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Abstract 
 

Accurate monitoring of helicopter flight-loads can lead to reductions in maintenance costs and improvements 
in safety; however, directly monitoring these loads using existing approaches can be both complex and 
costly. Increased efforts are being devoted to investigating alternative approaches, such as load synthesis, 
which can be used to indirectly monitor loads on helicopter rotating components. This paper details 
preliminary investigations of a novel load synthesis approach which exploits the periodic nature of helicopter 
loading by using synthesized harmonic features of a target load signal to reconstruct the entire signal. A 
case study demonstrates the potential of this technique by using a single predictive model to accurately 
synthesize Black Hawk pitch-link load magnitudes at key harmonic frequencies for 160 independent level 
flight tests at various speeds. These synthesized load magnitudes are synthesized using a combination of 
airframe strain gauges, and flight state and control parameters, and later combined with known phase 
information to reconstruct the target signal. Preliminary results show high predictive accuracy of the main-
rotor pitch link load magnitudes. 
  

NOMENCLATURE 

  individual regression coefficient  

β̂  vector containing regression coefficients for all 

predictors within a model 

  individual residual error of prediction  

ε  vector of residual errors 

  phase of either an extracted or predicted 

sinusoid, in radian  

DC  the mean (0 Hz) component of a signal 

N  number of events or measurements within a 
sequence to be transformed 

NR  ratio between measured and nominal main rotor 
frequency, in percentage 

RSS  residual sum of squares 

t  elapsed time at measurement recording, in 
seconds 

t̂  modified elapsed time simulating 100% NR, in 
seconds  

MRf  nominal main rotor frequency 

j  index of events or measurements 

k  index of harmonic frequencies 

n  number of events or measurements 

p  number of predictors  

x  predictor variable used within regression models 

y  individual observation of target variable 

z  complex number containing sinusoidal amplitude 
and phase representing harmonic content of a 
signal at a specific frequency and time 

y  vector of target terms used within regression 

models 

X  matrix of predictor variable terms used within 
regression models 

TR  subscript denoting training data 

1. INTRODUCTION  

Shifting operational requirements are continually 
altering how military helicopters are used [1]. Some 
of these changes are slight, such as small increases 
in the frequency of specific missions. Other changes 
are more significant, such as deployment of 
platforms to exotic operational environments. These 
changes in usage alter the loading experienced by 
the helicopter, resulting in the actual component 
loading differing from the design loading used to 
derive component safe-lives [2]. The goal of this 
study is to investigate and develop techniques which 
can be used to monitor the actual loading 
components experience, in order to better 
understand and manage any resultant changes in 
component fatigue lives. 

A thorough understanding of helicopter component 
loading is vital to proper management of helicopter 
structural integrity. Helicopter components 
experience high frequency loading that is both 
dynamic and highly vibratory, caused by forces 



 

generated within their rotor systems [2]. This type of 
low-amplitude, high-cycle loading means even small 
changes in flight load values can significantly affect 
component fatigue lives. A study conducted on the 
sensitivity of fatigue lives to changes in usage found 
that a 10% change in helicopter flight load values 
could result in fatigue life changing by a factor of two 
or more [1]. By monitoring component loading, 
operational loads can be assessed to ensure they 
are less severe than load spectrums used to life 
components. If the loading is significantly less 
severe, its accurate monitoring can help justify the 
removal of conservatism within the component lifing, 
leading to potential extensions of component lives, 
and reductions in maintenance costs. 

Monitoring helicopter component loads, especially 
rotating component loads, is not an easy task. Major 
difficulties arise from the need to maintain physical 
connections with rotating sensors for data and 
power transfer. While slip-rings and other 
mechanical assemblies are often used in flight tests, 
these methods are ill-suited for fleet-wide 
implementation due to their complexity, cost, and 
lack of reliability. In an effort to avoid the problems 
associated with traditional systems, increased 
efforts have been made to investigate and develop 
indirect monitoring techniques which are able to 
model loading remotely.  

Load synthesis, or load prediction, is the name given 
to indirect monitoring approaches which aim to 
model loads in one location using measurements 
made in another. These approaches are well suited 
for application on helicopters as they allow 
monitoring of traditionally hard-to-measure locations, 
such as rotating components, without requiring 
physical connections to the locations. These 
approaches to-date are generally based on machine 
learning methods [3-6], or regression techniques [7-10] 
and although they have not yet reached a level of 
accuracy and input parsimony acceptable for 
implementation; many have shown considerable 
promise. An investigation into a number of these 
previous load synthesis attempts [11] identified a 
promising technique [7] which used linear models 
within the frequency domain to predict rotating 
component loads from fixed component loads. It is 
hoped that by incorporating key aspects of this and 
other techniques within a new harmonic regression 
based approach, advancements in the field of load 
synthesis will be made. 

The harmonic regression approach detailed within 
this paper exploits the periodic nature of helicopter 
loading to improve the accuracy and robustness of 
prediction models. It achieves this by using a 
modified Discrete-Time Short Time Fourier 
Transform (STFT) to decompose the target 
component load time-history into a sequence of 

time-varying sinusoids at key frequencies. By using 
these sinusoids as targets for the prediction model 
rather than the original time-history, the problem can 
be broken up, simplified, and an improved solution 
found. In this study, the amplitudes of these 
sinusoids are modelled using multiple linear 
regression based models, and the phases of the 
sinusoids are taken from measurements. Once 
modelled, the amplitude and phase information for 
each sinusoid is combined, and used to construct 
the target time-history. The predictive capability of 
this technique is demonstrated by synthesizing 
main-rotor pitch-link loads for 160 runs of Black 
Hawk level flight at various speeds, and comparing 
these to measured loads.  

2. EXPERIMENTAL DATA 

2.1. Characteristics of Helicopter Flight Data  

During operation, helicopter components experience 
high frequency cyclic loading dominated by the main 
and tail rotor frequencies, and harmonics thereof. 
This loading is predominantly low-amplitude high-
cycle loading, for which as previously stated, even 
small changes in loading have a significant impact 
on fatigue life. An example load time-history of a 
main-rotor pitch-link, highlighting its cyclic nature, is 
shown in Figure 1a. As previously stated, this load 
time-history is driven by a few key frequencies which 
are identified within Figure 1b as harmonics of the 

main-rotor frequency, . MRf

2.2. Flight Strain Survey and Selected Data  

The flight data used in this present study was 
selected from a Black Hawk Flight Strain Survey 
(FSS) conducted in 2000 by the United States Air 
Force (USAF) and Australian Defence Force (ADF). 
During the survey, an instrumented Australian Black 
Hawk performed 3759 runs of 98 unique 
manoeuvres to produce 65 hours of useful flight test 
data. The manoeuvres were performed for varying 
aircraft configurations, gross-weights, altitudes, and 
centre of gravity locations.  

The recorded data included; 217 channels of 
airframe strain data; 20 channels of dynamic 
component data; 18 channels of airframe 
accelerations; and, the 28 standard flight state and 
control system parameters. 

This study was based on a subset of the FSS data, 
consisting of 160 unique runs of level flight, evenly 
drawn from 8 manoeuvre groups corresponding to 
level flight at speeds from 0.3Vh to 1.0Vh. These 
160 runs were representative of all configuration, 
gross-weight, centre of gravity, and altitude points 
tested during the flight test program. 



 

 

Figure 1 Example helicopter loading in time and 
frequency domain. a) Sample of main-rotor pitch-link 
loading during level flight. b) Analysis of frequency 
content of main-rotor pitch-link loading during level 
flight, determined using discrete Fourier transform.  

This specific subset was chosen for a number of 
reasons; these included: (i) restricting runs to level 
flight manoeuvres, to limit variability in load 
relationships and simplify model development; (ii) 
including runs conducted at various flight speeds, to 
aid development of generalized models; (iii) the 
even distribution of selected runs (20 runs from each 
speed regime) to prevent bias; and (iv) including a 
range of gross-weight, configuration and centre of 
gravity test points to aid development of generalized 
models. 

The main rotor pitch-link axial load was selected as 
the target for prediction for two main reasons. Firstly, 
pitch-link loads form a basis for the fatigue 
substantiation of numerous dynamic components 
[12], and therefore refinements in their prediction 
have a wide impact. Secondly, pitch-link loads are 
complicated load signals, which ensured the 
prediction problem simulated real-world difficulties. 

2.3. Cross-Validation and Data Partitioning 

A 10-fold cross validation was adapted and used in 
this study to make the most of available data. The 

generic cross-validation process involves 
partitioning the data into 10 folds; with one fold 
reserved for evaluating the model, and the 
remaining nine used for training. The training 
process is repeated 10 times with each fold 
reserved once for evaluation. 

To realistically assess the predictive ability of a 
model produced by a regression process, testing 
data must not be seen by the model during training. 
However, as Figure 1a highlights, helicopter flight 
data is periodic in nature meaning data recorded at 
different times within a run may be nearly identical. 
To ensure the folds reserved for evaluation were not 
influenced by training data; the generic cross-
validation data partitioning process was modified to 
force each run of flight data to be contained wholly 
within one of the ten folds. This prevents identical 
data being used for both training and evaluating, 
thereby maintaining the integrity of the predictive 
accuracy evaluation. 

a) 

The construction of the 10-folds data sets used 
within this study is illustrated in Figure 2 where the 
tabulated numbers are indexes of level flight runs. 
Each fold contained 16 level flight runs, 2 for each 
speed regime, with the 2 runs randomly allocated 
from a pool of 20 runs at each speed. b) 

 

Figure 2 Illustration of 10-fold Cross-Validation data 
partitioning process [13]  



 

3. HARMONIC REGRESSION APPROACH 

3.1. Key Features 

The harmonic regression approach uses a minimal 
amount of airframe mounted strain gauges and flight 
state and control parameters in combination with 
regression techniques to model main-rotor pitch-link 
loads in the harmonic domain.  

The key features of the approach include: i) use of 
advanced pre-processing techniques to decompose 
complicated signals into simpler elements, ii) use of 
novel variable selection techniques to select an 
optimal subset of predictors from a large candidate 
set; and iii) use of regression techniques to train 
models to predict these simpler elements. 

3.2. Pre-Processing Training Data 

3.2.1. Frequency Synchronization  

As previously discussed and shown in Figure 1, 
helicopter component loads are vibratory loads, 
driven at the frequency and harmonic frequencies of 
the rotor system. Although the nominal values for 
these frequencies are known, their actual value 
fluctuates during operation due to changes in main-
rotor RPM. This shifting RPM must be accounted for 
when attempting to isolate harmonic features at 
specific frequencies, as performed by the harmonic 
regression approach. 

Equation (1) is used to modify the elapsed time, t , 
associated with each sampling point, j , to the value 

it would have been, t , had the RPM been at its 
nominal value. Where is measured RPM as a 
percentage of its nominal value. 
 

 (1) 

ˆ

 

NR





i 1

 

Figure 3 Synchronization of Main Rotor RPM for a 
generic signal with 10x exaggeration in NR 
fluctuations. Note: Markers represent every 1 in 10 
samples 
 

3.2.2. Signal Decomposition 
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This modification of elapsed time values varies the 
effective sampling rate in order to simulate a 
constant RPM. As a constant sampling rate is 
required for the harmonic regression approach, the 
second step of the synchronization is to interpolate 
and resample the modified signals at that constant 
rate. A sampling rate of 550.4 Hz was chosen so 
that rotor revolutions would fit exactly within a whole 
number of sample points that was also a factor of 2. 
This improved the ability to window data based on 
rotor revolutions and also improved the 
computational efficiency of future Fourier transforms. 
The steps of the time-modifying and resample 
process are illustrated in Figure 3 using a generic 
load signal, with a 10x exaggeration in  
fluctuations. 

NR

One of the key aspects of this harmonic regression 
approach is the decomposition of all flight data 
signals into their time-varying harmonic 
components. These harmonic components take the 
form of sinusoids at key frequencies and are used 
within the predictive models in place of the original 
flight data signals. As shown in Figure 4, a small 
number of these harmonic components can be used 
to accurately represent the original complicated 
signal. Increasing the number of harmonic 
components used, allows for more accurate 
representations. For this study, the DC and 7 
harmonic components were selected for use as this 
balanced model accuracy and simplicity. This 
decomposition process was performed for all flight 
data used within the approach. For non-cyclic data 
such as some flight state parameters, only the DC 
components proved useful, with higher harmonics 
comprising uninformative noise. Figure 5 displays a 
comparison of a sample main rotor pitch-link load 
time-history with its recreation using the DC and 7 
harmonic components previously shown in Figure 4. 



 

 

Figure 4 Representing main-rotor pitch-link load signals, using varying numbers of sinusoids at harmonic 
frequencies of the main-rotor a) signals replicated with various components b) DC component (0Hz) c) fMR 
component (4.3Hz) d) 2x fMR component e) 3x fMR component f) 4x fMR component g) 5x fMR component h) 6x fMR 
component i) 7x fMR component 
 
 
 

 

Figure 5 Comparison of original load time-history and its recreation using DC + 7 harmonic components 
 



 

   STFT is a Fourier related transform, which makes 
use of a sliding Discrete Fourier Transform (DFT) to 
extract these sinusoids and capture their amplitude 
and phase content as they change over time. Using 
Equation  

(2), DFTs transform complicated signals into a 

sequence of sinusoids at different frequencies, 
N

k
. 
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Where ;  is a sequence to 

be transformed; and,  is a complex number 

encoding both the amplitude, 

1,...,0  Nk 10 ,..., Nxx

kz

z , and phase,  z , 

of a sinusoidal, which can be calculated using 
Equations (3) and (4). 
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STFT captures time-varying sinusoidal content by 
breaking the data to be transformed into a number of 
overlapping chunks, and transforming each chunk 
using a DFT. The resulting complex numbers are 
added to a matrix which records amplitude and 
phase for each frequency over time. The size of 
each chunk is kept quite small allowing for high 
time-resolution of the STFT at the cost of reduced 
frequency resolution. The reduction in frequency 
resolution does not negatively affect this approach 
as the driving frequencies are well defined and 
known. The extraction of two time-varying harmonic 
components of an airframe stress time-history is 
shown in Figure 6. A transient manoeuvre was 
selected for this example to emphasize how the 
harmonic features change over time. 

The harmonic regression approach exploits this 
aspect of helicopter loading by modelling this small 
number of sinusoids and recreating the target time-
history out of the predictions, rather than attempting 
to model the entire load-history.  

 

 

 

Figure 6 Graphic representation of using a sliding DFT to extract signal components at specific frequencies a) 
time-history of airframe stress during a dash and quickstop manoeuvre b) the 0 Hz extracted component c) the 
4x fMR extracted component 
 



 

The ability to decompose signals into their harmonic 
components provides numerous benefits to the load 
synthesis approach; including: i) simplification of the 
prediction problem into multiple easier-to-solve 
problems; ii) extracting useful harmonic components 
at specific frequencies, from otherwise uninformative 
training data signals; and, iii) removing noise from 
the prediction problem, by allowing modelling of an 
optimized group of target frequencies. 

3.3. Variable Selection 

Variable selection techniques are an important 
aspect of load synthesis approaches. They provide 
a means of discarding redundant and irrelevant 
predictors, and aid in the selection of optimal 
predictors. A common goal of variable selection 
techniques is to minimise the number of inputs 
required, as this increases both the practicality and 
robustness of the resultant model.  

The variable selection process is especially 
important within the harmonic regression approach, 
as decomposing signals into their harmonic content 
greatly increases the number of candidate predictor 
variables. As linear regression is used to train the 
predictive models, the current variable selection 
technique is a form of stepwise regression which 
identifies and selects a subset of predictors which 
minimise the ordinary least squares (OLS) residual 
sum of squares (RSS) of the model.  

The variable selection technique is performed for 
each target harmonic to be predicted, and operates 
by iteratively adding predictors to a subset until all 
predictors are included. At each iterative step, the 
algorithm adds that predictor whose addition would 
most decrease the OLS RSS of the model as 
calculated by Equation (5). This selection process is 
performed for each set of cross-validation training 
data, and the current predictor subset is recorded at 
each iterative step. 
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β̂Xy TrTr RSS  

Where  is a vector of target harmonic 

amplitudes within the training data; and,  is the 

matrix of predictor harmonic amplitudes. 
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As  is calculated using the ordinary least squares 

approach, Equation 

β̂
(5) is transformed into: 
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Once all predictors are included within the subset, 

the process is reversed with the technique iteratively 
removing predictors from the subset. Predictors are 
removed based on how little their removal will affect 
the model RSS. The order of variable selection is 
important in stepwise regression techniques, this 
backward selection step alleviates this somewhat, 
by providing an alternate path of variable selection.  

Finally, the technique calculates how well the 
subsets selected at each iterative step would 
perform against the unseen test data. The subset of 
predictors with the best predictive accuracy for the 
unseen test data is then selected as the optimal 
subset of predictors for the model. 

3.4. Model Development 

3.4.1. Linear Models of Harmonic Data 

This harmonic regression approach fits predictive 
linear models to the selected set of Black Hawk flight 
data, using a multiple linear regression approach. 
Assuming that the relationship between the 

dependent variable, , and the iy p -vector of 

predictors, , is linear, ix   are regression 

coefficients estimated using a least squares 
approach. Standard linear models take the form 

shown in Equation (7), where , and .n,...,1j  i  is 

an error term defining noise. 
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These  equations are often stacked together and 
written in vector form as 
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3.4.2. Modelling Harmonic Amplitude 

The harmonic regression approach requires the 
modelling of those complex numbers calculated 
using Equation (2) which represents changes in the 
sinusoid over time. To best achieve this, each 
sinusoidal component is modelled independently. 

The process for modelling the sinusoidal amplitude 
is straight-forward. It involves fitting a linear model 
similar to Equation (8) using data from each cross-
validation training dataset; where y  is a vector of 

pitch-link amplitudes at a specific frequency; and  
is a matrix of amplitudes for each predictor within the 
optimal subset. All of these amplitudes are 
calculated from their respective complex sinusoids 
using Equation 

X

(3). 

This approach is simple yet has proven very 
successful, as demonstrated by the included case 
study. 

3.4.3. Harmonic Phase 

As a preliminary study, the present investigation 
does not incorporate the modelling of harmonic 
phases. Instead, the phases from the actual 
measurements were used to reconstruct the load-
time history. This allows for the evaluation of the 
best possible prediction if the phase was modelled 
perfectly. 

3.4.4. Composing Load Time-History 

The ability to restructure the target component load 
time-history from the predicted harmonic content is 
essential if the approach is to be used for indirect 
load monitoring. This is achieved by performing a 
process which is in essence the inverse of the STFT 
previously detailed. 

A sequence of complex numbers , which 

represent sinusoids at specific harmonic frequencies 
of the target load as they change over time, is 
constructed, using Equation 

nkk zz ,,1 

(9),  from the 
amplitudes and phases modelled by the approach. 
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Where z  is the sinusoidal amplitude, and  z  the 

sinusoidal phase. 

 

A sliding inverse DFT is then used to transform this 
sequence of complex numbers into a sequence of 
real numbers equal to the target component load-
time history. 

As previously stated, the approach is not yet able to 

model the sinusoidal phase. In order to effectively 
evaluate the ability of the approach to model 
sinusoidal amplitude, the measured phase from the 
testing data is used to reconstruct the signal. 

4. DEMONSTRATED CASE STUDY 

A linear model was developed using the harmonic 
regression approach to predict the main-rotor pitch-
link loads of a Black Hawk helicopter during level 
flight manoeuvres. This model was trained using 
flight data from 160 level flights at various airspeeds, 
aircraft configurations, gross-weights, altitudes and 
centre of gravity locations. The model uses a 
number of fixed strain measurements and flight state 
and control parameters to predict time-varying 
sinusoids at 8 frequencies including; 0 Hz (DC); 4.3 

Hz ( ); and the first 6 harmonics of . These 

time-varying sinusoids, or harmonic components, 
are defined by amplitude and phase values which 
are independently modelled by the approach. The 
predicted sinusoids at each frequency are combined 
to construct a predicted load time-history. 

MRf MRf

The harmonic regression approach is capable of 
modelling the magnitude of these harmonic 
components to a high-degree of accuracy, as shown 
in Figure 7 by small values of Root Mean Squared 
Error (RMSE) which were calculated using test data 
unseen in training. This level of accuracy is possible 
largely as a result of the signal decomposition 
process. By separating the flight load data into its 
fundamental harmonic components, predictive 
models of target signals become simpler and more 
relevant predictive information can be extracted from 
predictors.  

This high degree of accuracy is also partly due to 
the variable selection techniques used to determine 
the models subset of predictors. The current 
variable selection techniques used are optimized to 
improve predictive accuracy with no consideration 
for model parsimony. As a result, the predictor 
subset selected for the final model was quite large, 
comprising 466 total harmonic components from 198 
unique strain gauges and flight state and control 
parameters. The improvement of these techniques 
will most likely see a trade-off between model 
accuracy, and model parsimony, with accuracy 
reducing as the subset size shrinks. That being said, 
previous investigations of similar approaches have 
found that the accuracy level can be held and even 
improved while reducing the predictor subset size, 
by improving the models ability to predict unseen 
data. 

Despite the lack of phase predictive capability, the 
final load time-history can be constructed using 
measured phase values; this reconstruction is the 
best-case model prediction, assuming perfect phase 



 

These reconstructed time-histories emphasize how 
well the predicted amplitudes match the measured. 
If similar levels of accuracy can be achieved with the 
phase prediction techniques currently being 
investigated, then the harmonic regression approach 
would be an extremely promising indirect load 
monitoring technique.  

prediction, with current amplitude prediction 
accuracy. Figure 8a shows a reconstructed pitch-link 
load time history for 160 level flights at various 
airspeeds. Figure 8b and Figure 8c enhance 3 
seconds of the predicted and measured time-
histories to emphasize how well the final prediction 
matches. 

 

 

 

 

 

Figure 7 Accuracy for the magnitude predictions of each harmonic component. Note the change in scale between 
the first 3 harmonic component plots..



 

  

Figure 8 Comparison of measured and predicted main rotor pitch-link load time histories, using measured 
phase information during the construction of the predicted history. a) time-history predictions for all 160 level 
flights used during model training and testing. b) 3 second sample of a relatively steady period of flight. c) 3 
second sample of a less steady period of flight



 

5. DISCUSSION OF FUTURE WORK 

5.1. Optimising Selection Across Harmonics  

The current variable selection technique selects 
unique predictor subsets which are optimal for each 
target harmonic. There is currently no emphasis 
placed on minimising the number of predictors used 
to model each harmonic, or the total number of 
predictors required. By incorporating more 
sophisticated optimisation routines within the 
variable selection technique, it is hoped that the 
number of predictors required can be reduced 
significantly, whilst maintaining acceptable levels of 
accuracy. 

Potential improvements could be made by adapting 
the current technique to concurrently select 
predictors across all target harmonics. By selecting 
predictor subsets concurrently, the technique can be 
guided to select a common subset of predictors. 
Although this subset may be inferior for predicting 
each independent harmonic, it would significantly 
reduce the total number of predictors required. 
Previous investigations of concurrent variable 
selection techniques have shown that due to the 
increase in robustness of models which use 
common subsets, overall model accuracy may 
actually improve using this technique [13]. 

5.2. Modelling Harmonic Phase 

The sinusoidal phase cannot be modelled as simply 
as the amplitude. This is in large part due to the 
circular nature of phase data rendering traditional 
statistical regression approaches inadequate. In 
order to accurately model phase information for 
time-varying sinusoids, which is required for the 
harmonic regression approach, modelling 
techniques applicable to circular data must be 
investigated and adopted. 

6. CONCLUSION 

A load synthesis approach using harmonic 
regression was investigated as a means to indirectly 
monitor loads on helicopter dynamic components. 
The approach uses a synchronization technique to 
normalize the frequency content of flight data, and 
advanced signal processing techniques to 
decompose this data into harmonic components. 
Once decomposed, an optimal subset of predictor 
components is selected using advanced variable 
selection techniques, and predictive models trained 
using OLS linear regression. A case study 
demonstrated the predictive accuracy of this 
approach for main-rotor pitch link loads over 160 
level flights at various speeds. The approach 
produced a general model for pitch-link load 

harmonics, capable of highly accurate amplitude 
predictions. Further work is required to i) investigate 
model performance with reduced number of 
predictor variables, and ii) investigate and develop 
phase prediction techniques which can be 
incorporated within the approach.  
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