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Abstract 

The aim of the paper is to present a novel multi­
variable control system design framework applied to 
helicopter flight control. This framework -rather than 
a method, is based on the definition and the study of 
the multivariable structure function (MSF). The main 
characteristic of the approach presented here, is that 
it is application orientated in the sense that it seeks 
to provide a framework that supports the control de­
sign process in the most transparent and direct manner 
possible, well-suited to the engineering context. 

Nomenclature 
A System matrix of the helicopter state space represen­

tation 
B Input matrix of the helicopter state space representa­

tion 
C Output matrix of the helicopter state space represen­

tation 
Ci Input-output channel-i 

D(s) Characteristic polynomial 
ei Feedback error of channel-i 

F,; (i- th,jth) outloop filter element 
F Outloop filter 

9ii The ( i- th, j- th) element or individual transfer func­
tion of a transfer matrix 

G Transfer matrix 
ki Controller associated to channel-i 

ffiiJ (i- th,jth) pre-compensator element 
M Pre-compensator 
n Reference signal of channel-i 

Pii (i- th,jth) post-compensator element 
P Post-compensator 
s Laplace operator 

Tz Set of finite transmission zeros 

Ui i-th control input of a system 
X Helicopter state vector 
Yi Output variable associated to channel-i 
Y Output vector 
7 Multivariable structure function of two-input two­

output system 
ri Multivariable structure function of channel-i of an m­

input m-output system 

1 Introduction 

Given a multivariable dynamical system, it is possible 
to define a set of single input-single output transmit­
tances, known as individual channels. In the case of 
a helicopter these are commonly defined by the pair­
ing of collective-normal velocity, longitudinal cyclic­
longitudinal velocity, lateral cyclic- lateral velocity and 
collective of tail rotor-heading angle or collective of 
tail rotor-sideslip. Clearly these pairings arise natu­
rally from the operation of the helicopter. It is shown 
that using the multivariable structure function (!v!FS) 
the potential capabilities of every channel in terms of 
performance, robustness and the degree of interaction 
with other channels can be evaluated. 

From the engineering point of view a set of perfor­
mance specifications are associated with the definition 
of the system individual transmittances. For instance, 
in the case of the helicopter Tischler in Ref. [8] has 
proposed the following conditions for Levell Handling 
Qualities: 

1. Every channel should have a bandwidth between 
2radj sec and 4radj sec, 

2. The time response of the channels should be as 
close as possible to those of typical first order sys-
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terns. That is, a phase margin of 90 degrees is 
requested. 

An important feature of the framework proposed is 
that the use of classical design tools, such as the 
Bode and Nyquist plots, can be fully exploited in the 
multi variable context. Moreover, the conditions to 
which concepts such as gain margins, phase margin 
and bandwidth can be applied, in the multivariable 
case, are also elucidated. These facilities permit the 
helicopter flight control system design to be addressed 
in terms of customer specifications in a clear, direct 
and transparent manner. 

As the MSF approach is based on the exhaustive 
analysis of the dynamical structure, it is possible to 
obtain very simple controllers without sacrificing de­
sign specifications. It should be remarked that al­
though the control design is based on individual chan­
nels, these are structurally equivalent to the original 
multivariable system. That is, there is no loss of in­
formation. 

The paper is composed of the following sections. In 
Section 1 the control problem of the Lynx at hover is 
defined. 

The definition of the MSF for 2 input-2 output sys­
tems and the basic design procedure is included in Sec­
tion 2. The objective of this section is to review the 
definition of the MSF which can be represented as a 
transfer function. It is also shown that the perfor­
mance capabilities of each individual channel can be 
determined from the MFS using well known engineer­
ing tools (Bode and Nyquist plots). This is followed by 
a brief account of the generalisation to the m input-m 
output case. 

The dynamic characteristics of the helicopter Lynx 
at hover in the form of its MSF are introduced in Sec­
tion 3. A solution to the poor properties of the Lynx 
model at hover, due to the highly structured form of 
the state space representation, is addressed in Section 
4. A set of controllers, designed considering the speci­
fications of Level 1 Handling Qualities defined in Ref. 
[8], is presented in Section 5. Decoupling of the chan­
nels is achieved by introducing a pre-filter, its design 
is included in Section 6. 

Finally, the conclusions end the paper. 

2 Individual channel design: A 
summary 

Individual Channel design (ICD) is an analytical 
framework in which it is possible to investigate the 
potential and limitations for feedback design of any 
multivariable linear time invariant control system. 

Although ICD is in principle a feedback structure 
based on diagonal controllers, it can be applied to any 
cross coupled multivariable system, irrespective of the 
degree of coupling. Another important aspect of ICD 

is that the influence of transmission zeros on the con­
trol design and closed loop performance is clearly re­
vealed. 

ICD is based on the definition of individual trans­
mision channels. In general the input-output channels 
arise from design specifications. In this context the 
control design is an interactive process involving the 
required specifications, plant characteristics and the 
multivariable feedback design process itself. Once the 
channels are defined, that is, the pairing of every out­
put signal to a reference input is established, it is pos­
sibie to form, with each channel, a feedback loop with 
a compensator which must be designed to meet cus­
tomer specifications. In this manner the multi variable 
control design problem is reduced to the design of a 
single-input single-output control for every channeL 

Let for instance a two-input two output plant be 
represented by 

[ 
y,(s) ]- [ gu(s) gl2(s)] [ u,(s) l (1) 
Yz(s) - gz,(s) g22(s) uz(s) 

where g;; ( s) represent scalar transfer functions, y; ( s) 
represent the outputs and u;(s) the inputs of the sys­
tem. With i = 1,2 and j = 1,2. 

If a diagonal compensator is considered, that is: 

[ 
u1(s) l = [ k1 (s) 
uz(s) 0 (2) 

with e;(s) = r;(s)- y;(s), where r;(s) represents the 
plant references, then the input-output channels are 
defined as: 

C;(s) = k;(s)g;;(s)(1-1'(s)h;(s)) (3) 

where i = 1, 2 with i of j, the complex valued function 

(4) 

is referred to as the muitivariable structure func­
tion. The functions h1 ( s) and h2 ( s) are: 

h;(s) = k;(s)g;;(s) where i = 1, 2 (5) 
1 + k;(s)g;;(s) 

The interaction or cross coupling between the chan­
nels can also be evaluated through a transfer function. 
For instance, the influence of channel-2 on channel-1 
is: 

912 ( s) ( ) ( ) d,(s) = -(-)h2 s rz s 
922 s 

(6) 

Similarly, the influence of channel-1 on channel-2 is: 

gz,(s) () () dz(s) = --(-)h1 s r 1 s 
9ll s 

(7) 

Where r;(s) represents the reference of channel-i (i = 
1, 2). A block diagram of the feedback system with 
the diagonal compensator is shown in figures 1 and 2. 
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It should be emphasised that in the individual chan­
nel representation of the multivariable system there 
is no loss of information. The multivariable charac­
ter and cross coupling of the plant is contained in the 
multivariable structure function and the cross coupling 
terms. 

From (3) the magnitude of /(s) may be interpreted 
as measurement of coupling between the channels. 
A system whose multivariable structure function has 
magnitude much smaller than one for all frequencies 
has a low degree of cross coupling. That is, the chan­
nels may be represented by C1 (s) = k1 (s)g11 (s) and 
C2 (s) = k2 (s)g22(s). 

The justification for calling 1( s) the multi variable 
structure function arises from the fact that from this 
function the dynamical structure of the system can 
be determined. Indeed, the transmission zeros of the 
system are the zeros of (1 - /( s)) and the pole-zero 
structure of the channels is described in terms of/( s) 
as indicated in Table 1, provided that no pole-zero 
cancellation occurs in 1(s). 

In general the poles of 9ij ( s) are known and the 
poles of h, ( s) are determined as a part of the control 
design. On the other hand, the zeros of the chan­
nels must be checked in order to find out if any of 
the channels are nonminimum phase. The control de­
sign and channel performance capabilities are deter­
mined by the right hand plane zeros (RHPZ's) of the 
channels, which according to Table 1 are the zeros of 
(1 -,h,(s)) (i = 1, 2). It is well known that the pres­
ence of RHPZ's has adverse effects on the control sys­
tem performance and sensitivity as indicated in Ref. 
[1, 2]. 

Transmittance Zeros Poles 
Channel-C1 zeros of poles of 

(1- -y(s)h,(s)) gu, 912, 921, hz 
Channel-Cz zeros of poles of 

(1- -y(s)h,(s)) 922, 912. 921, hl 

Table 1. Open loop channels poles and zeros. 

The potential restrictions on the performance due 
to non-minimum phase behaviour can be established 
from the RHPZ's or purely imaginary zeros of (1 -
1(s)). Note that the RHPZ's of (1- 1(s)) are the 
RHP transmission zeros of the multivariable system. 
Moreover, the system has purely imaginary transmis­
sion zeros at frequency s = so if /(so) = 1. Clearly 
the complex valued function 1'( s) determines the nec­
essary restrictions on C1 ( s) and hence of the controller 
k 1 (s). 

However, in a more general case it is (1-l(s)h,(s)) 
which is required to have no RHPZ's and not (1-1(s)). 

M-input m-output case. 
As in the two-input two-output case an m-input m­

output system can be decomposed in two subsystems 
with multiple channels. That is, the original system 
can be considered to be composed by an m1-input m1-

output subsystem M 1 ( s) and an m 2-input m,-output 

subsystem M 2 (s), with m 1 + m 2 = m. Under this 
partition an m-input m-output system can be written 
as: 

G(s) = [ Gu(s) G,(s) l 
G21(s) G 22 (s) 

(8) 

with output Y(s) = col[Y1 (s), Y,(s)] where Y 1 (s) = 
col[y,(s), ... Ym,(s)] and Y,(s) = col[ym,+l(s), ... 
Ym2 (s)] The input is U(s) = col[u1 (s), u,(s)] 
where u 1(s) = col[u1 (s), ... um, (s)] and u,(s) = 
col[um,+l (s), ... Um2 (s)]. Similarly the controller can 
be partitioned as: 

K(s) = [ K,O(s) 0 ] 
K 2 (s) (9) 

where K 1 ( s) and K 2 ( s) are diagonal matrices of order 
mr x m1 and m2 x m2 respectively. 

Under the partition proposed the equivalent direct 
transmittance of subsystem M 1 ( s) is: 

M 1 (s) =[I- G 12 (s)G22
1 (s)H,(s)G,1 (s)G!,'(s)] 

G 11 (s)K,(s) (10) 

whith the multiple subsystem transfer function 

and is subject to the cross coupling 

The direct transmittance of subsystem M, ( s) is rep­
resented in a similar manner: 

M,(s) =[I- G21(s)G!,'(s)H,(s)G,(s)G22
1 (s)] 

G,(s)K2 (s) (13) 

where 

H,(s) = Gu(s)K,(s)[I + G 11 K 1 (s)]-1 (14) 

and with cross coupling 

D,(s) = G21(s)G11 (s)-1 H,(s) (15) 

The pole-zero structure of the open loop multiple 
channels is described in Table 2. 

Transmittance Zeros Poles 
Subsystem-M1 zeros of poles of 

[I- G,,G;;z'H, Gu, G12, Gz1, H2 
G,G;;·] 

Subsystem-M2 zeros of poles of 
[I- G, G;;,'H, G22, G12, Gz1, H1 

G,,G-] 

Table 2. Open loop channels poles and zeros. 

Provided no pole zero cancellation occurs, the trans­
mission zeros, defined by the zeros of det(G(s)) are the 
same as the zeros of 

[I- G,(s)G22
1 (s)H,(s)G21 (s)Gj1

1 (s)] 

[I- G 21 (s)Gj1
1 (s)H1 (s)G,(s)G22

1 (s)] 

or (16) 

(17) 
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The transmittances of the multiple-channels M 1 ( s) 
and M 2 ( s) are together equivalent to the original 
transfer function matrix G(s)K(s), as it has been 
proven in Ref. [3]. In this case the fundamental indi­
cators of the potential performance (coupling, robust­
ness, and RHP zeros) are indicated by the MSF's as­
sociated to the channels M 1 (s) and M 2 (s). The MSF 
are defined as in Ref. [3]: 

d t(G!,2, ... ,(i-!)) 
e i det(G!z ... (i-!)i) 

g;;(s) 
r,(s) = (18) 

where G 12···<i-!)i is the transfer matrix obtained by 
eliminating k-th rows and columns from G( s), with 
k 1 2 ( . 1) . Gl,z, ... ,(i-1). th t , t . = , , ... t- ,1... i 15 e ransJ.erma nx 
obtained from G( s) by setting the diagonal element 
g;;(s) = 0 and eliminating the j-th row and column, 
with j = 1, 2, ... (i -1). By definition r m(s) = 0. The 
argument s has been eliminated from (18) for simplic­
ity. 

The above definitions can be used to state the fol­
lowing result, which was originally presented in Ref. 
[3]. 

Result 3.1 Consider an m-input m-output system 
partitioned into two multivariable channels M1 ( s) and 
M 2 (s) with m 1 -input m,-output and mz-input mz­
output respectively. Define 

G*(s) =[I- G!2(s)G2z'(s)Gz1 (s)G!/(s)]Gn(s) 
(19) 

The two multivariable channels are weakly coupled and 
thus the multivariable channel M 1 ( s) can be designed 
on the basis of Gu ( s) alone provided that: 

(i} the diagonal elements of G*(s) do not differ sig­
nificantly from those of Gu ( s) 

(ii} the multivariable structure functions r,(s) of the 
m 1 -input m 1 -output subsystem G*(s) do not dif­
fer significantly from those of Gu ( s) 

(iii} the structure (that is the RHPP's and RHPZ's) 
of G*(s) does not differ significantly from that of 
Gu(s) 

It should be noted that if the system is decoupled, so 
that the multivariable channel M 1 ( s) can be designed 
on the basis of the subsystem Gu ( s) alone, does not 
inply that the multivariable channel Mz(s) can be de­
signed on the basis of G22 ( s) alone. As follows it is 
shown that a hover flight control system can be de­
signed according to this result. 

The following analysis relies on investigating the dy­
namical structure of the input-output channels, that 
is, the number of RHPP's and RHPZ's of each channel. 
It is clear from Table 1 that the channels RHPP's are 
the RHPP's of individual transfer functions. On the 
other hand, the channels RHPZ's are the RHPZ's of 
(1- /(s)h;(s)). Furthermore, the number of RHPZ's 
of this function can be determined by applying the . 

Nyquist stability criterion. For instance, the number 
of RHPZ's of (1- J'(s)h;(s)) is given by: Z = N + P. 
Where P is the number of right hand plane poles of 
'Y(s)h;(s) and N is the number of clockwise encir­
clements of the Nyquist plot of J'(s)h;(s) to the point 
(1, 0) of the complex plane. In the following subsec­
tions the stability criterion of Nyquist, expressed in 
this context, is extensively used. 

3 A helicopter model at hover 

The model of the aircraft considered corresponds to 
the helicopter Lynx. Its linearised dynamics at hover 
were obtained using the simulation software Helistab. 
The linearised rigid body dynamics, assuming quasi­
static rotor flapping, are represented by: 

X=AX+Bu (20) 

with X= col[u, w, q, 8, v, p, </>, r]. Wbere u, v and 
w represent the longitudinal, lateral and vertical linear 
velocities in body axis respectively; p, q and r repre­
sent the rates of change of the roll, pitch and heading 
angles respectively and e and </> represent the pitch 
and roll (Eul~r) angles respectively. The control in­
put u = i:o/[u,, uz, u3, u4] are the commands related 
to the collective, longitudinal cyclic, lateral cyclic and 
the tail rotor collective respectively. 

The outputs considered are defined as: 

Y=CX (21) 

where Y = col[Cn u + C,zw + C15v, 8, v, r]. The 
constants C11 , C12 and C15 are the elements (1, 1), 
(1, 2) and (1, 5) of the output matrix (21). That is, 
the first element of Y is the height rate. 

The control problem defined by the output function 
(21) was originally proposed in Ref. [5]. 

The transfer matrix function associated to (20) and 
(21) is: 

G(s) = C(si- A)-1B (22) 

In order to simplify the notation of polynomials of 
n-th order the following convention is introduced: let 
p(s) = k (s +a,) (s + a2) ... (s +an) then p(s) will 
also be written as 

(s + a,)(s + az) ... (s +an) = [k, -a~, -az ... , -an] 
(23) 

Using this notation the characteristic polynomial of 
the transfer matrix G(s) is: 

D(s) = [1, -10.8743, -2.2226, 0.2395 ± 0.5322i, 

-0.1811 ± 0.6026i, -0.3224 ± 0.0066i] (24) 

The set of finite transmission zeros is: 

Tz = { -0.0094, -0.0063} (25) 

The MSF's r,(s) with i = 1, 2, 3 (r4 = 0) as­
sociated to G(s) generate the Nyquist plots in figure 
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3.1. These Nyquist plots lie mainly on the left hand 
plane for all frequencies, far away from the point (1, 0). 
Therefore, according to the results presented in Ref. 
[3] and Ref. [6], the representation G(s) ha.s a dy­
namic robust structure. The low gain of f 1 ( s) and 
r 3 ( s) at all frequencies indicates that some channels 
may be un-coupled. This a.spect can be further inves­
tigated by re-arranging G( s) in the following form: 

[ 

933(s) 932(s) 931(s) 934(s) l 
9z3(s) g,,(s) 9z1(s) 924(s) 
913(s) 91z(s) 9n(s) 914(s) 
943(s) 942(s) 941(s) 944(s) 

Ga(s) = D(s) (26) 

The Nyquist plot of f 1(s), r,(s) and f3(s) of there­
arranged system (26) are exactly the same a.s those of 
figure 3.1, but with T2 (s) and f3(s) swapped. From 
these plots some characteristics of the system can be 
established. For instance: 

• due to the large gain of r 3 ( s) channels 2 and 3 
are coupled and 

• r 1 ( s) ha.s low gain, thus channel 1 may be decou-
pled from all the other channels. 

These features can be verified by applying the Re­
sult 3.1. Using this result it can be verified that 
there is a near right hand plane (RHP) Pole-Zero 
cancellation in channels 1 and 4 and that there is 
an exact right hand plane Pole-Zero cancellation in 
channels 3 and 4. It must be noted that the RHP 
Pole-Zero near-cancellation and cancellations are a.s­
sociated to the RHP poles of the system, that is 
0.2395 ± 0.5322i. This characteristic may be a conse­
quence of the highly structured form of the state-space 
representation. However, it would not be advisable 
to ignore it or simply eliminate it due to its unstable 
characteristic. A solution to this structure problem is 
addressed next. 

4 Structure improvement 

A solution to the structure problem addressed above 
can be obtained by introducing a pre-compensator. 
This compenstor is added in order to modify the can­
cellation or near cancellation on the RHP of poles­
zeros of individual transfer functions into cancellation 
or near cancellation on the LHP. The effectiveness of 
such a compensator relies on the fact that if an individ­
ual transfer function of G(s) is stabilised by an scalar 
feedback m(s), all the other elements will be likewise 
stabilised Ref. [4]. 

If the pre-compensator only modifies the system 
around the frequencies of the RHP poles the result­
ing closed loop system is referred to a.s weak feedback. 

As the only minimum-pha.se individual transfer 
function of G(s) (22) is g2z(s) the design of the weak 

feedback pre-compensator is constructed around this 
element, that is: 

[

0 0 0 0] M( ) _ 0 922(s) 0 0 
s - 0 0 0 0 

0 0 0 0 

(27) 

A candidate feedback function m( s) is: 
s(s + 0.05)(s + 2.2)(s2 + 0.365s + 0.3924) 

m(s) = 0"
7125 

(s + 0.3l)(s + 0.5)(s + 0.1)(s + 0.14) 

(s 2 + 0.6455s + 0.1024) 
(28) 

(s + 1)(s + 2.5)(s + 8)(s' + 0.24s + 0.144) 

The resulting closed loop system under weak feed­
back is: 

G'(s) =(I+ GM)-1G (29) 
Where the individual transfer functions are: 

, 922(s) 
g,(s) = (1 +m(s)g,(s)) (30) 

, 9k2(s) 
gk (s)== wherek=l,3,4 

2 (1 +m(s)g22 (s)) 
(31) 

9; (s) = 92r(s) where r = 1,3,4 
r (1 +m(s)g,(s)) 

(32) 

g' (s)- 9ij(s) wherei,j=l,3,4 
ii - (1 +-r;;(s)h,(s)) 

(33) 

The uncertainty of the individual transfer functions 
(33) of G'(s) is not increa.sed if the the Nyquist plots 
of /i;(s)h22 (s)) (with i,j = 1,3,4) do not pass close 
to the point (1, 0). Otherwise, the uncertainty of the 
individual transfer functions (33) will have been sig­
nificantly increa.sed. The plots of figures 4.1 show that 
the Nyquist plots of Iii ( s) h 22 ( s)) do not pa.ss near the 
point (1, 0). 

Result 3.1 can be applied in order to prove that 
channel-1 of G'(s) is decoupled from the other chan­
nels. Thus, its controller k1 ( s) can be designed on the 
ba.sis of 9j1 ( s) alone. 

On the other hand, channel-4 and the multivariable 
channel a.ssociated to channels 2 and 3 remain coupled. 
In this ca.se, the coupling is the result of a nonmini­
mum pha.se zero in the fourth row of G' ( s). This fact 
is illustrated by the Nyquist plots of 144 (s)h22 (s) and 
141 ( s) h22 ( s). These functions encircled twice the point 
(1, O) clockwise. Therefore, the amended individual 
transfer functions g~1 ( s) and 9~4 ( s) remain nonrnin­
imum pha.se with RHP zeros similar to those of the 
original transfer function 941 ( s) and 944 ( s). Such a 
problem can be solved by stabilising the RHP zeros 
via a post-compensator. This solution does not im­
pose robustness problems a.s the multivariable struc­
ture functions fi(s), f~(s) and f$(s) (f~(s) = O) are 
far from the point (1, 0), a.s shown in Ref. [7]. 

An example of a post-compensator is: 

P(s) = 
[ 

1 0 
0 1 
0 0 
0 0 

0 
0 
1 

P43(s) 

(34) 
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where 
1.4s 

P<,(s) = s2 + 1.65s + 0.64 (35) 

The modified system resulted by including the post­
compensator is: 

G"(s) = P(s)G'(s) = P(s)(I + GM)- 1 G (36) 

In the pole-zero structure of the modified system (36) 
only the individual transfer function 9Z2 ( s) contains 
nonminimum phase zeros, which are 0.0828 ± 0.8468i. 

The dynamic structure of the modified system (36) 
satisfies the conditions of Result 3.1. That is, 
channel-4 of (36) is decoupled from the other channels, 
thus its controller k4 ( s) can be designed on the basis 
of gz ( s). Moreover, channels 2 and 3 of the modified 
system (36) do not contain pole-zero cancellations on 
the RHP. The design of the controllers k2(s) and k3 (s) 
can be based on the subsystem G~3 ( s) alone: 

G" (s)- [ 9~2(s) 9~3(s) l (37) 
23 - 9~2(s) 9~3(s) 

5 Feedback control design 

Level 1 handling qualities specifications at hover are 
defined by having the bandwidth of each channel in 
the range of 2- 4 radj sec, Ref. ([8]). 

The design of the controllers can be guided by the 
nature of the multivariable structure functions. For 
instance, all the Nyquist plots of the original system 
G( s) have very low gain from 0.8 radj sec to infinity, 
thus controllers k2 ( s) and k3 ( s) can be designed on 
the basis of 9~2 ( s) and 9~3 ( s) respectively. That is, for 
design purposes, subsystem G~3 (s) of equation (37) 
can be considered decoupled. 

Controllers k1(s) and k4(s), as indicated above, can 
be designed by considering only the elements 91'1 ( s) 
and 9Z4 (s) of th~ subsystem (37) respectively. 

It must be stressed that the changes induced by the 
weak feedback pre-compensator and the post-compen­
sator occur at frequencies far from the range of the de­
sign specifications (2- 4 radj sec). Namely, these alte­
rations were introduced in order to improve the struc­
ture of the system and to avoid robustness problems 
whilst introducing the minimum possible changes in 
the original system. 

The system matrix functions of system G" ( s) of 
equation (36) are equivalent to the four individual 
channels: 

c,(s) = k1 (s)911 (s)(1- "YI(s)) (38) 

c2(s) = k2(s)922(s)(1- 12(s)) (39) 

c3 (s) = k3 (s)933 (s)(1- 13 (s)) (40) 

c4(s) = k4(s)944(s)(1- "Y<(s)) (41) 

Robustness properties are satisfied if the following 
points are satisfied: 

a. k;(s)g;;(s), with i = 1, 2, 3,4 have satisfactory 
positive gain and phase margins, 

b. The resulting Nyquist plots of 11(s), 12 (s), "Ys(s) 
and "Y4(s) do not pass near the point (1, 0) for all 
frequencies and 

c. The individual open-loop channels must have ad­
equate gain and phase stability margins 'Within 
the required channels crossover specifications (2-
4 radjsec) 

An appropriate set of controllers are: 

k,(s) = 1.62 (s2 + 0.6441s + 0.1040) 
s(s + 0.3362}(s +50} 

kz(s} = 0_
52 

(s2 + 0.6s + 0.39)(s2 + 0.2972s + 0.54} 
s(s + 3)(s + 1}(s + 0.2}(s + 0.0067} 

(s + 0.7)(s + 0.5} 

(s2 + 0.4s + 0.1696) 

k,(s) = _
0

_
2 

(s + ll}(s + 2.2)(s 2 + 0.48s + 0.34} 
s(s + 0.12}(s + 0.3}(s + 0.4}(s + 0.2) 

(s2 + 0.4s + 0.4}(s2 + 0.64s + 0.102} 

(s + 10}(s2 + 0.4s + 0.225} 

k
4

(s) = _8_06 !:(s:...'...:+c_O::c.6.:.,4::5.:.,s -'.+_:0..:.:.1::0~4} 
s(s + 0.3139)(s +50} 

(42} 

(43} 

(44) 

(45) 

The resulting bandwidths for the channels Cj, C2, c, 
and C4 are 3.0 radj sec, 2.6 radj se, 2.1 radj sec and 
2.3 radj sec respectively. 

6 Cross-coupling reduction 

The cross-coupling among the channels caused by the 
off diagonal elements of the the closed loop system can 
be reduced by introducing an input pre-filter. 

A design example of a pre-filter which reduces the 
effects of the off diagonal terms is presented ne:-.1:: 

[ 

1 F12(s) 
0 1 

F(s) = 0 F
32

(s) 

0 F42(s) 

where 

F13 (s) 0 l F23(s) 0 
1 0 

F.,(s) 1 

F (s) _ -s(1000s + 1) 
12 

- (68000s2 + 40680s + 402s + 1} 
-19s 

F,,(s) = (lOOs + 1}(3.33s + 1) 

-0.4s(s2 + 0.2s + 0.19) 
F,(s) = (s + 0.08)(s2 + l.6s + 1.2)(s + 1) 

1 

(s2 + 0.6s + 0.6) 

F32 (s) = (0.33s + 1)(0.33s + 1) 

O.Ols(s + 0.05) 
F, 2 ( s l = .,.( ,-+-0::-."'oo:-:7"') (~s::.:+:::0::!.0;,0~7)~(:::s :::+L_o-=.1"") ('"""s -+""'0,-.2~) 

(s + 0.06) 

(s + 0.8)(s + 1) 

(46) 

(47) 

(48} 

(49) 

(50} 

(51) 

-50s(s + 0.7802s + 7.4524) 
F.,(s) = (s + O.Ol)(s + 0.2)(s + l)(s + 1}(s + 2)(s + 2) (S

2
) 
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The step response shown in figures 6.1 to 6.4 shows 
that the system has almost been decoupled. 

7 Conclusions 

The results of the analysis presented show that from 
the multivariable structure functions it is possible to 
determine the characteristics of the coupling among 
the different individual channels, and the number of 
right hand poles and zeros of every channel. 

Further analysis shows that the dynamical struc­
ture of the helicopter representation at hover can be 
improved by eliminating two fictitious non-minimum 
phase transmssion zeros via weak feedback. Further im­
provements was achieved by including a post-compen­
sator. As a consequence, the helicopter dynamics were 
reduced - without loss of information- to a two single 
input-single output systems and a two input-two out­
put system. 

Based on the results of the analysis a hover flight 
control system satisfying Level 1 Handling Qualities 
is presented. The design of the two single input sin­
gle output control subsystems are obtained according 
to conventional control methods. While the analysis 
and design of the multivariable (2 x 2) subsystem is 
obtained using the multivariable transfer function ap­
proach. 

Finally, it is shown that by incorporating a reference 
filter the system (channels) can be decoupled. 

A simulation result shows the performance of the 
design. 

References 

[1] Freudenberg J. S. and Loose D.P. Right half plane 
poles and zeros and design tradeoffs in feedback 
systems. IEEE Transactions in Automatic Con­
trol, vol. 30, pp 555-565, 1988. 

[2] W. E. Leithead and J. O'Reilly Uncertain SISO 
systems with fixed stable minimum-phase con­
trollers: relationship of closed-loop systems to 
plan RHP poles and zeros. Int. Journal of Con­
trol, 53, pp 771-798, 1991. 

[3] W. E. Leithead and J. O'Reilly m-Input m­
output feedback control by individual channel de­
sign. Part 1. Struture issues. Int. J. Control, 1992, 
vol. 56, No 6, pp 1347-1397. 

[4] J. Liceaga-C Helicopter flight control by individ­
ual channel design. Ph. D. Thesis, Glasgow Uni­
versity, 1994. 

[5] M.A. Manness, J.Gribble and D.Murray-Smith. 
Multivariable methods for helicopters flight con­
trol law design. Proceedings of the 16th European 
Rotorcraft Forum, Glasgow. U.K. 1990. 

88.7 

[6] J. O'Reilly and W. E. Leithead, Multivariable 
control by individual channel design. Int. J. Con­
trol, 1991, vol. 54, pp 1-46. 

[7] E. Leithead and J. O'Reilly. Performance issues 
in the individual channel design of 2-input 2-
output systems: Part 3. Nondiagonal control and 
related issues. Int. J. of Control, N. 55, pp 265-
312, 1992. 

[8] M. B. Tischler. Assessment of digital flight control 
for advanced combat rotorcrajt. J. of the American 
Helicopter Society, Vol. 34, pp 66-76, 1989. 

Conrroller Plant 
Reference 

'• -o---H 
Omput 

y, 

Output 
f--.-=-'C"H-.,-- y 2 

Fig. 2.1 A 2-input 2-output multivariable control with 
a diagonal controller 
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Fig. 2.2 Equivalent input-output channels of a 2-input 
2-output multivariable control with a diagonal con­
troller 
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Fig. 6.2 Time response of roll attitude and yaw rate 
to a unity step change of input 1. 
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Fig. 6.3 Time response of height rate and pitch atti­
tude to a unity step change of input 2. 
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