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Modeling Dynamic Equations of Motion of a
Composite Hingeless Helicopter Rotor Blade

B. Bailey*, F. Afaght and F. Nitzsche}

Abstract

The first-order nonlinear equations of motion for a composite, thin-walled, multi-celled hingeless
rotor blade with integral actuators are developed. This is done by using the variational asymptotic
method to find cross-sectional expressions for the beam stiffness, strain field and shell energy.
Integrating the shell energy over the blade length results in the linear strain energy density. This is
used in Hamilton’s Equation to find the equations of motion and related boundary conditions. These
equations are solved using Galerkin’s Method for non-linear steady-state and linearized perturbation.

1 Introduction

Hinges are incorporated into helicopter blade de-
sign to reduce the high bending moments at the
root, but result in a lag in the response time.
With the advent of composite materials, there is
an initiative to develop hingeless blades. Recent
advances in active materials technology allow for
a potential means of vibration and pitch angle
control.

Helicopter rotor blade analysis is a complex
subject that encompasses aerodynamics, struc-
tures and composite materials. The ability to
control the coupling between deformation modes
through the orientation of the fibers allows for the
tailoring of helicopter blade dynamics. Piezoelec-
tric fibers, which strain under the application of
an electric field, can be embedded into the com-
posite and allow for anisotropic actuation.

This paper provides an aeroelastic analysis of a
hingeless helicopter rotor blade with active fibers
in hover. The analysis is limited to the case of
constant cross-sectional properties and no cord-
wise offset between the elastic, mass, tension and
aerodynamic axes.

2 Cross-Sectional Analysis

The analysis of the helicopter rotor blade can be
broken down into a linear two-dimensional analy-
sis of the cross-section, and a non-linear analysis
along the blade span. The cross-section is mod-
eled by the variational asymptotic method [1].
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This method is an iterative process of approxi-
mating the displacements and finding the associ-
ated shell energy. The displacement terms with
a contribution of less than two orders of magni-
tude, compared to the largest in the shell energy,
are ignored. The process is terminated when the
new terms do not produce terms of the same or-
der as the rest in the shell energy. This pro-
cess will asymptotically approach the shell energy
contained in a thin-walled beam. Thus, closed-
form expressions for the displacement and stress
fields, and beam stiffness coefficients result from
this analysis.

This method was further developed to include
anisotropic closed-cross-section beams [2], ex-
panded to include two-cell composite beams [3],
and further refined to include anisotropic actua-
tion [4] . A schematic of this method is given in
Figure 1, and corrections to stiffness terms for a
two-celled beam with integral actuation are given
in Appendix A.

The constitutive relations obtained from this
method can be written in matrix form as:

P Ul Ff(“’)
! a

%1 = [K]4><4 _%H - Ml(a)
M, v "

3 2 M3(a)

where Fy, My, M> and M3 are the traction, tor-
sional moment, flap bending moment and lead-
lag bending moment, respectively. U;, U, and
Us represent the average cross-sectional transla-
tions in the axial, lead-lag and flap directions,
respectively, and ¢ is the torsional rotation. The
cross-sectional stiffness terms K;; are dependent
upon the blade geometry and material proper-
ties, and the matrix is symmetric. The corrected
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Figure 1: Variational asymptotic method.

actuation terms are given in Appendix A.

3 Nonlinear Beam Analysis

Integrating the shell energy over the blade length
gives the strain energy, which is used in Hamil-
ton’s equation :

ta
Jél

where U is the strain energy, T is the kinetic
energy and 6W is the virtual work due to the
external forces. The only external forces con-
sidered in this approach are due to aerodynamic
loading. The corresponding kinetic energy and
virtual work terms are obtained in [5].

The shell energy functional ® per unit mid-
dle surface area, obtained from the variational
asymptotic method, integrated over the cross-
section and blade length L gives the strain en-

ergy. Hence,
L
U= / / P ds dx
0 all

where the cross-sectional coordinate is s and the
axial coordinate is x.

Taking the variation of the strain energy, and
replacing the shell energy functional with the
constitutive relations, the following is obtained:

[0 (U =T) - 6W]dt =0

L
§U = / [F16U! + M5’ — MySUY + MssUY) dw
0
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The displacements and strains are transformed
from the local, cross-sectional b to a global a coor-
dinate system, as shown in Figure 2. This is done
by using the coordinate transformations given by

[6].

Figure 2: Coordinate systems, from [7] .

Integration by parts is then applied to give
all of the variations in terms of global displace-
ments only, eliminating variations of the deriva-
tives. This results in four variational equations
in the global coordinate system, with respect to
the axial u, torsional ¢, lead-lag v and flap w dis-
placements, and their associated boundary con-
ditions. As the variations are arbitrary, but ad-
missible, and the integrals equal to zero, the inte-
grands must vanish. The four integrands equal-
ing to zero are the four equations of motion of
the blade.

The equation of motion associated with the
variation of the axial displacement can be used to
eliminate the axial displacement as an indepen-
dent variable. This results in three equations of
motion and boundary conditions, which can be
nondimensionalized. The terms are ranked ac-
cording to their degree of nonlinearity, and only
up to the first order nonlinear terms are kept.

The non-dimensionalized equations of motion
are as follows:
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where ¥ and w are the lead-lag and flap displace-
ments nondimensionalized by the blade length,
respectively. @, 8 and By, are the torsion twist,
pitch angle and precone about the axial axis, re-
spectively. The nondimensionalized variables are
given in Appendix B.

3.1 Solution to the Equations

The equations of motion are solved by applying
Galerkin’s Method. In this method, the displace-
ments are represented as an infinite series of gen-
eralized coordinates and mode shape functions:

N
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Z is the axial coordinate nondimensionalized with
respect to the blade length. ¢ is the azimuth an-
gle, a nondimensionalized time which is equal to
the angular velocity Q of the blade multiplied
by time. V;, W; and ¢; are the generalized co-
ordinates, and ¥ and © are the mode shape in
bending and torsion, respectively.

The mode shapes used are the standard, un-
coupled mode shapes of a non-rotating can-
tilevered beam. Integration by parts is applied to
the Galerkin equations, which satisfies the natu-
ral and imposed boundary conditions.

3.2 Steady State and Perturbation

The generalized modal coordinates can be broken
down into steady-state and perturbation values :

Vi = Vo +AV;
W; = Wy + AWJ'
$j = doj+Ad;
E. = Eg+AE,
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This allows for the separation of the equa-
tions of motion into steady state and perturba-
tion equations. The steady state equations given
in Appendix D, can be solved by many differ-
ent nonlinear techniques (such as the Newton-
Raphson Method). The perturbation equations
are then linearized about the steady state values,
which results in a homogeneous ordinary differ-
ential equation in the familiar form :

[M] {X} +1(C] {X} +[K]{X}+{F}AE, =0

where [M], [C] and [K] are the mass, damping
and stiffness matrices, respectively. The {F'} vec-
tor is an actuation input, and {X} is a column
vector composed of the flap, lag and torsion per-
turbation generalized deflections.

AV
AW;
Ag;

The damping matrix [C] and the stiffness ma-
trix [K] are divided into aerodynamic, [C,] and
[K,], and structural, [C;] and [K}], respectively.
The values for all of these matrices can be found
in Appendix E.

{X}=

4 Aeroelastic Analysis

The aeroelastic stability analysis is presented for
two different spar designs: a baseline compos-
ite box-beam spar without active fibers and a
composite box-beam spar containing piezoelec-
tric fibers in the circumferential walls. The
steady-state response is then found for the base-
line spar and for the spar containing the piezo-
electric fibers with no applied electric field and
with the maximum electric field applied. The
perturbation response is obtained for the three
preceding cases, and a simple optimization is
used for the dynamic control.

These results were obtained from computer
codes that run in the MATLAB™™ Version 5.3
environment using 6 mode shapes.

4.1 Design of Spar

A baseline test spar was designed for a Westland
WG13 helicopter, whose basic properties are pre-
sented in Table 1. The additional mass of steel
rods placed at the blade’s leading and trailing
edges are used to tune the four lowest frequen-
cies to approximately those of a typical helicopter
rotor blade (at about 1/rev, 2/rev, 2.5/rev and
3.5/rev). These weights are sectioned off into
small lengths to change the mass and inertial



properties of the blade without increasing the
stiffness.

Number of blades, b 4
Blade chord, ¢ 0.394 m
Main rotor radius, L 7.52 m
Coefficient of drag, Cp 0.011
Tip velocity, QL 213.4 m/s

Table 1: Properties of Westland WG13 helicopter
[8]-

The cross-sectional dimensions of the spar are
given in Figure 3. This spar can be contained
inside a NACA 0020 airfoil, which is thicker than
most conventional helicopter rotor blades. This
is done to avoid flutter when the extra mass due
to the piezoelectric fibers is included. Therefore,
as the flapping mode was dominant in this flut-
ter case, the height of the spar was increased to
augment the flapping stiffness K33.

0.08m

0.08 m 0.07m

Figure 3: Dimensions of Baseline boxbeam spar.

The baseline spar is composed of layers of
AS4/3506-1 Carbon/Epoxy, the material proper-
ties of which can be found in Table 3. The num-
ber of plies and their corresponding angles for the
horizontal and vertical walls are given in Table 2.
The resulting stiffness terms for the boxbeam are
presented in Table 4.

Member Orientation

horizontal | [-45,+45,0,-45,445,0,-45,+45],

vertical [-45,+45,0,-45,+45,0,-45,+45]
Table 2: Orientation of AS4/3506-1

Graphite/Epoxy plies for Baseline spar.

As mentioned earlier, the frequencies of the
spar were tuned to approximate those of a real
helicopter rotor blade using weights placed close
to the leading and trailing edges. As the present
analysis assumes no chordwise offset of the elastic
and mass axes, the round tuning rods are made
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from the same material, have the same radius
(2mm) and are placed equidistant from the cen-
troid (0.17m).

The Active Fiber Composite (AFC) spar is
identical to the baseline spar, except that it con-
tains a single layer of PZT-5H piezoelectric fiber
in the circumferential members. The material
properties of the active fiber are given in Table
3. In order to maximize the actuation force in
twist (Ml(a)), the piezoelectric fibers are aligned
at +45°.

AS4/8506-1 | PZT-5H
Err (GPa) 142 30.2
ENN = ETT (GPa) 9.8 14.9
Grr = Gy (GPa) 6.0 5.13
GTN (GPa) 4.8 3.6
vrT = VLN 0.30 0.45
UTN 0.42 0.40
Thickness (mm) 0.127 0.17
Density (kg/m?) 1790 4060
drrr (pm/V) 0 309
dLTT (pm/V) 0 -129
dLNN (pm/V) 0 -0.129
Table 3: Properties of AS4/3506-1
graphite/epoxy and PZT-5H piezoelectric

fiber where L is along the fiber direction, N is
normal to the laminate and T is orthogonal to L
and N.

The piezoelectric fiber layer creates a cou-
pling stiffness B in the circumferential members,
which results in extension-torsion coupling Ki2
and torsion-bending coupling K24. The resulting
stiffnesses and inertial terms are presented with
the baseline case in Table 4.

Baseline Spar | AFC Spar
Ky (N) 4.40 x 107 453 x 107
K5 (Nm) 0 5.26 x 10°
K4 (Nm) -2.10 x 10* | -2.10 x 10*
Ky (Nm2) | 5.48 x 10* | 5.69 x 10*
K24 (Nm2) 0 4.90
K33 (Nm?) | 5.70 x 10* | 5.86 x 10*
Ky (Nm?) | 1.06 x 10° | 1.10 x 105
m (kg/m) 1.72 2.04
km1 (m) 0.935 0.935
km2 (m) 0.0693 0.0703

Table 4: Non-zero stiffnesses, mass per unit
length and radii of gyration for the Baseline and
AFC spar.

As the lengths and ply angles of the top and
bottom piezoelectric fiber layers are the same, the
forces will cancel out each other, and the activa-



tion moment Méa) will be zero. The same reason-
ing applies to the left and right walls and to the
Mz(a) activation moment. This leaves only two
components of the activation vector, Fl(a) and

M which are given in Table 5 for an induced
electric field of -1800 V/ 1.114 mm.

F (N) - 1.00 x 10°
M (Nm) | -1.28 x 10!
MY (Nm) 0
MY (Nm) 0

Table 5: Forcing vector terms for active spar with
an induced electric field of -1800 V/1.114mm.

4.2 Steady-State Response

The steady-state deflections, also known as trim
deflections, of the rotor blade must be deter-
mined first. They also define the operating con-
ditions of the rotor, as the thrust produced is
dependent upon the total blade angle, 8 + .
The results are obtained as dimensionless deflec-
tions along the blade length for one operating
condition, when the pitch angle 8 is equal to 0.1
radians and no precone exists.

Although the piezoelectric fiber will be dis-
tributed throughout the length of the blade, only
a certain segment will be actuated. This can be
accomplished by locating the interdigitated elec-
trodes only in the chosen segment. In order to
excite the desired mode shapes most effectively,
the site of actuation segment becomes an impor-
tant design issue. Therefore, the segment should
be chosen in regions of high average strain and
away from regions of zero strain [9]. Since the
torsional mode is the one that is required to be
controlled, only the torsion contribution to the
strain is considered. Figure 4 gives the relative
torsional strain distribution along the beam. To
control pitch angle, the actuation segment was
chosen in a region of high torsional strain and
presented in Table 6.

0.025
0.1

Start point
End point

Table 6: Start and end points of the actuated seg-
ment nondimensionalized with respect to blade
length for steady-state actuation.

The nondimensional deflections along the
blade length are presented in Figure 5 for a pitch
angle of 0.1 radians and no precone. Only the
baseline case and the case of the non-activated
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Figure 4: Relative steady-state torsional strain
distribution when 6 = 0.1 radians and 8. = 0.

AFC blade are presented in this figure. This is
because the magnitude of the forcing vector for
the AFC blade (Table 5) is much smaller than
the stiffness values (Table 4). Hence, there is no
discernible change in the trim deflections of the
non-activated AFC blade from the fully-activated
case where the maximum electric field (-1800 V
/ 1.114 mm) is applied to the chosen segment.

~0.02 L L L I

I
0.5
x/L

0.4 0.6

Figure 5: Steady-state deflections for the baseline
spar and the spar containing the AFC fibers, not
activated, when 6 = 0.1 radians and S,. = 0.

The above results differ from other published
data, such as the results reported on a 1/6th
Mach-scaled Chinook CH47-D active blade by
[10]. The CH47-D blade contains a D-shaped
spar, where the arc is composed of 3 plies of
E-glass, 2 plies of Graphite S-glass and 3 plies
of AFC actuators, and the web is composed of
3 layers of E-glass. The experimental results for
the latter blade are over 2° /m peak-to-peak twist



actuation. These results, however, were obtained
for a non-rotating blade, and therefore did not
have to deal with inertial forces or aerodynamic
loading on the blade. Moreover, they were gener-
ated with 3 plies of active fibers, the extra mass
of which would cause flutter. The number of ac-
tive layers would have to be increased to achieve
the same results on a full-scale blade.

4.3 Perturbation Response

The six lowest frequency eigenvalues of the dif-
ferent test cases examined in the preceding sec-
tion are given in Table 7. The real part of the
eigenvalues is a measure of the damping ratio,
where a negative value represents a stable condi-
tion. The magnitude of the imaginary part of the
eigenvalue is the aeroelastic modal frequency per
revolution of the mode. The frequencies of the
baseline case are in good agreement with those
of typical helicopter rotor blades, except for the
frequency of the second mode being half as large.
This is not considered a problem, as the typical
rotor blade frequencies are only a guideline and
change for different blade designs.

Baseline Spar AFC spar - off/static
1%t | - 0.043 £ 0.965 1 - 0.156 + 0.868 ¢
274 | - 0.228 + 0.991 ¢ - 0.108 + 0.894 ¢
374 | - 0.022 + 2.609 ¢ - 0.019 + 2.863 ¢
4th | - 0.288 + 3.171 ¢ - 0.303 + 3.030 ¢
5th | - 0.003 £ 3.796 ¢ - 0.003 + 3.609 ¢
6t | - 0.231 £ 7.192¢ -0.235 £ 6.739 2

Table 7: Eigenvalues for the different designs of
the rotor blade at a pitch angle of § = 0.1 radians.

It should be noted that not only was the static
activation unable to modify the steady-state de-
flections, but it was also unable to affect the dy-
namic response.

For vibration control, the frequencies to be
eliminated are those that get transferred to the
airframe. The hub filtering and the lower fre-
quency restriction allows for the limiting of our
control strategy to the b per revolution frequency.
From Table 7, the 4t* and 5'* dynamic modes
for the non activated AFC spar are those clos-
est to this criteria. Figure 6 gives the relative
torsional strain distribution due to the perturba-
tion response. As the frequency of the 5/ mode
is closer to the b/rev frequency and there is little
damping for this mode, it would cause the largest
excitation of the airframe. This mode is therefore
the most logically eliminated using the piezoelec-
tric fibers. From Figure 6, the maximum strain
for the 5'* mode is located at about 0.7 of the

Relative strains
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blade length. The actuation segment location for
dynamic control is presented in Table 8.

—— 4th mode PR
| | — — 5thmode // \\

Relative Phases

Figure 6: Torsional perturbation strain distribu-
tion for the AFC blade when 8 = 0.1 radians and

IBPC =0.

0.65
0.75

Start point
End point

Table 8: Start and end points of the actuated seg-
ment nondimensionalized with respect to blade
length for dynamic actuation.

A Linear Quadratic Regulator [11] was devel-
oped to control the 5* dynamic mode. This was
accomplished by setting the diagonal terms as-
sociated with the 5" dynamic mode in the state
weighting matrix to one, while all other terms are
zero. The resulting gain vector contains only two
entries, corresponding to the two eigenvalues of
the 5" mode, 0.3740 x 10~7 and 0.0216 x 10~ 7.
The six lowest frequency eigenvalues for the dy-
namically controlled case are given in Table 9.

AFC spar - dynamic
1%¢ - 0.156 + 0.868 1
gnd -0.108 + 0.894 ¢
3rd | -0.019 + 2.863 ¢
4th -0.303 + 3.030 ¢
5th - 0.003 £ 3.609 ¢
6th -0.235 £ 6.739 2

Table 9: Eigenvalues for dynamically controlled
rotor blade at a pitch angle of § = 0.1 radians
and no precone.

As the eigenvalues for the AFC blade without
any activation (Table 7) were not changed by the
addition of the control system, it is concluded



that the piezoelectric fibers do not have enough
actuation authority for vibration control.

5 Conclusions

The following conclusions can be drawn from this
analysis:

e The first-order nonlinear closed-form equa-
tions of motion for a hingeless helicopter rotor
blade were developed. As they are based on
the variational asymptotic method, they include
warping and coupling between the strains. This
method uses continuous functions, which repre-
sent torsional interactions better than lumped
parameter methods such as the finite element
method.

e The piezoelectric fibers do not have enough
actuation authority for pitch angle or vibration
control. When the piezoelectric fibers had a max-
imum steady-state voltage applied, the pitch an-
gle of the blade was not affected. An optimal con-
troller was designed to affect a vibration mode,
but the level of actuation proved to be much
lower than required. This is due to the fact that
the stiffness associated with a full-scale helicopter
blade is much larger than the level of actuation
provided by the active fibers. The greater den-
sity of the fibers increases the total weight of the
blade, which can lead to instability. Therefore,
the addition of piezoelectric fibers does not alle-
viate the problem but increases it.
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A Stiffness and actuation

The stiffness coefficients K;; in terms of cross-
sectional geometry and material properties are

as follows:
Ky, = /a” (A—%z) ds—4a37€gds
B
—4ay . 6d$
K, = —4a17€gd8 — 4as 7{1 gds
K3 = /all (A — %2> zds+4a7?€ gds
B
+4ag - 5d8
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and the corresponding contributions from the
piezoelectric fibers are given by:

Y
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where the geometric and material terms in these
equations can be found in [4].
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B Dimensionless terms

The stiffness terms Kj; can
dimensionalized as:
A ﬁ A1p
Az % A1y
Aso % As3
Aoy TS As3
Asgg = Bgig Ay =
Several

becoming new constants:

be

Ko
mQ2L3
Kia
mQ2L3
Kos
mQ2L%
K33
mQ2L%
Kya
mQ2L%

non-

stiffness terms are grouped together,

Fl = (A33 — —) sm 0+ (A 4— A1A3A14) sin 260
+ (A44 — ﬁ) cos? 6
Fg = A33 - i) (IOS2 0 + (A34 Az{;ﬁm) sin 26
- A44 - %) sin 0
rs = % (A33 - —) sin 20+ (A34 A13A14) cos 20
-5 (A44 — —) sin 260
Y, = (A23 — %) sin 0+ (A24 AIKA“) cosf
Y, = (A23 — AIKA”) cosf— (A24 - Alﬁ—f‘l“) sin @
I, = 2—13 sin 6 + A“ cos @
11, ﬁif cosf — A 4 gin 6
The radius of gyrations can be non-
dimensionalized as:
po= =
P = k}fl
py = m
2 L

The non-dimensional
are given as:

aerodynamic constants

L, = {{o* -3 -z5:(0+¢) - (222
+O0+@)v) v+ (20, — T (0 + @) w
L, = % {—;w, + 2? (0 +o+ Jo v'u?”dai‘)
20 (Bpe + ) + 5 (Bpe+0)
. + 220+ @) —0;) v —zw + 2exp — S}
M, = -3 (&z9)
where +y is the Lock number, given by:
_ 3pairaéL2
B m
the dimensionless chord length is:
_—
L

and the dimensionless inflow velocity is found to

be:

0; = sign[f+4 o (0.75L)] %7

(\/1 + 2216 4 06 (0.75L)| — 1)



C Galerkin variables
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Gz'jk = fol i‘q’iq’j@kd.’i‘ 7 _ fol .’f]‘Il;di’
Hije = Jo Vi¥;Oudz S = [ WUdz
Lj = [, #¥:0;dz = [l0;0;dz
Ty = [, 20;dz 0 i
Lij = [, 929, dz -1 i=j }
— Jo @iz [ U0l didz AW = [LurFYdz
M;; = fol 70;0;dz Bid-’) = fol lI!;’Mg‘;)d:E
Oy = J,2¥Vjdz Ci(;) = f, vMy)dz
Pj = [, 1:0,dz Df;’) = [loM¥dz
Qi; = [, z(¥;0;)dz B = @;Fg".gdz
Ry = [, ©/0;dz ’ !

D Steady-state equations

D.1 6V,; equation:

N
I'18}6:;Vo; +Ts Z (B{Hiji + Bi Hiji) Vojdor — T'sB; 6:;Wo,
k=1

>

Jj=0

—N—

+

M =

(FQﬂ;Hijk + T4 B Hiji,) Wojdor + (0ji + 045 — 6i) Vo

N
+%77ilz’j¢0j —T1R;ijdo; — T2 Z Sijrdojdor + 2Qs5d05

=
—

k=1
+T1 Eeo Afy) — cos0E.0 B — sin0F.Cj" }
=-I1Z; + % <'l_)l2Az - %Cz - 171031)

D.2 W, equation:

N N
Z {—F3,B;-1(5ij%j + Z (T1B8; Hiji + T2 Hiji) Vojdor — T2B;6i;Wo,

7=0 k=1
N _
v ¢
—I's ; (,B;Hz'jk + Bt Hiji) Wojdor + 5 (5chz'jV0j - EOijWOj
B N N
—Jijdo; + Z Lz’jkajWOk) + TR0 — 11 Z Sijk Poj Pok
k=1

k=1
+IL Qi + (Oi5 + Oji) Wo; — H2E60A§;) — sin HEeoB_,(;)
. _ T
— COS 0EeOCZ.(j )} = —LfpcBi +11,Z; + % {Ci0 - Bv; + iﬂpcBi}
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D.3 J¢p; equation:

N
A
Z {V (A22 - A_m) dijboj + ZﬁkF3Hk]zVo]V0k

7=0 k 1

+I'y Z BiHijiWo;Vor, — T's Z B HijiWo,; Wou
k=1 k=1
N

+Ts E BiHujiVo;jWor, + I2Q;i Vo, + 11 Q j;Wo,
k=1
N

—Ti1R;;Vo; — Yo z (Sjir + Sjri) Vojdor + YaRjiWo;

k=1
N

 §1 Z (Sjir + Sjks) Wojdor + (15 — 13) cos (20)6;;¢o;
k=1

o A . A 1 _
EWD® ¢ Mg, o )} - -220; - 5y (18 = ) sin 20

E Perturbation matrices

8ij 0 0
[M] = [0 S (1+E) 0 ]

0 0 I
[ =0, (T3 — Tjs) —Bpcdij + 2Ty —ﬁ—ﬁpz‘j 1
= (Yije — Yiie) Vor - — (Yije + Yirg) Wor
[Col= 2|  Buedij — ILTy; 0 0
+ (Yjir +szJ)W0k
A
Aup, 0 0o |
2%E16j + 01_)2'(5,'1' 21_},'1(3;'3' - eEij 0 |
+0i ) oy Hijebor  — 2 p—1 Gijk bok
[C.] = % 171'5@'5'\[— 20E;; By —% T
=23 1 Gijrdok
=2
i 0 0 T Mi; |
0 0 U315
K, = 2 E N LW 49) N LaiVor —J.
o = % BoeEij + 3 pe1 LijtWor =505 + 2y LiriVor  —Jij
0 0 0

HlAg;-l) — cos 035;1) —sin 605;)

) M, A@  6in8B@  cosgC @
{F} — Z 24345 ij ij
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A4 (PG + *HHg) Wzﬁw Iy —
104 (g + HYag) Hn>wmw ey —
f0(gg) soo (M — &) +

o (VY _ ze v.f
%ANM,\ V)z

10¢ (frrg + 11g) Hnmw -
BT+ Pyye+
Ao N A T Qm + WS _umnw £ ]—
H04 P2 gy Amhmm + ﬂwmv ﬁumnw

10¢ (frrg + 11g) HHMN -
beer+ Py —
qo4 g Thmn + thﬁv Fu\wmw +
oAty (i + 1) YK

10¢ (Hfg + B g) Hnmmw -
AT+ Hyge i+
1o (Mg bg + i ly) HHZ«N € 1—
104 Tﬁmmmmh + g ) Humﬁw

.&%mrfm%\ — .s.ﬁQ + .EQ.T
40¢ 4Ly QQ + WS ﬁummw € J—

.pmmhmml
10p1°y IR (2156 + 1179)

1yl 2l =4 &
10g (Mg + 1g) I
.KGNE._. .:mwﬁﬂl

1041 (Mg lge g+ g lgna) SR+

104 A.sﬁmmm\ + g lg) Humﬁw €]

,&mmumml
W0t TUR (J951+ 191)

toprigy I (19 + ff) o1+
.&% — .s.nQ + .EQ + .E%ﬁHWQ
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