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The paper presents a method for formulating finite state unsteady aero
dynamic models in the time domain from frequency domain unsteady aerodynamics. 
The method is based on recognizing that the lift deficiency function repre
sents an aerodynamic transfer function and utilizes the Bode plot technique, 
used in control systems engineering, to construct approximation to the lift 
deficiency function. Indicia! response functions for both fixed wing and 
rotary wing applications are obtained, using these finite state unsteady 
aerodynamic models. It is shown that the rotary wing indicial response 
function is oscillatory and thus it is fundamentally different when compared 
to the fixed wing indicia! response function which is nonoscillatory. Cer
tain aspects of the finite state aerodynamic model are demonstrated by apply
ing it to the flapping dynamics of an articulated helicopter rotor blade. 
The influence of unsteady aerodynamics on the damping characteristics of the 
rotor is examined. The same problem is also treated by using a different 
unsteady aerodynamic model, namely dynamic inflow. Based on a comparison 
of the results obtained with these two unsteady aerodynamic models, useful 
conclusions are drawn regarding some fundamental features of these theories. 
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= Lift deficiency function obtained using dynamic inflow model 
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= Low frequency approximate transfer function for Loewy's lift 
deficiency function 

Thrust coefficient 

=Pitch and roll moment coefficients, respectively 

=Real and imaginary parts of Theodorsen's lift deficiency 
function,C = F + iG 

=Real and imaginary parts of Loewy's lift deficiency function 
C'=F'+iG' 

= Unsteady aerodynamic force at the blade root 

= Transfer function 

= Hankel functions of second 

= Equivalent wake spacing; h 
e 

kind of order 
21TU O p 

= 
QS"lb 

n· 
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= Moment of inertia of the blade about the flap hinge 

= Bessel functions of first kind of order n 

= Reduced frequency, k = wb 
Qr 

or wb 
u 

= Lift per unit span of the blade 

= Circulatory lift on the airfoil 

= Equivalent frequency ratio; 

= Aerodynamic flap moment 

= Steady part of the aerodynamic flap moment 

Time varying part of the aerodynamic flap moment 

= Collective flap moment coordinate 

iY 
n 

= Nondimensional apparent mass associated with inflow variable Al 

= Eigenvalue; p = a ± i w 
= Number of blades in a rotor or 3/4-chord-downwash velocity 

= Representative radial station on the blade for unsteady effects 

= Radial station for the typical blade section, r 
e 

Rotor radius 
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= Laplace variable 

b s 
Nondimensional Laplace variables; s = ~O.?SR 

= Free stream velocity 

= Induced velocity normal to the rotor disk 

= Steady flap angle 

th 
= Flap coordinate of the k blade 

s 
s = n 

= Time varying part of the flap angle, for kth blade 

= Collective flap coordinate of the rotor 
4 

= Lock number;y = 
2pabR 

Ib upo 
= Steady inflow; "o = 

~R 

= Inflow variables 

= Perturbational inflow 

= Total Inflow; A = AO + OA 

Frequency 

= Complex part of the eigenvalue p 

= Rotor angular speed 

= Azimuthal angle or nondimensional time, ~ = ~t 

= Density of air 

= Real part of the eigenvalue p 

= Solidity ratio 

= Nondimensional time; 'l" = 0.75R 
b 

~t 

Fixed wing indicial response function 

Rotary wing indicial response function 

Derivative with respect to time t 

= Derivative with respect to nondimensional time ~t 
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1. Introduction 

It is well known that unsteady aerodynamics plays an important role 
in the aeroelastic stability and response calculation of both fixed wing 
and rotary-wing vehicles. However most rotary wing aeroelastic analyses 
use either quasi-steady aerodynamic theories or two dimensional theories 
which are based on the assumption that the airfoil is undergoing simple 
harmonic motions (such a theory is denoted frequency domain theory in this 
paper). These restrictive aerodynamic assumptions were due primarily to 
the lack of suitable unsteady aerodynamic models in the time domain. Re
presentative theories which are based on the assumption of simple harmonic 
airfoil motions are: (a) Theodorsen•s1 incompressible two-dimensional 
unsteady aerodynamic theory and Greenberg's2 extension of Theodorsen's 
theory which accounts for pulsating oncoming flow velocity and constant 
angle of attack; these theories have been developed for fixed wings, how
ever, they have also been used frequently in rotary-wing applications and, 
(b) Loewy's theory3 and Shipman and Wood's theory4, which are applicable 
to a helicopter rotor in hover and forward flight, respectively. Theodorsen's 
theory for fixed wings assumes a planar wake behind the airfoil extending to 
infinity, whereas Loewy's·theory for rotary wings assumes an unsteady wake 
behind and beneath the reference airfoil extending, to infinity in both 
directions, as shown in Figure 1. 

These theories have a significant limitation when applying them to aero
elastic stability calculations, since the assumption of simple harmonic 
motion, upon which they are based, implies that they are strictly valid only 
at the stability boundary, and thus they provide no information on system 
damping before or after the flutter condition is reached. Thus standard 
stability analyses, such as the root locus method, cannot be used in con
junction with these theories. Another important limitation of these theories 
is evident when one tries to apply them to the rotary-wing aeroelastic 
problem in forward flight, which is governed by equations with periodic 
coefficients. In this case the complex lift deficiency function associated 
with frequency domain unsteady aerodynamics is not consistent with the 
numerical methods employed in the treatment of periodic systems. Further
more these unsteady aerodynamic theories are not suitable for the analysis 
of aeroelastic systems with active controls, such as higher harmonic control 
devices and the transient response analysis of aeroelastic systems, such as 
rotor blade response in forward flight. Thus there is a need for unsteady 
aerodynamic theories which are capable of modeling the unsteady aerodynamic 
loads, in time domain for finite time arbitrary motion of an airfoil, re
presenting the cross-section of an oscillating helicopter rotor blade. It 
should be noted that in this paper the term arbitrary motion is used to 
denote growing or decaying oscillations with a certain frequency. 

Such an unsteady aerodynamic theory for finite time arbitrary motion of 
an airfoil has been developed recently for fixed wing applications5. However 
the success in developing similar theories which are suitable for rotary 
wing applications has been somewhat limited. 

A clear description of the historical development of the application of 
Laplace transform techniques to the problem of unsteady aerodynamics for 
finite time arbitrary airfoil motions can be found in References 5 and 6. 
Recently Edwards5 showed that the Laplace transform of the circulatory load 
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on an airfoil, executing arbitrary motion in incompressible flow, is re
lated to the product of the Laplace transform of the generalized Theodorsen 
function C(s) and the Laplace transform of the 3/4-chord downwash velocity 
of the airfoil. The generalized Theodorsen lift deficiency function C(s), 
in the Laplace domain, is equivalent to replacing, ik, in Theodorsen's 
lift deficiency function C(k) by the nondimensional Laplace transform 
variable s. 

Since the value of Theodorsen's lift deficiency function is known 
exactly in the frequency domain, Vepa7 represented C(k) by a ratio of two 
polynomials C(k) = N(ik)/D(ik), where N(ik) and D(ik) were equal degree 
polynomials. Vepa evaluated the coefficients in these polynominals by a 
least squares technique and obtained very good approximations to C(k). 
An alternative procedure for obtaining approximate expressions for C(k) 
was proposed by Dowe118 • Dowell's technique is based on a parameter 
identification technique in which the time history of the aerodynamic load 
on the airfoil was assumed to consist of sums of exponentials. Applying 
the fundamental correspondence between the frequency domain and time domain 
aerodynamic loads, Dowell evaluated the time constants and the coefficients 
which provide the best fit to the frequency domain representation of the 
aerodynamic forces. It should be noted that Dowells' procedure is based 
on the assumption that the functional form of the indicial response function 
is known apriori. The approximate representations of Theodorsen's lift 
deficiency function C(k), obtained by Vepa or Dowell, can be used to model 
the unsteady aerodynamic loads produced by completely arbitrary, small, 
time dependent motion of an airfoil. Since these approximate transfer 
functions for C(k) are finite degree polynomials, they are also referred. 
to as finite state models for the unsteady aerodynamics. 

More recently, in Ref. 6 and 9, Greenberg's theory and Loewy's theory, 
which are representative of unsteady aerodynamic theories frequently used 
in rotary-wing aeroelasticity, have been also generalized for arbitrary 
motions. The generalization of Greenberg's theory is straightforward9 and 
could be done along the lines indicated in Ref. 5. In Ref. 9, Dinyavari 
and Friedmann, generalized the Loewy's lift deficiency function C' by 
replacing ik in the lift deficiency function by the non-dimensional Laplace 
variables. Following Dowell's8 procedure, a finite state Pade approximation 
to Loewy's lift deficiency function was obtained. However this approximation 
failed to capture the oscillatory behavior of Loewy's lift deficiency function, 
which is a special feature.of the· unsteady aerodynamic loads acting on a rotor blade. 

This paper has a number of objectives: (a) Formulation of a new technique 
for approximating rotary-wing lift deficiency functions, such as Loewy's, 
which are oscillatory in nature, so as to be able to extend such theories to 
arbitrary mo~ions in the time domain; (b) Present the methodology needed for 
applying finite-time arbitrary motion unsteady aerodynamic theory to a heli
copter rotor dynamic problem and (c) Treat the same rotor dynamic problem 
using dynamic inflow and compare some of the fundamental features of these 
theories. 

First a new technique for identifying and formulating the mathematical 
form of the finite unsteady aerodynamic transfer function by utilizing Bode 
Plot methodlO, is presented. Then using the finite state unsteady aerodynamic 
models, the indicial response functions for both the rotary wing and fixed wing case 
are obtained. It is shown that the rotary wing indicial response function 
is qualitatively different in nature when compared to the fixed wing indicial 
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response function. For fixed wings, the indicia! response function exhibits 
a steady exponential decaying form whereas for rotary wings the indicia! 
response function has an oscillatory form with exponential decay. Therefore, 
the rotary wing indicia! response overshoots the steady value at certain 
specific times. This feature of the rotary wing indicia! response function 
has been also observed experimentally11. In Ref. 11, it was found experi
mentally that the thrust response of a rotor to a sudden change in the 
collective setting of the blades overshoots the steady state value prior 
to reaching it. 

Subsequently the finite state unsteady aerodynamic model is applied to 
a rotor dynamic problem, in which the effects of unsteady aerodynamics on 
the flap damping and frequency of the rotor are evaluated. The same aero
elastic problemisalso studied using a different unsteady aerodynamic model, 
namely the dynamic inflow model. The results obtained with these two un
steady aerodynamic models are compared. From this comparison certain con
clusions on the fundamental nature of finite state unsteady aerodynamic 
models and their relation to dynamic inflow models are drawn. 

2. Brief Description of the Bode Plot and Its Role in Unsteady Aerodynamics 
Modeling 

One of the methods frequently used in the analysis and design of control 
systems is the frequency response method. When using this method, the fre
quency of the input is varied over a wide range and the resulting output re
sponse is studied. Using this method, the transfer functions of complicated 
systems can be determined. This particular aspect of determining the transfer 
function from the frequency response curve can also be used to formulate app
roximate transfer functions for the unsteady aerodynamics of a two-dimensional 
airfoil oscillating in incompressible flow. Furthermore, the method is equally 
applicable to both fixed wing type or rotary wing type of unsteady aerodynamic 
theories where the lift deficiency function plays the role of a transfer func
tion, which relates the 3/4-chord downwash velocity to the aerodynamic load 
acting on the airfoil. Since lift deficiency functions, such as Theodorsen's 
for the fixed wing case and Loewy's for the rotary wing case are known exactly 
for simple harmonic motion of the airfoil, the approximate transfer functions 
can be formulated by applying frequency-response techniques used in control 
system engineering. 

One of the methods used for representing the frequency-response of a trans
fer function is the Bode diagram10. The Bode diagram consists of two graphs. 
One is a plot of the logarithm of the magnitude of the sinusoidal transfer 
function and the other is a plot of the phase angle. Both are plotted as a 
function of frequency on a logarithmic scale. For the present application only 
a plot of the magnitude versus frequency is needed and therefore we shall 
restrict our attention to this particular aspect of the Bope plot. This portion 
of the Bode plot consists of logarithmic magnitude of the transfer function 
G(iw), i.e., 20 logiG(iw)l versus the frequency w. 

Since our aim is to formulate an approximation to the transfer function 
represented by the unsteady lift deficiency function we seek the information 
about the qualitative nature of the poles and zeros, i.e., whether they are 
real or complex and where they are located. This information can be obtained 
by analyzing the Bode plot of the lift deficiency function. A detailed des
cription of the features of the bode plots and its asymptotic properties, 
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which are useful in this regard can be found in Refs. 10 and 14, and for the 
sake of conciseness are not repeated here. The most important properties 
of the Bode plots, which are needed for our application are summarized below. 

(a) A +20 db/decade change in slope in the asymptotes is indicative of the 
presence of a real zero and a -20 db/decade change in slope indicates the 
presence of a real pole in the transfer function; 

(b) peaks in the Bode plot indicate the presence of complex poles and 
complex zeros in the transfer function; 

(c) a -40 db/decade change in slope in the asympototes indicates the 
presence of either complex poles or two equal real poles and a +40 db/ 
decade change in slope indicates the presence of either complex zeros 
or two equal real zeros; 

(d) whenever the slopes of the asymptotes of the transfer function are 
equal, at low or at high frequencies, then the transfer function has an 
equal number of poles and zeros. 

These properties are very useful when one attempts to construct 
approximation to the lift deficiency function, which has the role of an 
aerodynamic transfer function in unsteady aerodynamics. 

3. Finite State Modelling of Theodorsen's Lift Deficiency Function 

Theodorsen's lift deficiency function, for a two dimensional airfoil 
executing simple harmonic motion in incompressible flow, is given in 
exact form by12 

C(k) = (1) 

The real and imaginary parts of C(k) are shown in Fig. 2. A Bode plot of 
Theodorsen's lift deficiency function is presented in Fig. 3. It can be 
seen from Fig. 3 that the low frequency and the high frequency asymptotes 
have equal slopes with a value of 0 db/decade. Furthermore the Bode plot 
does not show any peaks and the slope of the exact curve at any point is 
less than -20 db/decade. Therefore, using the general properties of the Bode 
plots summarized before, the approximate transfer function for C(k) must 
have an equal number of poles and zeros, which are reaL Based on these 
considerations, a third degree polynomial approximation for C(k), in the 
form of 

C(k) -
O.S(ik + a

1
)(ik + a

2
)(ik + a

2
) 

(ik + b1)(ik + b2)(ik + b3) 
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can be assumed. The transfer function satisfies the condition that C(k) 
approaches 0.5 as k approaches infinity. Imposing the constraint that 
C(k) = 1 fork= 0, the coefficients a , a2, a3, b1, b2, b3 are determined 
by a least square technique, whereby tte real and imaginary parts of the 
transfer function are set equal to the·real and imaginary parts of the exact 
function C(k). The approximate function obtained in this manner is given by 

C(k) = 
(0.5(ik + 0.088)(ik + 0.37)(ik + 0.922) 
(ik + 0.072)(ik + 0.261)(ik + 0.80) 

(3) 

The real and imaginary parts of the exact C(k) function together with the ap
proximate transfer function, given by Eq. (13), are shown 1n Fig. 2. It 
can be seen that the [3.3] polynomial approximation gives an excellent * 
agreement with the exact values of the Theodorsen lift deficiency function 
C(k). The location of the poles (p1,P2•p3) and zeros Cz1,z2,z3) and the 
asymptotic behavior of the approximate transfer function, given by Eq. (3), 
are shown in Fig. 3. It is evident from Fig. 3 that the poles and zeros 
of the approximate transfer function lie in a range of reduced frequencies 
k where the Bode plot of the exact transfer function has a higher slope then 
at other values of k, i.e., 0.06 ~ k ~ 1.0. This particular feature associated 
with the location of the poles and zeros is very useful for estimating their 
initial values required for constructing the approximate transfer function 
by the nonlinear least squares technique. 

Using the approximate transfer function obtained for Theodorsen's lift 
deficiency function C(k), the indicial response function can be obtained by 
taking the inverse Fourier transform of the approximate transfer function1 2 . 
The indicial response function obtained for the [3.3] polynomial approximation 
given by Eq. (3) is 

<!>F.W. (1:) - 1.0- 0.203 e-0 · 072
'1"- 0.236 e-0-· 261 T- 0.06 

4. Finite State Modelling of Loewy's Lift Deficiency Function 

-0.81; 
e (4) 

Loewy's rotary wing unsteady airfoil theory represents an approximation to 
the unsteady aerodynamic loads acting on a rotor blade cross section in hover. 
The effects of the spiral returning wake beneath the rotor, shown in Fig. 1, 
are considered in an approximate manner. These wake layers represent wakes 
shed by other blades, as well as the reference blade in previous revolutions. 
The wake layers extend to infinity before and behind the reference airfoil. 
Loewy's theory is intended for lightly loaded rotors (i.e. low inflow con
ditions) and like Theodorsen's theory it is also based on the assumption of 
simple harmonic motion of the reference airfoil. 

Loewy's lift deficiency function, in the frequency domain, for the 
collective mode of the rotor, where all the blades move in phase, is given 
byl3 

( 5) 

* Since the two curves coincide in Fig. 2. 
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where the wake weighting function W is given by 

1 k>O 
kh i27T m -1 

W(kh , m ) = 
e e 

e e e e 
( 6) 

0 k = 0 

The quantities h , m for a typical blade section at a radial distance r 
from the axis oferotgtion, for a rotor with Q blades, are defined as 

w wb r k m = QQ = = r e Qr Qb e 

r 
r = Qb e 

27!U O 27Tup 0 R 27!:\0 
h = p = -~ e QQb Qb Q(b/R) 

In the definition of the equivalent frequency ratio m , it should be noted 
that for a given blade section at a radial station r from the axis of rotation, 
m is dependent on the reduced frequency k. e 

We shall show that the technique based on the Bode plot, developed in 
this paper, is successful in formulating the approximate transfer function 
for the Loewy's lift deficiency function. To illustrate the method, the 
following example was selected. The trust coefficient is CT = 0.005 and 
the blade section is taken at 0.75R. The rotor was assumed to have four 
blades and the blade semichord is b = 0.024R. The corresponding inflow 
ratio is calculated from :\o = I CT/2 = 0.05 and the values of he and re 
are given by he= 3.2725 andre= 7.8125, respectively. This example is 
representative of a typical helicopter application. The typical blade 
section was taken to be at 75% of the span due to the following considerations. 
First it is common practice to consider the blade section at 0.75R to be 
representative of rotor aerodynamic behavior under steady conditions. 
Secondly, to justify this assumption under unsteady conditions the unsteady 
aerodynamic loads, at twenty spanwise stations, were evaluated for a blade 
undergoing simple harmonic flapping motion. These loads were computed using 
Loewy's exact lift deficiency function. The loads were integrated along the 
blade span to obtain the unsteady aerodynamic thrust and the moment at the 
blade root. These calculations were performed at various flap frequencies, 
in the range of 1/rev - 2/rev. The details of this calculation can be found 
in Ref. 14. For all cases considered the integral value of the unsteady 
aerodynamic loads at the root indicated that the unsteady aerodynamic load 
at 75% span is indeed a suitable representative value, without any loss of 
accuracy. Once a finite state model for the unsteady aerodynamic transfer 
function is formulated for this particular blade section, the same model is 
also applicable to other blade sections along the span. 

Figure 4 illustrates the real (F') and imaginary (G') parts of Loewy's 
exact lift deficiency function for this case. From Fig. 4 it is evident 
that the real and imaginary parts of the Loewy's lift deficiency function are 
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highly oscillatory. The Bode plot of Loewy's lift deficiency function is 
presented in Fig. 5. The Bode plot has many peaks and valleys. Hence the 
corresponding approximate lift deficiency or transfer function which we 
seek, must have as many complex poles and complex zeros as there are peaks 
and valleys in the Bode plot. In Fig. 5 the odd numbers, corresponding to 
the valleys, indicate complex zeros and the even numbers,corresponding to the 
peaks,indicate complex poles. For practical situations high reduced fre
quencies above k ~ 1 are not feasible. Therefore the approximate transfer 
function is constructed so as to capture the first eight complex poles and 
complex zeros. This approximate transfer function can be written in the 
following form 

8 

0.5(ik+a1) II 
[ (ik)

2
+a2 j ik+a 2j 1] c. (k,h ,;;; ) F' + G' j=1 + 

(7) - = (ik + bl) 8 
[ (ik/+b2j 

e e 
ik+b2j 1] IT + 

j=1 

The task of evaluating the 34 coefficients a1 ... a17 and b1 ••• b17 by a 
nonlinear least squares technique leads to a problem which converges slowly. 
To facilitate the numerical calculations the problem was modified so that 
the coefficients could be evaluated by solving a linear least squares problem. 
For this case the approximate lift deficiency function is given by 

C ' = F ' + iG ' = O·. 5 = 
N(ik) 
D(ik) 

(8) 

The coefficients a1 .•• al7• b1 .•• b17 are evaluated by minimizing the 
N 

error E [C' D(i~) - N(i~)] 2 . The coefficients obtained from this pro-
M=l 

cedure14are given in Table I. Table II gives all the poles and zeros of the 
approximate transfer function represented by Eq. (8). It can be seen that, 
for this case, there are eight complex poles and eight complex zeros, in 
addition to one real pole and a real zero. 

In Fig. 4, the real and imaginary parts of the approximate lift deficiency 
or transfer function, given by Eq. (8), are compared with Loewy's exact lift 
deficiency function. It is evident that the agreement between the two sets 
of curves is very good. 

Recall that from linear, incompressible, two dimensional unsteady aero
dynamic theory Wagner's indicia! response function and Theodorsen's lift 
deficiency function are related by a Fourier transform12. Loewy's theory 
is the rotary-wing counterpart of Theodorsen's theory. Therefore by analogy 
the rotary-wing indicia! response function and Loewy's lift deficiency function 
can be also related by the Fourier transform given below 

1 
cJ>R.W.(T) = 21T 

00 

f 
-00 

c. (ik) 
ik 
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The approximate transfer function, given in Eq. (B), can be substituted in 
Eq. (9) for C'. Applying partial fractions and using a table of inverse 
Laplace transforms, the approximate rotary-wing indicial response function 
$R.w.(T) was calculated14 and is depicted in Fig. 6. It can be seen from 
Fig. 6 that the indicial response is oscillatory and at certain values of 
T the response overshoots the steady value 1.0. This result implies that 
for a step change in angle of attack of the rotor blade the thrust developed 
by the rotor will overshoot the steady value before reaching it. This 
phenomenon has been experimentally observed in Ref. 11. The authors of 
Ref. 11 noted that for a rapid change in collective pitch setting of a model 
rotor, the measured thrust overshoots its steady state value. This is 
precisely the qualitative nature of the indicial response function $R.w.(T) 
shown in Fig. 6. 

In general, the rotary wing indicial response function can be written 
as14 

$R.W. (T) - 1.0 -
N -b·T 
l: e J 

j=1 
(10) 

The values of A·, Bj and bj's depend on the rotor geometry and the rotor 
operating conditions and can be evaluated from the approximate transfer 
function corresponding to Loewy's lift deficiency function, defined for 
that specific rotor. It should be also noted that this is the first time 
that the mathematical form of a rotary wing indicial response function is 
presented in the literature. 

Recall from the previous discussion of the fixed wing case that the 
indicial response function can be written as 

N 
$F W (T) ; 1.0 - l: 

• • j=1 

-b.T 
J (11) 

Comparing the rotary wing indicial response functions $R.W., Eq. (10), with 
the fixed wing indicial response function $p.w., Eq. (11), it can be concluded 
that the rotary-wing indicial response function is qualitatively different 
from the fixed wing indicial response function. The rotary wing indicial 
response function exhibits an oscillatory nature whereas the fixed wing 
indicial response is nonoscillatory. 

5. Influence of Unsteady Aerodynamics on the Flapping Dynamics of a Heli
copter Rotor 

In this section finite state unsteady aerodynamics are applied to a simple 
rotor dynamic problem. In particular we wish to clarify three important 
items: (a) illustrate the methodology of applying finite state unsteady 
aerodynamics to a rotor dynamic problem; (b) evaluate the effects of unsteady 
aerodynamics on the damping and frequency of rotor flapping dynamics; and 
(c) compare the results obtained using the unsteady aerodynamic model 
developed in this study, with results obtained using dynamic inflow, for 
the same rotor dynamic problem. 
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5.1 Application of a Generalized Loewy Theory to Rotor Flapping Dynamics 

From the review of the pertinent literature it is evident that the 
only case when finite state unsteady aerodynamics was applied to a rotor 
dynamic problem was presented in Refs. 6 and 15, where a generalized 
Greenberg theory was used. Here we apply a generalized Loewy theory for 
the first time to a rotor dynamic problem, and therefore we use a relatively 
simple example which is adequate for illustrative purposes. The example 
rotor consists of four uniform blades which are articulated and centrally 
hinged. Each blade is assumed to have only a flap degree of freedom. The 
rotor is in hover, with CT = 0.005 and the blade semichord is b/R = 0.024. 
Furthermore we restrict our attention to the collective flap degree of 
freedom for which approximate lift deficiency function was evaluated in 
the previous section and we shall determine the influence of unsteady 
aerodynamics on the damping and frequency of the perturbational flapping 
motion of the rotor. 

The first step in solving this rotor dynamic problem is to generalize 
the approximate transfer function for Loewy's lift deficiency function, 
given in Eq. (8), to arbitrary motion of the airfoil. This is accomplished 
by replacing (ik) in Eq. (8) by the nondimensional Laplace variable s. The 
generalized lift deficiency function is given by 

C' - (12) 

The values of the coefficients a1 --- a17• b1 --- b17 are given in Table I. 

The fundamental natural frequency of a centrally hinged articulated 
blade is 1/rev. Therefore the corresponding reduced frequency k, for the 
typical blade section at 0.75 R, with a semichord of b/R = 0.024 is 

k = wb = 
Qr 

w b 
Q • 75R = 0. 032 

This value of the reduced frequency is very small. 
the validity of the approximation to low values of 
further approximation of Eq. (12) is possible. An 
valid for such low frequencies can be written as 

[ -a s + a 
c' = o.5o 16_ 17] 

b16s + b17 

Therefore by restricting 
k, i.e. 0 ~ k ~ 0.05, a 
approximation which is 

(13) 

Having obtained such a first order approximation, to the generalized lift 
deficiency function, it can be incorporated in the dynamic problem of a 
flapping rotor. This simplified model enables one to determine the in
fluence of unsteady aerodynamics, at low reduced frequencies, on the flap
ping response of a rotor. 
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Neglecting apparent mass terms the lift on a typical section of the 
rotor blade, located at a radial station r from the axis of rotation, is 
given by 

L(t) = p a brl r .;t:-1 [C'(s)Q(s)] dr (14) 

where C'(s) is given by Eq. (13) and Q(s) is the Laplace transform of the 
3/4-chord downwash velocity. Define a new function T(t) given by 

T(t) =c:t'-1 [c'(s)Q(s)J (15) 

The function T(t) can be considered to be representative of the circulation 
around the airfoil. Substituting Eq. (15) in Eq. (14), the lift on the 
blade section becomes 

L(t) = p a brl r T(t) dr (16) 

The equation of motion of the kth blade in the flap degree of freedom is 13 

Ib sk + Ib "2 s = k 
{R L(t) r dr ( 17) 

R 2 
where Ib = J r mdr. Combining Eqs. ( 16) and ( 17) yields 

0 

2 pa brlr T(t) dr M(t) ( 18) 

where M(t) is the aerodynamic moment about the root hinge. 

Multiplying both sides of Eq. (16) by p arlbr2dr, integrating over the 
blade, and taking the Laplace transform of the final expression yields 

2 p a b n T ( s) r dr 
R 

= { p a b n r 2 c' (s)Q(s)dr ( 19) 

In Eq. (19) the integration is over r, thus the lift deficiency function 
C'(s) can be taken outside the integral. Substituting for C'(s) from Eq. (13) 
and recognizing that the left hand side of Eq. (19) is the Laplace transform 
of the aerodynamic moment M, one can manipulate Eq. (19) to yield14 

(20) 

Replacing the nondimensional Laplace variable s by the dimensional 
Laplace variable s, where s = bs/(0.75 rlR) and taking the inverse Laplace 
transform of Eq. (20) yields 
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b • 
b16 no.75R M + b17 M ~ pa b 

R 
nf 

0 

b 0 •5 (a16 Q0.75R 
• 2 
Q + a 17 Q) r dr 

The downwash velocity at the 3/4 chord can be written as9 

Assuming that the blade pitch angle is constant, i.e., 68 ~ 6S ~ 0, the 
downwash velocity Q becomes 

• 
Q(t) ~ Q r 80 - rl\ - 1.0 QR 

Substutiting Eq. (22) in Eq. (21) and integrating over the blade span 
yields 

b16 no\5R M + b17 M ~ 0 •5 pa b n {a16 Q0~75R (- ~
4 

sk) 

+ a 17 ( ~ ne0 - ~
4 

Bk - n ~ !.0)} 

(21) 

(22) 

(23) 

Equations (18) and (23) are two equations which have to be solved simultaneously 
to determine the influence of unsteady aerodynamics on the flap motion of 
the blade. The right hand side of Eq. (23) consists of a constant part, which 
is underlined, and a time varying part. Therefore the solutions for M and 
hence ek can be written as 

M~M+6M(t) 

where M and 80 represent the steady parts and 6M, 68k represent the time 
varying parts. 

(24) 

al7 ~ 
parts 
given 

Substituting Eq. (24) in Eqs. (23) and (18) and using the relation, 
2b17 as given in Table I, one can separate the steady and time va~ying 
of the moment and flapping angle. The steady part of the moment M is 
by 

M ~ p a (25) 

and the steady part of the flap angle 80 is 

8 ~ :r. (~ - "o \ 
0 2 4 2 J (26) 
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4 where y = 2 p a b R /Ib. These expressions for M and S0 agree with con-
ventional results given in Ref. 13. The equations for the time varying 
parts AM and ~Sk in nondimensional form are given by 

** AM AM ~sk + ~Bk = = 
I 5"12 

b 

* b 
AM bl7 AM = 

y b ** tskJ b16 0.75R + -16 [a16 0.75R ~sk + a17 

(27) 

(28) 

The flap equation and the aerodynamic moment equation, Eqs. (27) and (28), 
are the same for all the blades in the rotor. After applying the multiblade 
coordinate transformation13 to the flap degree of freedom and assuming that 
the same transformation is also valid for the unsteady aerodynamic moment 
AM, the collective flap and collective moment equations become, 

'X"' L.ltl + ~(3 = m m 

* b AM 
b16 0. 75R m 

y 
=- T6 

b 
0.75R 

(29) 

(30) 

The influence of unsteady aerodynamics on the collective flap mode of the 
rotor can be determined from an eigenanalysis of the system represented by 
Eqs. (29) and (30). 

Consider first a zeroth order approximation to the generalized 
lift deficiency function, i.e. assume a16 = b16 = 0.0 in Eq. (30). 
this case the collective flap equation, Eq. (30), reduces to 

** ~s + ~s m m 
_]_ 

8 

Loewy 
For 

(31) 

which represents flap mode dynamics in presence of. quasi-steady aerodynamics. 
The eigenvalues corresponding to the collective flap mode, for y = 8.0, are 
p = cr ± i w = - 0.5 ± i 0.866. The quantity cr = - 0.5 represents the flap 
damping and w = 0.866 refers to the nondimensional flap frequency. 

The influence of unsteady aerodynamics on flap damping is considered 
next. Substituting the values of ar6• a17, b16, b17 from Table I, in 
Eq. (30) it becomes 

* 0.04288 AM 
m 

+ 0.16 AMm 

Solving Eqs. (29) and (32) for y = 8.0, yields the following eigenvalues 

(32) 

Pl = - 3.252 and P2 3 = - 0.551 ± i 0.919. The eigenvalue Pl = -3.252 
corresponds to the ~nsteady aerodynamic moment. The eigenvalues correspond
ing to the collective flap mode are P2 3 = - 0.551 ± i 0.919. Comparing 

' 
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these values with the results obtained with quasi-steady aerodynamics, it is 
evident that unsteady aerodynamics increases flap damping by 10% and the flap 
frequency by 6%. When unsteady aerodynamics are included the aerodynamic 
lift on the airfoil lags behind the airfoil motion, which causes an increase 
in flap damping. The lag of the aerodynamic lift is due to the negative sign 
of the imaginary part G' in Loewy's lift deficiency function, as shown in 
Fig. 4. 

The influence of unsteady aerodynamics in rotor dynamic problems is 
equivalent to a modification of the Lock number. Taking the Laplace trans
form of Eqs. (29) and (32) and substituting for 6Mm(s) in terms of 6Sm(s) 
in Eq. (29), one obtains 

[ 
0.02672 

0.04288 

s + 0.16 

s + 0.16 
6S (s) = o 

m 
(33) 

where s is the nondimensional Laplace variable s = ~ and the relation between 
- b s b 

sand s is given by s = "o~.~7,5R~ n = 0. 75R s. The underlined term in Eq. (33) 

represents a modified Lock number, which can be written as 

* [0.02672 s + 0.16] y = y = 
0.04288 s + 0.16 

(34) 

• 
where CL(s) is a low frequency approximation to Loewy's lift deficiency 
function. Substituting the values of a16• a17• b16 and b17, from Table I, 
into Eq. (13) and modifying s to s, the low frequency approximation to 
Loewy's deficiency function, given by Eq. (34) can be obtained. 

5.2 Application of the Dynamic Inflow Model to Rotor Flapping Dynamics 

The rotor dynamic problem treated in the previous section can be also 
re-examined using a different low frequency approximation of unsteady aero
dynamics known as the dynamic inflow model. 

A detailed description of the dynamic inflow model frequently employed 
in rotor dynamic and aeroelastic calculations, can be found in Refs. 13, 16 
and in a more condensed manner also in Ref. 17. Dynamic inflow is a simple 
model which represents approximately the unsteady effects of the rotor wake. 
The unsteady wake-induced flow through the rotor disk is defined by a set 
of inflow variables which provide a correction to the inflow assumed in a 
quasi-steady aerodynamic theory. The total induced velocity on the rotor 
disk due to the wake is assumed to consist of two parts: (1) a steady inflow 
AO (for trim loading) and (2) a perturbation inflow OA( for transient 
loading). Therefore, the total induced flow normal to the rotor disk can be 
expressed as 

A = Ao + OA (35) 
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and the perturbation inflow is given by 

OA = Al + Ale (r/R) cos ~ + Als (r/R) sin ~ (36) 

The inflow variables A1 , Ale• Als which are functions of time are related 
to the perturbational thrust, roll and pitch moment coefficients, through 
the following relation 

~ 
* Al Al 

* + [L]-1 [M] 

{ Ale Ale 

* Als Als P.A. 

Where P.A. stands for perturbational aerodynamics. The elements of [L] 
can be determined either theoretically or experimentally. 

For the present problem, where only the collective flap mode of the 
rotor is considered, the inflow variables Ale and Als are not required. 
Therefore, the inflow equation for the collective mode can be written as 

the Where M1 represents the nondimensional aEparent mass associated with 
inflow variable Al• The value of M1 is1 M1 = 0.8488, and the value of 
L1 obtained from momentum theoryl6 is L1 = 4Ao· 

(37) 

(38) 

Equation (38) is complete only after identifying its right hand side. 
The expression for the perturbational thrust coefficient, can be obtained 
from blade element theory, and is given by 

Q 
l: 

k=l 

R 

f. 
0 

After integrating and applying the multiblade coordinate transformation, one 
has 

{] (39) 

Combining Eqs. (38) and (39) an equation for the inflow variable Al is ob
tained. The equation for the collective flap mode is obtained by equating 
the inertia and the aerodynamic moments at the root. The equations for the 
collective flap mode and the inflow variable Al are 
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** + :r. s m + sm 2 

[-
g 

m 
3 

(40) 

(41) 

The various numerical quantities needed for evaluating Eqs. (40) and (41) 

are M1 = 0.8488; 1.0 = 0.05; a= ;~b = 0.061, with Q = 4, b/R = 0.024; 

a= 2n.and y = 8.0. Substituting these values in Eqs. (40) and (41) one 
obtains 

** y sm + sm + 2 

* * 0.8488 1.1 + 0.2958 1.1 + 0.064 Sm = 0 

(42) 

(43) 

Computing the eigenvalues of the system represented by Eqs. (42) and (43) 
yields the following results. The eigenvalue P1 = -0.4015 corresponds to 
the inflow mode associated with '-1· The eigenvalue pair P2 3 = 
-0.434 ± i 0.871 corresponds to the collective flap mode. ' 

The results of these eigenvalue calculations are summarized for con
venience in Table III. These results indicate that when using the finite 
state approximation to Loewy's lift deficiency function a 10% increase in 
flap damping is obtained, when compared to the results based on quasi-steady 
aerodynamics. The results based on the dynamic inflow model indicate a 
13% reduction in flap damping when compared with quasi-steady aerodynamics. 

The influence of dynamic inflow in rotor dynamic problems is frequently 
shown to be equivalent to a modification of the Lock number. Taking the 
Laplace transform of Eqs. (42) and (43) and substituting for 1.1 in terms of 
Sm yields 

{52 
+ 1 +:r. 

8 [ 

0.8488 s + 

0.8488 s + 
o.z1o5 J 5 }s (s) = 0 
0.2958 m 

(44) 

The underlined term in Eq. (44) also corresponds to a lift deficiency 
function. This term is similar to the low frequency approximation of Loewy's 
lift deficiency function, given by Eq. (34). Using Eq. (44) and denoting 
by C~I the lift deficiency function based on the dynamic inflow model, one 
obtains 

0.8488 s + 0.2105 

0.8488 s + 0.2958 
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Substituting s = iw/Q into c{(s) as defined by Eq. (34) and into 
Eq. (45) enables one to obtain a relation between the lift deficiency 
factor (or function) and the nondimensional frequency. The lift deficiency 
functions c{, Cnr together with the exact values of Loewy's lift deficiency 
function are shown in Fig. 7. It can be that the low frequency approximation 
to Loewy's lift deficiency function c{ compares well with its exact values. 
On the other hand, the lift deficiency function based on the dynamic inflow 
model, Eq. (45) indicates different trends in both magnitude and phase. 
The magnitude of the exact value of Loewy's lift deficiency function starts 
from 1.0 and decreases as the fre~uency w/Q increases, whereas magnitude 
of the lift deficiency function CDI• corresponding to dynamic inflow, 
starts from 0.7 and increases to 1.0 as w/Q increases. Also, the phase 
angle of the Loewy's lift deficiency function is always negative, however 
the phase angle obtained from Cpr is always positive. A positive phase 
angle implies that the unsteady aerodynamic lift is leading the blade motion, 
and this results in the reduction of flap damping predicted by the dynamic 
inflow. This trend differs from the trend predicted by Loewy's unsteady 
aerodynamic theory in which the unsteady aerodynamic lift lags behind 
blade motion. 

6. Conclusions 

The most important conclusions obtained in this study are summarized 
below. 

(1) In incompressible unsteady aerodynamic theories, the lift deficienty 
function plays the role of an aerodynamic transfer function relating the 
3/4-chord downwash velocity to the lift on the airfoil. Therefore, the BQde 
plot of the lift deficiency function can be used to obtain important infor
mation on the qualitative nature of the poles and zeros as well as their 
locations. Using this information, approximate finite state lift deficiency 
functions can be formulated for both the fixed wing case (i.e. Theodorsen's 
lift deficiency function) and the rotary wing case (i.e. Loewy's lift 
deficiency function). 

(2) Indicial response functions were obtained using approximate aero
dynamic transfer functions. It was found that the rotary wing indicial 
response functionhas an oscillatory nature, which causes the indicial response 
to overshoot its steady state value before reaching it. On the other hand, 
the fixed wing indicial response is nonoscillatory. 

(3) The approximate, finite state, unsteady aerodynamic model obtained 
for Loewy's lift deficiency function, was applied to a simple rotor dynamic 
problem and used to determine the influence of unsteady aerodynamics on the 
flap damping of the rotor. It was found that unsteady aerodynamics increases 
the collective flap mode damping by 10% and increases the flap frequency by 
6%, when compared to the results obtained with quasi-steady aerodynamics. 
The same rotor dynamic problem was also treated using dynamic inflow. The 
analysis with the dynamic inflow model indicated that the flap damping 
decreases by 13% compared to the results obtained with quasi-steady aero
dynamics. 

72-19 



(4) An expression for a lift deficiency function based on dynamic inflow 
was derived and the magnitude and phase obtained from this lift deficiency 
function was found to differ from the values obtained from Loewy's lift 
deficiency function. Loewy's lift deficiency function predicts a negative 
phase angle (lag) between the lift on the airfoil and its motion, whereas 
the lift deficiency function based on dynamic inflow predicts a positive 
phase (lead) angle. 

(5) The finite state unsteady aerodynamic model, obtained in this study 
has a number of potential important applications in rotary-wing aeroelasticity. 
In particular it would be useful in subcritical flutter testing as well as in 
the treatment of aero-servoelastic problems where one has coupling between an 
active control system and an aeroelastic system. 
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Table I Coefficients of the Approximate Transfer Function, Eq. (8) 

N(ik) D(ik) 

a1 1.118 b1 0.868 

a2 3.458 b2 3.336 

a3 3.187 b3 2.403 

a4 4. 714 b4 4.406 

as 3.609 bs 2.629 

a6 3.268 b6 2.970 

a7 2.084 b7 1.458 

a8 1.237 b8 1.096 

a9 0.656 b9 0.437 

a10 0.255 b10 0.220 

all 0.112 bll 0.701 X 10-1 

a12 0.268 X 10-1 
b12 0.226 X 10-1 

al3 0.951 X 10-2 
b13 0.557 X 10-2 

a14 0.123 X 10-2 
b14 0.102 X 10-2 

a15 0.340 X 10-3 
b15 0.184 X 10-3 

a16 0.167 X 10-4 
b16 0.134 X 10-4 

-5 -5 
a17 0.32 X 10 b17 0.16 X 10 
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Table II Poles and Zeros of the Approximate Transfer Function, Eq. (8) 

Poles Zeros 
Roots of D ( ik) Roots of N(ik) 

-0.0200 :!: i 0.1293 -0.0138 :!: i 0.1254 

-0.0276 :!: i 0.2617 -0.0183 :!: i 0.2574 

-0.0295 :!: i 0.3859 -0.0212 :!: i 0.3847 

-0.0357 :!: i 0.5127 -0.0259 :!: i 0.5085 

-0.0382 :!: i 0.6293 -0.0344 •:!: i 0.6509 

-0.0489 :!: i 0.7558 -0.05ll :!: i 0.7351 

-0.0581 :!: i 0.8262 -0.0655 :!: i 0.8459 

-0.0487 :!: i 0.9259 -0.0445 :!: i 0.9153 

-0.2549 -0.5691 

Table III Eigenvalue for the Flapping Dynamics Problem (for y-8.0) 

Modes Aerodynamic Model 

Quasi-Steady Aerodynamics Finite State Loewy's Dynamic Inflow Model 

Eq. (31) Model Eqs. (29) & (32) Eqs. (42) & (43) 

Collective -0.5 :!: i 0.866 -0.551 :!: i 0.919 -0.434 :!: i 0.871 
Flap Mode 

Augmented 
--- -3.252 -0.4015 State 
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