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Abstract 

The rationale for and theoretical basis of an improved technique for 
model testing the aeromechanical stability of rotor-pylon coupled rotor­
craft systems, are presented. This improved technique is based on the 
a priori ability to measure experimentally the dynamic impedance character­
istics of the isolated (model) rotor in the frequency domain and makes use 
of the multivariable Nyquist stability criterion. The technique would be 
especially useful for evaluating helicopter ground and air resonance char­
acteristics of rotorcraft subject to wide variation in pylon characteristics. 
An especially important and new feature of this test technique is the ability 
to make quantitative stability assessments of the coupled rotor-pylon system, 
over and above the quantitative stability assessment afforded by the Nyquist 
criterion. Formulations include the mathematical eigenproblem for calcu­
lating the characteristic loci, the analytic continuation formulae for 
quantitative stability assessment, the incorporation of hub constraints and 
the use of scaling laws for combining rotor and pylon characteristics 
obtained at different scales. Numerical results include comparisons of 
analytic stability results obtained using both conventional stability 
eigensolutions and the new rotor impedance matrix method. These results 
include a preliminary assessment of the impact of hub constraints on sta­
bility. The major finding is that, from a theoretical, mathematical view­
point, the method is practical. The results also give some implications 
with regard to accuracy requirements to be addressed in the eventual prac­
tical measurement of rotor impedance. 

1. Introduction 

1.1 Background 

Of all rotorcraft aeroelastic phenomena presently known, air reso­
nance poses perhaps the greatest challenge to the aeroelastician by virtue 
of its richness in variety of interacting forces: inertial, aerodynamic, 
elastic and gravitational. 

Air resonance, as a rotorcraft instability phenomenon has received 
considerable attention in the last fifteen years (Refs.l through 7) and 
much is known both qualitatively and quantitatively of its physics. Stated 
briefly, air resonance is a form of the mechanical instability of rotors 
known as ground resonance (Ref.8) but one which occurs in flight. The 
principal features of both ground and air resonance are: (1) the presence 
of a blade inplane response degree-of-freedom (bending mode or rigid lead­
lag motion) characterized by being supercritical (i.e., one whose frequency 
in the rotating system w8 is less than rotor rotation frequency 0), (2) a 
coincidence or close proximity of the frequency of the regressive, non­
rotating coordinate system manifestation of the supercritical blade inplane 
mode with that of a nonrotating fuselage mode having inplane hub response 
components Wr. Stated mathematically: I (0- U\l) - Wr I << 1, (3) insuffi­
cient internal damping in either or both the blade inplane mode or the 
fuselage mode. The principal differences between ground and air resonance 
arise from their respective sources of fuselage stiffness and damping. In 
ground resonance the sole source of both stiffness and damping is typically 
the landing gear assembly; in air resonance the sources are multiple: 
gravity (or alternatively rotor thrust) and the flapwise bending and aero­
dynamic damping of the rotor blades. 

Both types of instability are quire literally "total aircraft" 
instabilities as opposed to "rotor" instabilities and several disciplines 
must be brought to bear for their practical stabilization. This is 
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especially true for air resonance. There now exist several analyses Which 
do reasonable well at predicting the stability characteristics associated 
with the air resonance phenomenon as validated principally by correlation 
with model and/or constrained full-scale test results (Refs.3,6,7,9,10). 

Yet despite the growing sophistication of these analyses, model air 
resonance stability tests are still undertaken in the development of new 
hingeless and bearingless rotor helicopter designs. Note, however, that 
this heavy reliance on model testing for stability confirmation is not an 
issue with regard to the related mechanical instability, ground resonance. 
Typically, existing ground• resonance stability analyses are all essentially 
variants of the classic work of Coleman and Feingold (Ref.8). They are 
well-accepted as being accurate primary design tools and are routinely used 
in the design process without experimental confirmation. Experimental con­
firmation of ground resonance characteristics is generally confined to that 
Which is required on the final manufactured airframe in the certification 
phase. Thus, a disparity in confidence appears to exist between the analyses 
for these two very closely related rotor-fuselage coupled instability phe­
nomena. The reason for this disparity is most likely due to the added com­
plexities and, hence, predictive uncertainties brought about by the addi­
tional aerodynamic loadings, the internal structural damping and the aero­
elastic couplings experienced by the rotor blades in air resonance 
conditions. 

1.2 Existing Model Testing Methodology 

As prudent as model testing thus becomes as a backup or complement 
to Whatever air resonance analysis is available, there are nonetheless, 
distinct intrinsic difficulties with such testing as well. The method 
typically employed for model scale testing of air resonance stability 
requires the design and fabrication of a complete, consistently scaled 
rotor and pylon system. Severe limitations are thereby imposed on the 
modeling of the pylon structure. The requirement for both Froude and 
inertia scaling, the available techniques for light weight, low damping 
model construction, and the need to approximate free-flight with a con­
strained nonflying pylon all invariably drive the model design to the same 
simplified pylon configuration: The pylon system is typically designed 
for articulation only in pitch and roll about some effective center-of­
gravity point; the blades are Froude scaled, and the respective masses of 
the rotor and pylon are appropriately modeled relative to each other. 
Measuring the stability characteristics of the complete rotor-pylon system 
is -the objective of such model testing, and these characteristics are 
typically obtained by measuring the transient decay of the responses follow­
ing some suitably calibrated input disturbance. Use is made either of 
simple log decrement methods or of more sophisticated data reduction methods 
(e.g., Ref.ll). 

The intrinsic deficiencies in this approach are as follows: 

1. Within any test program the requirement to test the combined 
rotor-pylon system either limits the range of coupling param­
eters Which can be evaluated, or stated alternatively, the test 
program grows in time and cost to accommodate the testing of 
many parameter variations. For example, the mass and inertia 
characteristics of the pylon (helicopter airframe) is subject 
to considerable variability due to gross weight loading condi­
tions (cargo, passengers, fuel) and external stores. Note, 
however, that the mass properties of the rotor are relatively 
constant. 
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2. The modeling of the pylon mass as a gimbaled rigid body mass 
articulated in pitch and roll about some effective center-of­
gravity point is an approximation of heretofore unknown accu­
racy. Limited results in the literature of full scale air 
resonance characteristics in flight (Refs.l,5 and 6) provide 
scant data with Which to make any generalization with regard 
to the validity of this approximation. 

3. Some ranges in pylon parameters may be simply impractical to 
construct at model scale. This difficulty is compounded by 
the fact that relative internal damping tends to vary in an 
inverse manner with model scale. Thus, designing the pylon 
with sufficiently low internal damping can become a limiting 
factor. 

1.3 New Test Methodology 

An improved method for testing the rotor-pylon coupled aeromechanical 
stability characteristics of model rotor systems forms the subject of the 
present paper.· This method forms a radical departure from traditional 
methods and is based on assessing the appropriate dynamics of the two com­
ponent subsystems, the rotor and the pylon, separately. As shown in Fig.l 
the rotorcraft can be conceptualized as being comprised of two dynamic 
subsystems each of Which interacts at their mutual attachment point, the 
rotor hub. The rotor system generates hub loads in response to the hub 

Hub load 
Rotor system 

----------1-

Airframe 
Hub motion, X 

s, F 
Problem 1, 
Rotor impedance 

Problem 2, 
Airframe mobility 

• Problem 1: [F /X] , difficult to calculate, use test 

• Problem 2: [X/F] , wide variation, easier to calculate, 
use analysis 

Figure 1 Conceptualization of Rotor-Airframe Dynamic Interactions 

motion (rotor impedance), and the airframe generates hub motion in response 
to hub loads from rotor (airframe mobility). Rotor impedance is generally 
more difficult to calculate, but is less subject to wide variation in many 
parameters and, hence, is most appropriate for test evaluation. Pylon 
mobility, however, is subject to wide variability, but is far easier to 
calculate accurately than to test at model scale. This approach to system 
modeling, Wherein the rotor and pylon subsystems are considered separately, 
and the advantages for doing so have already been recognized with regard 
to the analysis of vibration relating to rotor-pylon interaction (Ref.l2). 



The improved stability test methodology is accordingly based on the follow­
ing points: 

1. The rotor alone shall be tested for dynamic characteristics in 
all five degrees-of-freedom (three translations, pitch and 
roll) to measure its aeromechanical impedance for each operat­
ing condition. A frequency dependent matrix description will 
ensue. 

2. The airframe mobility characteristics, as defined by a frequency 
dependent matrix (again, degrees-of-freedom in three transla­
tions, pitch and roll) but with all appropriate parameter vari­
ations, shall be provided by some other source. Such sources 
could include an analytic calculation of any desired complexity 
using finite element techniques (e.g., NASTRAN et al.) or even 
full scale or model scale experimentation. 

3. The two dynamic descriptions are then combined in an eigen­
solution technique, as described below, to assess the stability 
characteristics of the complete system. 

It should be pointed out that such testing of either of these two 
helicopter subsystems is not of itself new. Reference (13] describes work 
done in measuring the aeromechanical impedance of an isolated rotating 
model helicopter rotor. Similarly, it is common practice to measure the 
impedance characteristics of the helicopter airframe (without the rotor) 
to ascertain equivalent masses, damping and natural frequencies for subse­
quent inclusion in calculations of full-scale ground resonance character­
istics. But these two types of subsystem testing have not been directed 
to any identifiable alternate, more productive use of models for testing 
rotor-pylon coupled aeromechanical instabilities. The missing technology, 
heretofore, has been the unifYing principles Which, When taken with the 
impedance mobility characteristics of the two subsystems, yield stability 
information of the combined system. 

The development of these unifYing principles constitutes the sub­
stance of this paper. The paper does not address the problem of how to 
measure rotor impedance, but rather, if rotor impedance measurements were 
available, of What advantageous use could be made of them. The actual 
test methodology required to measure rotor impedance still needs further 
development beyond the pioneering work of Ref.(l3]. The description of 
that development effort, however, must form the subject of future reporting. 

The remainder of this paper presents first the theoretical develop­
ment for the unifYing principles Which enable the assessment of combined 
system stability. These principles allow not only the attainment of 
stability boundaries, but also of qualitative approximations of the actual 
stability levels. Second, numerical results are presented for both ground 
resonance and air resonance applications Which demonstrate the theory. 
These results furthermore provide a quantitative assessment of the inaccu­
racies posed by the constraints on airframe articulation inherent in a 
pitch-roll gimbal retention. 

2. Theoretical Development 

2.1 Multivariable Nyquist Stability Criterion 

The familiar, classic Nyquist stability criterion, as formulated 
for single variable dynamic feedback systems, is over 50 years old and 
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well-established as a standard control system design tool (e.g., Ref.l4). 
Extension of the basic concept to multivariable feedback systems, however, 
has occurred only relatively recently (Ref.l5, 1977). As developed in this 
latter reference the formulations are mathematically rigorous and intended 
for a wide general class of feedback systems application. A full exposition 
of this formulation and a formal application of it to the' problem at hand 
appears unwarranted as a more direct, perhaps more heuristic approach has 
been found to work quite well, nonetheless. 

The starting point used in both the present and Ref.[l5] formulations 
is the mathematical conceptualization of the loop closure between the two 
subsystems. As shown in Fig. 2 the two frequency dependent (N X N) dynamic 
matrices~' representing rotor impedance, and G2 ,representing airframe 
mobility, are mathematically combined by generalizing the closure condition 
at a point in the feedback loop. As shown, the feedback is deliberately 
cut and the system responses are then assumed to be undamped sinusoidal 
rather than the damped (or divergent) sinusoidal as would be obtained with 

x1 r Rotor system F 

'"t" [G2] 

Airframe 

{F} = [G1] {X 1}; Rotor impedence-from test 

{X2} = [G2] fF}; Airframe mobility-from analysis 

{X2} =A {X 1 }; loop closure 

Figure 2 Basis for Multivariable Nyquist Criterion - Characteristic 
Loci Eigenvalue Problem 

actual loop closure. Three simple relationships define the closure 
condition. 

Rotor impedance: 

Airframe mobility: 

Conditions across loop closure: 
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Equation (3) implements the mandate that the (acceleration) responses at the 
end of the opened loop X2 shall be proportional to those at the start of the 
loop X1 • The undetermined constant of proportionality A at this point is 
allowed to be arbitrary and complex-valued. 

Taken together the above frequency dependent matrix equations define 
an (N X N) eigenvalue problem: 

(4) 

where the N frequency dependent eigenvalues A(w) are denoted the character­
istic loci. 

As applied to the present problem, the multivariable Nyquist cri­
terion can be simply stated that the combined system (with loop closure) 
shall be unstable if any of the characteristic loci A,. cross the real axis 
in the complex plane at a point greater than unity,(+l+iO). 

The proof presented herein is essentially a heuristic one: If one 
of the characteristic loci An is exactly equal to unity, then complete 
closure is in fact restored and, for sinusoidal motion the restored system 
is, by definition, neutrally stable. If An is again strictly real, but 
greater in magnitude than unity, then the responses are "in phase" across 
the cut, but growing in amplitude, i.e., unstable. Similarly, if An is 
real, but less than unity the system must be correspondingly stable. 

Viewed another way, the real axis crossing point of each of the 
characteristic loci provides a measure of the system's ability to increase 
its energy in each mode, respectively, in accordance with the autogenous 
growth (or decay) of the responses upon each turn around the feedback loop. 
As developed for both single and multivariable feedback systems (Refs.l4 
and 15) the Nyquist criterion is canonically stated more generally in terms 
of the number of clockwise encirclements of a critical point (either +1 or 
-1, depending on positive or negative feedback) by the ratio of open-loop 
output to input (A in the present case), and the number of unstable poles 
of the open-loop system. The present formulation is seen to be compatible 
with this more usual statement of the Nyquist criterion by first noting that 
any encirclement of the +1 point requires A to cross the real axis at a 
value greater than unity and secondly by assuming that the open loop transfer 
function [G2 ][G1 ] typically is stable. That is, the hub-fixed rotor, by 
itself, is assumed to be stable as is the rotorless airframe by itself. 
I~ effect, the canonically stated Nyquist criterion equates the number of 
system unstable poles arising only due to the feedback loop closure to the 
number of encirclements of +1 (or -1, as appropriate), which is essentially 
what is put forth herein. 

It needs to be stressed that the usefulness of the multivariable 
Nyquist stability criterion lies in the resulting ability to separate out 
the dynamics of the rotor from those of the airframe and deal with each 
separately. The [G1 ] and [G2 ] matrices of Eqs.(l) and (2) can be obtained 
from different sources and at different scales and yet still be combined, 
as is described in a subsequent section. Thus, the [G1 ] rotor impedance 
matrix only need be obtained experimentally at model scale. 

2.2 Quantitative Stability Characteristics 

As useful as the above-formulated Nyquist technique is, it can only 
in of itself give stability boundaries. Usually, more precise knowledge 
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of stability is required, as quantified either by critical damping ratio, 
characteristic exponent or stability margin (with respect to some parameter 
such as gain or phase). The development to follow presents a method for 
estimating the characteristic exponents from the variations of the charac­
teristic loci when in close proximity to the critical (+1 + iO) point. 
Essentially the method is a straightforward application df analytic contin­
uation of a complex variable. 

Let us begin the formulation by writing the Equation (4) eigen­
problem in a more general form: 

[A(;>..) - [G
2

(;>..)] [G
1 
0.)]] {X

1
} = 0 (5) 

where the frequency is now generalized to be of the Laplace variable domain 
form: 

A = cr+ iW (6) 

and where each of the characteristic loci is now a complex-valued (analytic) 
function of the comple~ frequency: 

(7) 

The objective is to closely approximate the characteristic exponent cr 
in Eq.(6) knowing the behavior of A as a function of w near the critical 
point. Note first that in the freguency domain, as noted earlier, A(w)will 
have a value of 1 + e (where e is a known small number) at the real axis 
crossing frequency W= 1l> (also known). In the Laplace variable domain, how­
ever, A(A) has the value of 1 exactly at the value of A which we seek, 
(which is another way of stating the classic stability eigenproblem). 
Assuming that A(A) is an analytic function in the neighborhood of (1 + iO), 
we can expand A in a Taylor series taking the derivatives in the frequency 
(imaginary) axis direction and evaluating them at the point ~= iW: 

2 
A(;>..) =Ad)+ (;>..- ~) :~ 6) + t (A- ~) 2 :;>..~ (l)+ . . . . (8) 

Since: 

dA d~ 
+ i 

dAI dAI 
i 
d~ 

(9a) -= = ---d;\. d(iw) d(iw) dw dw 

d
2
A d 

(dttw)) 

d2~ d2A 
--= = 

- dw2 -
i 
__ I 

(9b) 
d;\.2 d(iW) dw2 

A 

(A- A)= cr+il;w (9c) 

where 

t:Jw= w- w (9d) 

and upon neglecting the second order and higher order terms in Eq.(8), a 
simple equation results for cr and t:Jw: 

(
dAI d~) 

A(A) =l=l+e+ dW - i dW (cr+i!:Jw) (10) 

which reduces to two real simultaneous equations: 
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(A1) (!\) 
dOJ cr+ dOJ /).OJ =- e (lla) 

- (::) cr+ (:/\;) /).OJ = 0 (llb) 

which can be readily solved to yield: 

- ( d/\
1

/ dOJ) e 
cr = ----::'~---.,-

( d/\1 / dOJ) 
2 

+ ( dJ\1 dw) 
2 (12a) 

(dJ\/dw) e 
W::::: W-

( dfl/ dw) 
2 

+ ( dJ\1 dOJ) 
2 

(12b) 

Note that the small number e, (the increment beyond the critical 
point +1 that the characteristic locus crosses the real axis), the frequency 
at the crossing point w, as well as the derivatives of fiR and /\1 contained 
in the above equations are all obtainable numerically from the calculations 
for the characteristic loci. 

A more accurate estimate of the damping cr and flutter frequency OJ 
can be obtained by retaining the second derivative term in Eq.(8): 

d/\ ' 
d(iw) (A- A)+ e = 0 (13) 

Solution of Eq.(l3) for cr and b.w is perhaps best done using the 
binomial theorem on a computer with complex arithmetic, and no attempt is 
made here to provide a closed form solution similar to Eqs.(l2a) and (12b). 
It is sufficient to note that the general methodology for obtaining accu­
rate values of cr and /).W is limited only by the closeness of the real axis 
crossing to the critical point, the accuracy in numerically estimating the 
various derivatives of II, and the degree to which the Taylor series expan­
sion is taken. 

The above material forms the heart of the theoretical development 
required for the use of impedance matrices for stability assessment. Two 
additional related topics are treated in this main section in anticipation 
of results to be presented in a subsequent section. The first relates to 
the modifications of the rotor impedance and pylon mobility matrices due 
to hub constraints. The second relates to the use of scaling techniques 
for the combining of results for rotor impedance and pylon mobility which 
were respectively obtained at different scales. 

2.3 Hub Constraints 

This section deals with the modifications of the rotor impedance 
and pylon mobility matrices resulting from constraints imposed on the hub 
motion. In particular, the material is addressed to a validity assessment 
of the use of a gimbal mount to constrain the pylon mass in typical com­
bined rotor-pylon model testing. 

A simple generalized statement of the hub constraint is afforded 
using a constraint matrix [C]: 
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Responses: 

(x} = [c] tx} (14a) 

Loads: 

(14b) 

where the (C] matrix is typically nonsquare and the ~} denoted vectors 
have a reduced number of components due to constraining. 

a) Rotor Impedance. The usual statement of rotor impedance, Eq.(l) 
can be combined with Eqs.(l4a) and (14b) as follows: 

{F} = [G1](X} = [G1][C](X} 

(F} = [C]T(F} = [C]T(G
1

](C](X} (15) 

Thus, the constrained impedance matrix becomes: 

(16) 

b) Pylon Mobility. The pylon mobility matrix, Eq.(2), can best be 
constrained by first converting it to an impedance matrix and then inverting 
the final result: 

(17) 

Thus: 

(18a) 

or 

(18b) 

(19) 

2.4 Scaling Techniques 

The objective of using scale model testing at all is to be able to 
relate the results quantitatively to the full-scale situation. Assuming 
the use of Froude scaling, Ref.[l6] provides the means for converting an 
impedance matrix measured at model-scale [G1 1Ms to one appropriate to full­
scale. The measured impedance matrix pertains to model-scale loads and 
accelerations: 

where 

[F] = [F ,F ,F ,M ,M ] 
X y Z X y 

{z} = rx, :;, z, a , e 1 
X y 

(20) 

(2la) 

(2lb) 

Then, the load and acceleration vectors (F} and (Z1 } can respectively 
be scaled using the length scale factor A£ as follows: 
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-3 
A;, 0 

-3 
A;, 

-3 
[F}FS = A;, (F}MS 

-4 
A;, 

-4 
0 A;, 

(22) 

= [TF] [F}MS 

1 0 

1 

[z)MS = 
1 

(z}FS -1 
A;, 

-1 
0 A;, 

(23) 

Thus, the full-scale impedance matrix is given by: 

(24) 

where 

is the model scale factor. 

3. Numerical Results 

As is noted above, the thrust of this paper is to show the advantages 
of conducting rotor-pylon aeromechanical stability experimentation using 
measured rotor impedance matrices, once they should be available. Since 
detailed experimentally obtained impedance matrices are not yet generally 
available, the potential of this new test methodology must be demonstrated 
by .some other means. Thus, in lieu of actual experimentally measured rotor 
impedance matrices, analytically derived ones were calculated based on 
simplified equations of motion appropriate for both helicopter ground and 
air resonance. 

The dynamic equations used for this purpose are given in Appendix A. 
These equations can be used either for ground resonance calculations 
[Eqs.(A.la,b,e,f), with ex =Sy =Sx =Sy =OJ, or for air resonance in 

t t R R 
their complete form, except with Kr = Kr = 0. It should be stressed that 

X y 
these equations are not put forth with the intention of providing the 
reader with yet another "more accurate" modeling of air resonance character­
istics for design purposes. Rather they are used only as a reasonably 
representative mathematical approximation of helicopter air resonance char­
acteristics, strictly for the purpose of demonstrating the theory put forth 
in this paper. 



In addition to providing an approximation to the rotor impedance and 
pylon mobility matrices, the use of analysis provides an excellent check of 
the validity of the impedance stability assessment technique. The stability 
predictions afforded by the impedance technique can be directly compared 
with those obtained using the usual Laplace variable eigensolution of the 
entire system [Eqs. (A.la-f) ]. For both the ground resonance and air reso­
nance numerical results the same four-bladed model hingeless rotor configu­
ration was used. Table 1 lists the mechanical and geometrical properties 
of both the selected blade configuration as well as the nominal pylon/ 
airframe configuration. 

TABLE 1 

AEROMECHANICAL PROPERTIES OR ROTOR AND PYLONS USED 
IN NUMERICAL EXAMPLES 

1. Rotor Properties 

(Nominal) tip speed, OR 
Froude number ® nom 0 R 
Radius, R , 
Mass distribution, m 
Flatwise bending stiffness, Eiw 

Edgewise bending stiffness, Eiv 

(N~minal modal damping, ~~~ 
Number of blades, b 

2. Ground Resonance Pylon Properties 

x-direction: 

y-direction: 

Mass, mfx 

Frequency, wf 
X 

Damping ratio, C~ 

Mass, m)r 

Frequency, wf 
y 

Damping ratio, Ct 
y 

3. Supplementary Rotor Properties (Air Resonance Cases) 

Lock number, Y 
CT/o (hover) 

Chord, c 
Precone angle, Sa 
Collective angle, e.?SR 
Inflow, \ 
a 

cd 
0 

Thrust, T 

4. Air Resonance Pylon Properties 

Pylon mass, mf 

e.g. location, h1 
(Nominal) roll inertia, 

(Nominal) pitch inertia, 
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90.50 m/s 
608.41 

1.37 m 
4.98 kg/m 
1.904 Nm2 

106.65 Nm2 

0.005 
4 

18.97 kg 

16.0 rad/s 

0.2 

11.68 kg 

28.0 rad/s 

0.1 

5.854 
0.075 

11.65 em 
0.5 deg 

9.98 deg 

-0.06371 
0.1/deg 
0.008 

387.20 N 

37.02 kg 

0.305 m 

0.163 kg-m2 

0.746 kg-m2 



3.1 Analytical Impedance and Mobility Matrices 

The required rotor impedance and pylon mobility matrices can be 
obtained from the eigensolution equations of motion in the following steps: 

1) Establish sinusoidal motion responses by setting :\.= iW. Thus, 

[[A):\.
2 + [B)H [c)] (Z}=O 

becomes: 

(25) 

2) Partition the dynamic matrices according to rotor, pylon forces 
and motion: 

pylon forces 

rotor forces 

{ 
~ 
l 

I 

H(P) + H(R): Hl2 
11 11: 

--- --------'------- --

pylon 
motion 

blade 
motion 

z 
p 

Note that the H11 submatrix represents forces arising from both 
pylon and rotor sources, Hiil and Hi~>, respectively. 

3) Using the basic definitions for rotor impedance and pylon 
mobility, Eqs.(l) and (2), form the required matrices from Eq.(26): 

Pylon mobility is determined by considering the pylon force 
excitation arising from pylon motion of pylon mass elements. 

Thus: 

(26) 

(27) 

Rotor im1edance is determined by considering the pylon force 
excitations {Fp arising from hub and elastic blade motions of the rotor 
mass elements: 

(28) 
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where 

(29) 

Thus: 

(30) 

3.2 Ground Resonance Results 

A basic four degree-of-freedom equation set was used to define the 
ground resonance characteristics [Eqs.(A.la,b,e,f) in Appendix A]. This 
equation set defines the coupled dynamics involving two hub (translation) 
degrees-of-freedom, Xp and Yp, and two rotor mode blade edgewise deflection 
variables, e, and ey. The results of the stability eigensolution for the 
nominal rotor and pylon configurations with varying rotor speed are given 
in Fig.3. Specifically, this figure shows the variations in damping and 

(a) Fixed System Coupled Frequencies 
40 

u 
Q) 30 (f) 

Pylon y -direction, YP 

' -o 
0 .... 

- 20 
Pylon x-direction, XP ~ 

.-< 
~ 

E 
H 
Ill 

3 

u 
Q) 
(f) 

' -o 
0 .... 
~ 

.-< 
~ 

Q) 

0:: 
Ill 

b 

10 

0 
0 

2 

BLADE FIRST EDGEWISE 
(REGRESSIVE), IE(R) 

50 55 60 

(b) Stability Levels 

65 70 

UNSTABLE 

0 

f-
_/ 

IE(R) 
-I 

f- STABLE 1

"' ~ZTABILITY -2 f-

-3 r-

-4 f-

y -5 
0 

XP REGIONS 

yp ........._ 

I I I I I 

50 55 60 65 70 

Rotor Speed, D., rod I sec 

75 80 

--
-

' 
75 80 

Figure 3 Stability Eigenvalue Variation with Rotor Speed for 
Nominal Ground Resonance Configuration 
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coupled frequency for the three principal coupled modes of response: pylon 
x- and y-dominant hub translation, and the blade regressive edgewise dominant 
deflections, with rotor speed. Note that the blade advancing edgewise 
dominant mode is of much higher frequency, well-damped and of no importance 
to the ground resonance instability characteristics. In all subsequent 
discussion of results, this mode is omitted for clarity. ·Figure 3 clearly 
shows the classic ground resonance instability regions centered at rotor 
speeds of 0= 57 and 72 rad/sec for the nominal pylon configuration. These 
results, wherein an instability region results at each of the intersections 
of the blade regressive edgewise mode with a pylon mode, are typical of the 
ground resonance instability. 

For the remainder of the discussion of ground resonance results, 
conditions only within the higher rotor speed instability region (0= 65 rad/ 
sec) were selected. At this rotor speed the eight eigenvalues (stability 
roots) were calculated to be: 

)1.12 =-0.712 ± i 115.017 
' ;\.

3 4 
=- 2. 968 ± i 27.041 

' 
As 6 =+ 0.152 ± i 23.569 

' 
A7 8 =- 3.262 ± i 15. 704. 

' 
Using Eq.(30) the elements of a pseudo-rotor impedance matrix G1 

were calculated varying the oscillation frequency w. This pseudo-rotor 
impedance matrix is so denoted because, for the relatively simple case of 
ground resonance, the H~il and H~~l terms were not separated out, the Hi~l 
terms being retained instead in the G2 matrix calculations. The variations 
of the four elements of the G1 matrix with frequency are shown in Fig.4. 
Note that the ~ matrix for ground resonance is skew-symmetric. Because of 
this skew-symmetry and rotor isotropy only two numerically distinct values 
result. Note also that these two values are approximately 90 degrees apart 
in phase, but both have their greatest variability in the same frequency 
range (W= 23-24 rad/sec) and a local maximum at the same frequency 
(w= 23.4 rad/sec). Furthermore, both numerical values have zero values for 
W= 0, tend to "' as w -"' and undergo a total phase shift of 180°. 

Using the rotor impedance matrix results together with a similarly 
calculated pylon mobility matrix [Eq.(27)], the characteristic loci were 
obtained for the coupled rotor-pylon system. The variations of these char­
acteristic loci with frequency are shown in Fig.S for the nominal configu­
ration (C = 0.005) and for an augmented damping configuration CC = 0.010). 
The figure clearly shows the enclosure of the critical point (1 + iO) by one 
of the two characteristic loci for the nominal configuration, and a non­
enclosure for the augmented damping case. 

Estimations of the actual frequencies of real axis crossing, as well 
as of the derivatives of the characteristic loci, Eqs.(9a) and (9b), were 
obtained by use of Lagrangian interpolation polynomials, Ref.[l7]. For 
each of the components of the characteristic loci (real and imaginary) four 
numerical values were used, two on each side of the real axis to form cubic 
polynomial fits of the calculated results. Solution for the real axis 
crossing was then achieved by solving for the value of w for which the 
imaginary part is zero. Use of this frequency together with the Lagrangian 
interpolation polynomials then enabled a direct calculation of the 
derivatives. 
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Using these numerical techniques the characteristic locus for the 
nominal configuration was found to cross the real axis at a critical fre­
quency W of 23.506 rad/sec compared with the pylon uncoupled x- andy­
direction frequencies of 16.0 and 28 rad/sec, respectively, and the actual 
coupled ground resonance frequency of 23.569 rad/sec, i.e., Im(A5 , 6 ). 

Combining the numerical results used to generate Fig.5, together 
with the formulations given in the above section on quantitative stability 
characteristics, provides estimates of the critical system eigenvalues. 
For the nominal and augmented damping configurations these calculations 
and respective percent errors are summarized in Table 2. 

These results clearly show the ability of the analytic construction 
scheme to yield reasonably accurate estimates of the ground resonance 
instability eigenvalues. Not unexpectedly, the estimates improve with 
higher order approximation. 
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TABLE 2 

EIGENVALUE ESTIMATES (GROUND RESONANCE) 

Condition a, Re(k) w, Im(k) 
Value 7.. Error Value 7.. Error 

1. Nominal Configuration 

• Actual eigenvalue 0.152 - 23.569 -• First order [Eq.(2)] 0.088 42.1 23.549 0.08 
• Second order [Eq.(3)J 0.146 3.9 23.477 0.39 

2. Augmented Damping 
Configuration 

o Actual eigenvalue -0.0724 - 23.599 -
• First order approx. -0.0870 13.5 23.596 < 0.1 
• Second order approx. -0.0740 2.2 23.600 < 0.1 
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3.3 Air Resonance Results 

Similar to the procedure used for the ground resonance results, the 
equation set presented in Appendix A was used. For the air resonance 
calculations, however, the full complement of eight dynamic equations was 
utilized and the aerodynamic terms and Coriolis terms arising from precone 
were activated. The principal modes of interest for the air resonance 
characteristics are shown in Fig.6 for the nominal rotor and airframe 
inertia configurations. 

As with. the previously discussed ground resonance results, well­
damped higher frequency progressive blade edgewise and flatwise modes 
were calculated and are omitted for clarity. In contrast, however, for 
all air resonance cases, an additional unstable very low frequency mode 
(w < 1 rad/sec) was calculated. This mode was found to arise from aero­
dynamic precone related terms and to involve only rigid-body motion of 
the airframe (elastic blade motions being negligible). For considerations 
of air resonance stability characteristics and especially in view of the 
stated purpose of the equation set, this unstable low frequency mode is 
also omitted from further consideration for clarity. 

Figure 6 shows the variations with rotor speed of the frequency and 
damping characteristics of the three modes of interest: airframe pitch and 
roll dominant modes, and the blade regressive edgewise dominant mode. 
Because of the substantial gyroscopic coupling between pitch and roll both 
the "pitch" and "roll" modes each have significant components of each other. 
Consequently, because of this coupling and the lower roll inertia, only one 
instability region was calculated and is roll dominant. Also, in contrast 
to the ground resonance results, the roll and pitch modes increase in fre­
quency with rotor speed due to the increased flatwise stiffening resulting 
from increasing centrifugal forces. Note that these results are somewhat 
simplistic in that throughout the rotor speed variation, aerodynamic thrust 
as well as blade collective and inflow were maintained at the same levels. 
Also, no steady flatwise or edgewise bending deflections, with attendant 
real-world nonlinearities, were introduced. 

Again, similar to the above ground resonance results discussion, the 
remainder of the air resonance results will be presented and discussed only 
for one rotor speed (0 = 70 rad/sec). For this rotor speed the principal 
eigenvalues calculated are as follows: 

11.
1 2 =- 17.127 ± i30.673 
' 

11.
3 4 

=- 12.583 ± il9.325 
' 

11.
5 6 

=+0.0622 ± i26.809. 
' 

For these air resonance cases the characteristic locus variations 
were calculated using the unabridged procedure, Eqs. (27) - (30). The results 
for the niminal airframe inertia and for double the nominal values are 
shown, respectively, in Figs.7 and 8. Figure 7 clearly shows the instabil­
ity indicative enclosure of the (1 + iO) critical point commensurate with 
the unstable damping coefficient of +0.0622 given above. 
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Figure 6 Stability Eigenvalue Variation with Rotor Speed for Nominal 
Air Resonance Configuration 

On the other hand, the results of Fig.8, for an augmented inertia 
airframe, show nonenclosures of the critical point by. the characteristic 
loci. Indeed, for this case the critical eigenvalue was found to be stable 
(As,s' =-0.0632 ± i26.620). It should be stressed that these two sets of 
results were obtained for the ~ <;,. (w) rotor impedance matrix. General 
features observable from Figs.7 and 8 are (1) the relatively more irregular 
variability of the characteristic loci with frequency for air resonance 
compared with that for ground resonance, and (2) the possible multiple 
crossing of the real axis by one of the characteristic loci. Although no 
detailed results are presented herein, calculations for a four times air­
frame inertia configuration showed a very stable critical eigenvalue and 
no crossings of the positive real axis by any of the characteristic loci. 

Lastly, calculations were performed for a constrained airframe con­
figuration wherein the combined system center-of-gravity (.0214 m below the 
hub) was artificially fixed in space. This constraint effectively reduces 
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the dynamic system to a six degree-of-freedom representation. For the 
nominal and airframe configuration (but with constraint) and a 0= 70 rad/sec 
rotor speed the critical eigenvalue was calculated to be :\,;, 6 = 0.100 ±i26.940. 
This represents a 61% error in damping and an 0.5% error in frequency. As 
expected,the frequency of the constrained system is higher than that for 
the unconstrained. 

Comparison of the results of the eigensolutions with the quantitative 
stability predictions using the rotor impedance matrix method are presented 
in Table 3. 

These results show the clear success of the rotor impedance method 
in identifying the instability regions for the completely coupled system 
for alternate pylon mobilities using the same rotor impedance matrix. In 
contrast to the ground resonance results, those for the air resonance 
cases show a marked reduction in the convergence of the approximate eigen- · 
values to the exact ones. 

The exact nature of the convergence properties of these approximate 
eigenvalues has not yet been fully explored but on the basis of these 
limited results can be expected to depend on (1) the proximity of the 
critical characteristic locus to the critical point, (2) the accuracy of 
the numerical derivatives (which depends on the number and density of 
points near the critical point), and (3) the degree of Taylor series expan­
sion taken about the critical point. 
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TABLE 3 

EIGENVALUE ESTIMATES (AIR RESONANCE) 

Fy1on Mobility a, Re()J w, Im(X) 

Conditions Value (t Error) Value (t Error) 

1. Nominal configuration 

• Actual eigenvalue 0.0622 - 26.809 -
• 1st order approx. 0.1380 121.9 26.800 < 0.1 
• 2nd order approx. 0.0338 45.7 26.792 < 0.1 

2. Inertias X 2 

• Actual eigenvalue -0.0632 - 26.620 -
• 1st order approx. -0.0496 21.5 26.612 < 0.1 
• 2nd order approx. -0.05087 19.5 26.614 < 0.1 

3. Constrained 

o Actual eigenvalue 0.100 - 26.940 -
o 1st order approx. 0.163 63.0 26.902 0.1 
• 2nd order approx. 0.0538 46.2 26.903 0.1 
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4. Concluding Remarks 

The use of measured rotor impedance characteristics for the testing 
of coupled helicopter rotor-airframe aeromechanical stability represents a 
powerful new test methodology. Specific advantages inherent in this new 
test methodology are: 

1. It enables infinite variability of pylon (airframe) param­
eters from a single rotor impedance test and thus has the 
potential for greatly increasing the cost-effectiveness 
of such testing. 

2. It relieves the problems attending the design and fabrication 
of suitably scaled passive pylon masses at model scale. 

3. It enables stability testing without the necessity of 
actually entering the potentially catastrophic instabilities 
themselves. 

On the basis of the results presented herein the following conclu­
sions have been drawn: 

1. With regard to the testing for stability boundaries and/or 
whether the coupled system is stable or not the use of the 
multivariable Nyquist criterion is a practical tool. 

2. The extraction of quantitative stability levels from the 
characteristic locus characteristics, together with analytic 
continuation methods, appears to be practical. The converg­
ence characteristics, however, require further study to 
establish conditions for specified accuracy. 

3. The conventional use of artificial constraints on the 
pylon inertias of scaled, coupled rotor-airframe test 
models (i.e., using a coincident pitch-roll gimbal) can 
result in significant errors in stability level measurement. 

4. Based on limited analytic approximations the variability of 
the rotor impedance matrices with frequency can be quite 
high near one or more rotor resonance conditions. This 
characteristic has implications for the eventual practical 
testing of rotors for aeromechanical impedance. 
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a 
b 
[CJ . 
C1 /cr 
c 
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(F} 

F•r'FYt 
JGl] 
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M., ,MYr 
mr 
~ 
m' 
R 
sl, . • · s4s 
T 
(xl}, (Xa} 

€ 

exr' ey t 
ex , ey 

R R 

e. 75R 
A 
:\. 

Airfoil section lift curve slope, 1/deg 
Number of blades 
Rub constraint matrix 
Rotor thrust coefficient per blade solidity 
Blade chord, em 
Airfoil section minimum drag coefficient 
Pylon effective translational damping at hub, N-s/m 
Blade bending stiffness, N-m2 

Vector of force and moment components at the rotor-pylon 
interface 
Hub force .excitations in x- and y-directions, respectively, N 

Rotor impedance matrix defining loads per deflections (or 
accelerations) 
Pylon mobility matrix defining deflections (or accelerations) 
per loads 
Frequency-dependent dynamic matrix resulting from equations 
of motion 
Distance airframe e.g. is below rotor hub, m 
Airframe pitch and roll inertias, respectively, about air­
frame c. g., kgm2 

Pylon effective translational stiffness at hub, N/m 
Characteristic length for scaling purposes, m 
Hub moment excitations in roll and pitch, respectively, N-m 
Airframe (pylon) mass, kg 
Rotor mass, kg 
Blade mass distribution, kg/m 
Rotor radius, m 
Blade mass modal integration constants, as appropriate 
Rotor thrust, N 
Vectors of deflections at respective sides of the artificially 
disconnected interface 
Blade precon~ angle, deg 
Blade lock ntnnber 
Blade 1st edgewise and flatwise bending mode shapes, 
respectively 
Value beyond unity that a characteristic locus crosses the 
real axis 
Cyclic rotor mode descriptions of blade edgewise bending in 
longitudinal and lateral directions, respectively 
Pylon critical damping ratio used to define damping 
Blade structural damping equivalent critical damping ratios 
for edgewise and flatwise bending, respectively 
Hub roll and pitch motion, respectively, deg 

Cyclic rotor mode descriptions of blade flatwise bending in 
roll and pitch directions, respectively 
Blade collective angle, deg 
Complex-valued characteristic locus 
Alternatively, rotor inflow and Laplace transform space 
eigenvalue(= cr±iw), 1/sec 
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0 
w 

h 

w 

Superscripts 
( ) (a) 

( ) ( p) 

( ) ( R) 

C) 
n 
Subscripts 

( )b 
( )FS 
( ) t 

( )Ms 
( )p 
().,(), 
()y,(), 
( )., ( )y 

Length scale factor 
Real part of system eigenvalue, giving stability information, 
1/sec 
Rotor speed, rad/sec 
Alternatively, frequency variable for impedance and mobility 
descriptions, and imaginary part of eigenvalue giving coupled 
frequency information, rad/sec 
Frequency at Which characteristic locus crosses real axis, 
rad/sec 
Blade edgewise frequency in rotating coordinate system, rad/sec 
Natural frequency of arbitrary airframe (pylon) mode with 
lateral deflection components, rad/s 

Arising 
Arising 
Arising 

from aerodynamic sources 
from motion of pylon mass 
from motion of rotor mass 

elements 
elements 

Complex amplitude, from 
Quantity resulting from 

eigensolution or at a discrete frequency 
application of hub constraint 

Blade motion degrees-of-freedom 
At full scale 
Pertaining to airframe (pylon) 
At model scale 
Pylon motion degrees-of-freedom 
Real and imaginary parts, respectively 
Relating to blade edgewise and flatwise bending, respectively 
In longitudinal and lateral directions, respectively 

Appendix A - Simplified Dynamic Equations for Ground and Air Resonance 

The simplified equations of motion presented in this appendix are 
intended only as a reasonably representative analytical vehicle for evalu­
ating the practicality of the rotor impedance matrix method for testing 
coupled rotor-pylon instabilities. As such, they are not intended for 
general analysis applications in support of actual helicopter design 
efforts. They are presented herein without mathematical development or 
justification. 

The eight differential equations respectively model the responses in 
hub x- and y-translation, hub roll and pitch rotations, blade cyclic edge­
wise bending rotor modes in the x- and y-directions, and blade cyclic 
flatwise bending rotor modes in roll and pitch directions: 

Hub Longitudinal Force (F,) 

(A.la) 
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Hub Lateral Force (Fy) 

b .. = F(a) + -2 s 48 e +T9 
y ~ y 

Hub Pitch Moment (My ) 

(b~8l- m~1)x + [ r 9 f +m~~ + ~ 82(1 + ~) J SYf 

+ % sl2eyR- 2>(~) 829xf- 2>(%) 812exR 

Rotor Longitudinal Edgewise Excitation (~e ) 
X 

.. .• .. • 2 2 
848x+ ~S469yf + S49(ex + 2~Wv€x + (WV- (l )ex] 

+ s
49

n(2e + 2r w e ) + 2E\ 08
25

(e + ne ) =~(a) 
y "v v X '~B XR YR €X 

Rotor Lateral Edgewise Excitation (~e ) 
y 
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(A.lc) 

(A.ld) 

(A.le) 
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Rot.or Rollwise Flatwise. Excitation (:;;:
9 

) 
xR 

~Bsl y+ s12 (~ + 20El ) + s10 [S + 2r w e + (w2
- o

2
) 9 ] 

y- X£ y f ~ "W W XR W ~ 

+ s10oczeYR + ZCwwweyR) - z~os25 cex + Oey) =:;;:~a) (A.lg) 
XR 

Rotor Pitchwise Flatwise Excitation 

where the various integration constants are defined as follows: 

R 

sl = J m'rdr 
0 

R 

sz = s I 2 m r dr 
0 

S =R 
.46 

2 
s49 = R 

R 

Jm'y y dr 
wv 

0 

R 

J m'y~dr 
0 

(A.lh) 

(A. 2a-i) 

Note that this equation set is intended for dual purpose in modeling 
both ground and air resonance characteristics. For ground resonance 
applications, only Eqs.(A.la,b,e,f) are used, with the i_L terms suppressed. 
For air resonance applications, all the equations are used, but with the 
( ) terms suppressed. 

The aerodynamic excitations, indicated by the ( )(a) superscripted 
terms on the right-hand side of Eqs.(A.la-h), were formed using simple 
quasi-static aerodynamic theory. To this end the static lift curve slope a, 
a uniform constant drag coefficient cd , the collective angle 9, 75 ., and 
uniform inflow A, were included in the0 formulations. The more realistic 
effects of twist, airmass dynamics, lift deficiency and nonuniform inflow 
were omitted consistent with the intended use of the equations. Despite 
the simplified modeling of these aerodynamics terms, which are more or less 
standard, their detailed descriptions are sufficiently tedious and insuffi­
ciently important to the intent of this paper as to warrant their omission 
herein. 
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