic inflow. The
analysis with the dynamic inflow model indicated that the flap damping
decreases by 13% compared to the results obtained with quasi-steady aero-
dynamics.
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{(4) An expression for a 1ift deficiency function based on dynamic inflow
was derived and the magnitude and phase obtained from this 1ift deficiency
function was found to differ from the values obtained from Loewy's lift
deficiency function, Loewy's 1lift deficiency function predicts a negative
phase angle (lag) between the 1ift on the airfoil and its motion, whereas
the 1ift deficiency function based on dynamic inflow predicts a positive
phase (lead} angle.

(5) The finite state unsteady aerodynamic model, obtained in this study
has a number of potential important applications in rotary-wing aeroelasticity.
In particular it would be useful im subcritical flutter testing as well as in
the treatment of aero-servoelastic problems where one has coupling between an
active control system and an aercelastic system.
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Table I Coefficients of the Approximate Transfer Function, Eg. (8)

N(ik) D(ik)
a 1.118 by 0.868
a, 3.458 b, 3.336
a, 3,187 b, 2.403
a, 4.714 b, 4,406
a 3.609 b 2.629
a 3.268 b, 2.970
a, 2.084 ' b, 1.458
ag 1:237 by 1.096
2 0.656 by 0.437
a, 0.255 b0 0.220
a, 0.112 by, 0.701 x 1077
2, 0.268 x 107} b, 0.226 x 107"
a, 0.951 x 10°2 b, 0.557 x 1072
a, 0.123 x 1072 by, 0.102 x 1072
as 0.340 x 1073 b 0.184 x 107>
2 0.167 x 10~% by 0.134 x 107*
al, 0.32 x 107 b, 0.16 x 107>
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Table II Poles and Zeros of the Approximate Transfer Function, Eg. (8)

Zero

s

Roots of N({ik)

Poles
Roots of D(4ik)

-0.0200 = 1 0,1293
-0.0276 = 1 0.2617
-0.0295 * { 0,3859
-0.0357 x 1 0,5127
-0.0382 = 1 0.6293
-0.0489 = 1 0.7558
-0,0581 = 1 0.8262
~0.0487 * 1 0.9259
~0,2549

"+

-0.0138
-0.0183
-0.0212
-0.0259
=0.0344
-0.0511
-0.0655
~0,0445
-0.5691

“+ 4+ H O O+ W
R O O O T T R

1 d

0.1254
0.2574
0.3847
0.5085
0.6509
0.7351
0.8459
0.9153

Table II1 Eigenvalue for the Flapping Dynmamics Problem (for y=§.0)

Modes Aerodynamic Model
Quasi-Steady Aerodynanmics Finite State Loewy's |Dynamic Inflow Model
Eq. (31) Model Egs. (29) & (32) Egs. (42) & (43)
} Collective -0.5 * 1 0.866 ~0.551 *+ £ 0.919 | -0.434 + i 0.871
Flap Mode
Augmented
State — -3.252 -0.4015
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